首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell cycle parameters were estimated in primary cultures of iris epithelial cells, obtained from explanted dorsal and ventral irises of adult newts (Notophthalmus viridescens). No significant difference was found between parameters of dorsal and ventral iris epithelial cell cultures. Compared with the total cell cycle time of iris epithelial cells in situ in the pathway of conversion, that of cultured iris epithelial cells is longer by a factor of 1.88. The results support the working hypothesis that the basic requirement for conversion of iris epithelial cells into lens cells is the passage of a definite number of cell cycles instead of the inductive influence of neural retina.  相似文献   

2.
Removal of the ocular lens in adult newts (Notophthalmus viridescens) is followed by a series of cellular events leading to regeneration of a new lens by cell type conversion of pigmented iris epithelial cells at the dorsal pupillary margin (Yamada, Curr. Top. Dev. Biol. 2:247-283, 1967). Following depigmentation and five to seven cell divisions, iris epithelial cells redifferentiate into lens fiber cells and synthesize crystallin proteins (Yamada, Curr. Top. Dev. Biol. 2:247-283, 1967). This process is dependent upon neural retina in vivo (Stone, Anat. Rec. 131:151-172, 1958; Reyer, Dev. Biol. 14:214-225, 1966) and in vitro (Yamada et al., Differentiation 1:65-82, 1973). Acting on the hypothesis that the role of the neural retina is to promote passage of iris epithelial cells through the requisite number of cell cycles which will then allow them to redifferentiate as lens fiber cells (Yamada, in: Cell Biology of the Eye. Academic Press, New York, 1982), we undertook testing of the effects of eye-derived mitogenic substances, as well as other mitogens, on regeneration of lens from iris in organ culture. We have previously defined a critical period for the retinal influence in vivo and in vitro, and have shown that crude extracts of retina can enhance regeneration of lenses in culture (Connelly et al., J. Exp. Zool., 240:343-351, 1986). In this paper, we report on the lens regeneration enhancing activity (LRA) of more highly purified fractions of the retinal extracts. Heparin-sepharose chromatography of the crude retinal extract yields three fractions (Courty et al., Biochemie 67:265-269, 1985) called EDGF I, II, and III. EDGF I and II have affinity for heparin, while EDGF III does not. In our bioassay, LRA appears only in the EDGF III fraction. Dialysis of EDGF III against 0.1 N acetic acid yields a fraction which has affinity for cibacron blue sepharose (eluting at 2.15 M salt) and also has significant LRA. Because insulin at high doses has a marginal effect on lens regeneration in culture (Williams and McGlinn, Am. Zool. 19:923, 1979; Connelly, Differentiation 16:85-91, 1980), we tested IGF-I. Because of the putative neurotrophic effects of transferrin (Tf) (Mescher and Munaim, J. Exp. Zool., 230:485-490, 1986), we tested Tf for its ability to enhance regeneration of the lens in culture. IGF-I seems to have an enhancing effect on lens regeneration; Tf does not.  相似文献   

3.
Donor cell type, cell-cycle stage, and passage number of cultured cells all affect the developmental potential of cloned embryos. Because acetylation of the histones on nuclear chromatin is an important aspect of gene activation, the present study investigated the differences in histone acetylation of bovine fibroblast and cumulus cells at various passages and cell-cycle stages. The acetylation was qualitatively analyzed by epifluorescent confocal microscopy and quantitatively by immunofluorescent flow cytometry. Specifically, we studied levels of histone H4 acetylated at lysine 8 and histone H3 acetylated at lysine 18; acetylation at these lysine residues is among the most common for these histone molecules. We also studied levels of linker histone H1 in donor cells. Our results show that stage of cell cycle, cell type, and number of cell passages all had an effect on histone content. Histone H1 and acetyl histone H3 increased with cell passage (passages 5-15) in G0/G1- and G2/M-stage cumulus and fibroblast cells. We also found that acetyl histone H4 was lower in early versus late cell passages (passage 5 vs. 15) for G0/G1-stage cumulus cells. In both cell types examined, acetyl histones increased with cell-cycle progression from G0/G1 into the S and G2/M phases. These results indicate that histone acetylation status is remodeled by in vitro cell culture, and this may have implications for nuclear transfer.  相似文献   

4.
The onset mechanism of proliferation in mitotically quiescent retinal pigment epithelium (RPE) cells is still obscure in humans and newts, although it can be a clinical target for manipulating both retinal diseases and regeneration. To address this issue, we investigated factors or signaling pathways involved in the first cell-cycle entry of RPE cells upon retinal injury using a newt retina-less eye-cup culture system in which the cells around the wound edge of the RPE exclusively enter the cell cycle. We found that MEK-ERK signaling is necessary for their cell-cycle entry, and signaling pathways whose activities can be modulated by heparin, such as Wnt-, Shh-, and thrombin-mediated pathways, are capable of regulating the cell-cycle entry. Furthermore, we found that the cells inside the RPE have low proliferation competence even in the presence of serum, suggesting inversely that a loss of cell-to-cell contact would allow the cells to enter the cell cycle.  相似文献   

5.
The TVI cell line, derived from dorsal iris cells of adult newts ( Notophthalmus viridescens ), was investigated for the presence of crystallins. Since there is reason to believe that iris epithelial cells are the main sources of this cell line and since iris epithelial cells are known to convert into lens cells in primary cultures, it is possible that TVI cells also possess the capacity to synthesize crystallins, those proteins characteristic of lens cells. It is also possible, however, that the large number of passages gone through by TVI cells in the past has eliminated such differentiated synthetic capacity expressed in earlier generations. Our immunoelectrophoresis studies reveal the presence of small amounts of α and β crystallins, and the absence of γ crystallins in TVI cells. Furthermore, immunofluorescence observations demonstrate that a small number of cells comparable to lens epithelial cells in crystallin composition and morphology are present in TVI cultures. In view of the fact that in the amphibian lens, epithelial cells which retain proliferative activity accumulate α and β crystallins but not γ crystallins, while fiber cells which are devoid of proliferative activity accumulate all three classes of crystallins, the present results suggest that the TVI cell line has lost the capacity to maintain lens fiber cells, which are known to be present in primary culture of iris epithelial cells.  相似文献   

6.
7.
8.
Singly dissociated cells from dorsal and ventral iris epithelia ( iris iridica ) of adult newts were cultured separately at clonal density to analyse their growth and differentiative capacity. Usually some attached cells began to proliferate on 12th day of culture, and grew with loss of melanosomes to form clonal cell colonies. Up to 30 days after inoculation, most of the clonal colonies formed typical epithelial monolayer sheets which consisted mostly of nonpigmented cells. Then, in some of those colonies, cells piled up together and form typical lens structures containing lens antigens. A month and a half after culturing, 30 to 40% of single iris cells, which had been previously marked, grew to form clonal colonies consisting of more than 100 cells. About 30% of these colonies expressed lens specificity and no significant differences in efficiency of colony formation and differentiation were detected between the dorsal cells and the ventral, suggesting that potent cells capable of transdifferentiating into lens cells are evenly distributed in all parts of the newt iris epithelium.  相似文献   

9.
The crystallin synthesis of rat lens cells in cell culture systems was studied in relevance to their terminal differentiation into lens fibers. SDS-gel electrophoresis combined with several immunological techniques showed that γ-crystallin is a fiber-specific lens protein and is not localized in the epithelium of either newborn or adult lenses. When lens epithelial cells of newborn rats were cultured in vitro , α-crystaIlin was detected in many, but not all, of cells cultured for 10 days. Cells with α-crystallin gradually changed their shape into a flattened filmy form and finally differentiated into lentoid bodies. The differentiation of lentoid bodies was also found in cultures of epithelial cells obtained from adult lenses. The molecular constitution of lentoid bodies was the same as that of lens fibers in situ . The differentiation of lentoid bodies occurred successively for 5 months in cultures of lens epithelial cells. Most of the proliferating cells, however, lost α-crystallin during the culture period. Thereafter, they did not show any sign of further differentiation into lens fibers. Four clonal lines were established from these cells. One protein which is specific to the lens epithelium and the neural retina in situ (tentatively named as βu-crystallin) was maintained in all lines, suggesting that some specific properties of ocular cells remain in the lined cells.  相似文献   

10.
Abé S 《Zoological science》2004,21(7):691-704
Meiosis is an event that occurs prerequisitely and specifically in gametogenesis. However, the mechanisms of conversion from mitosis to meiosis are poorly understood. I will review the results so far obtained by us using newt testis as a model system, and discuss about the extrinsic mechanism(s) controlling the conversion from mitosis to meiosis. In the newt spermatogonia enter meiosis in the 8th generation after 7 mitotic divisions. We developed organ and reaggregate culture systems with a chemically defined medium in which porcine follicle-stimulating hormone (pFSH) promotes spermatogonial proliferation and differentiation into primary spermatocytes. Human recombinant stem cell factor (RhSCF) in vitro stimulates the spermatogonial proliferation and progression to the 7th generation, but not the differentiation into primary spermatocytes; instead they die of apoptosis. The reason why rhSCF does not stimulate meiosis entrance seems to be due to the low level expression of c-kit protein at the 7th generation of spermatogonia. Ovine PRL induces apoptosis in the 7th generation of spermatogonia in vivo and in vitro. Incubation of newts at low temperature causes spermatogonial apoptosis by the elevation of plasma PRL titer. In the absence of FSH in organ culture spermatogonia can progress until the 7th generation, but the 8th generation never appear due to the apoptosis. Altogether there seems to be a regulatory checkpoint for entrance into meiosis in the 7th generation. Spermatogonia could circumvent the checkpoint by the influence of some factor(s) produced by Sertoli cells upon activation by FSH. Trial to isolate factor(s) responsible for the meiosis-initiation is now underway.  相似文献   

11.
Iris epithelial cells of adult newts, which are fully differntiated melanocytes and non-dividing, become dedifferentiated and converted into lens cells when put in culture. A recent study shows that this dedifferentiation is based on an autophagic process which is associated with proliferation and mainly affects melanosomes. The present report shows that in primary culture of iris epithelial cells after the majority of melanosomes have disappeared, myelinoid bodies, which are interpreted to be telolysosomes of autophagic nature, appear in high frequencies. This suggest that in these cells autophagy persists after the loss of melanosomes. A possible connection of this type of autophagy with the differentation of lens fiber which occurs in this culture is discussed. In the TVI cell line which is believed to be derived from the same cell type, but devoid of melanosomes, similar myelinoid bodies are a characteristic cell component, suggesting that the tendency for autophagy is inherited in theis cell line.  相似文献   

12.
Iris epithelial cells of adult newts, which are fully differentiated melanocytes and non-dividing, become dedifferentiated and converted into lens cells when put in culture. A recent study shows that this dedifferentiation is based on an autophagic process which is associated with proliferation and mainly affects melanosomes. The present report shows that in primary culture of iris epithelial cells after the majority of melanosomes have disappeared, myelinoid bodies, which are interpreted to be telolysosomes of autophagic nature, appear in high frequencies. This suggests that in these cells autophagy persists after the loss of melanosomes. A possible connection of this type of autophagy with the differentation of lens fiber which occurs in this culture is discussed. In the TVI cell line which is believed to be derived from the same cell type, but devoid of melanosomes, similar myelinoid bodies are a characteristic cell component, suggesting that the tendency for autophagy is inherited in this cell line.  相似文献   

13.
Growth factor signaling is implicated in the regulation of lens cell proliferation and differentiation during development. Activation of growth factor receptor tyrosine kinases is known to activate Ras proteins, small GTP-binding proteins that function as part of the signal transduction machinery. In the present study, we examined which classical Ras genes are expressed in lens cells during normal development and whether expression of an activated version of Ras is sufficient to induce either lens cell proliferation or fiber cell differentiation in transgenic mice. In situ hybridization showed H-Ras, K-Ras and N-Ras are ubiquitously expressed in all cells of the embryonic (E13.5) eye, with N-Ras showing the highest level of expression. The expression level of N-Ras decreases during later stages of embryonic development, and is nearly undetected in postnatal day 21 lenses. To generate transgenic mice, a constitutively active H-Ras mutant was linked to a chimeric regulatory element containing the mouse alphaA-crystallin promoter fused to the chick delta1-crystallin lens enhancer element. In the lenses of the transgenic mice, the transgene was expressed in both lens epithelial and fiber cells. Expression of activated Ras was sufficient to stimulate lens cell proliferation but not differentiation, implying that alternative or additional signal transduction pathways are required to induce fiber cell differentiation.  相似文献   

14.
Cellular Studies of X-Ray Induced Inhibition of Lens Regeneration   总被引:1,自引:0,他引:1  
Whole-body X-irradiation of adult newts 0 to 3 days after lentectomy inhibits transformation of the dorsal iris epithelium into a lens in all cases. The first question raised was whether irradiation affects infiltration of the iris area by macrophages, and the phagocytic activities of these cell types in the iris epithelium (prominent phenomena in this system). The number of macrophages infiltrating into the iris epithelium, and their phagocytic activities (indicated by uptake of melanosomes) were not affected by irradiation under those conditions. The second group of experiments concerns the possible effects of irradiation on DNA replication of iris epithelial cells, which become transformed into lens cells in the non-irradiated system. Autoradiographic studies of iris epithelial cells in vivo revealed a significant suppressive effect of irradiation on the frequencies of cells incorporating 3H-thymidine 7 and 14 days after lentectomy. When autoradiography was applied to the primary pure culture of iris epithelial cells at different time intervals after the start of culture and irradiation in vitro , significant and persistent reduction of cell labelling due to irradiation, was demonstrated. Multiplication of spread cells in the iris epithelial culture was strongly and persistently inhibited throughout a period of 2 months. Inhibition of cell labelling and of cell multiplication was always accompanied by reduction in the extent of de-pigmentation of iris epithelial cells. De-pigmentation is one of the requirements for the cells become transformed into lens cells. The possible mechanism of radiation-induced inhibition of lens regeneration is discussed.  相似文献   

15.
The in vitro culture of porcine bone marrow-derived mesenchymal stem cells (MSCs) was used for the investigation of adult stem cell biology. Isolated porcine MSCs possessed the ability to proliferate extensively in an antioxidants-rich medium containing 5% fetal bovine serum (FBS). Greater than 40 serial MSC passages and 100 cell population doublings have been recorded for some MSC batches. Early and late passage MSCs were defined here as those cultures receiving less than 5 trypsin passages and more than 15 trypsin passages, respectively. Consistent with their robust ability to proliferate, both the early and late passage MSCs expressed the cell-cycle promoting enzyme p34cdc2 kinase. Late MSCs, however, exhibited certain features reminiscent of cellular aging such as actin accumulation, reduced substrate adherence, and increased activity of lysosomal acid beta-galactosidase. Early MSCs retained the multipotentiality capable of chondrogenic, osteogenic, and adipogenic differentiation upon induction in vitro. In contrast, late MSCs were only capable of adipogenic differentiation, which was greatly enhanced at the expense of the osteochondrogenic potential. Along with these changes in multipotentiality, late MSCs expressed decreased levels of the bone morphogenic protein (BMP-7) and reduced activity of alkaline phosphatase. Late MSCs also exhibited attenuated synthesis of the hematopoietic cytokines granulocyte colony-stimulating factor (G-CSF), leukemia inhibitory factor (LIF), and stem cell factor (SCF). The long-term porcine MSC culture, thus, provides a model system to study the molecular interplay between multiple MSC differentiation cascades in the context of cellular aging.  相似文献   

16.
Members of the fibroblast growth factor (FGF) family induce lens epithelial cells to undergo cell division and differentiate into fibres; a low dose of FGF can stimulate cell proliferation (but not fibre differentiation), whereas higher doses of FGF are required to induce fibre differentiation. To determine if these cellular events are regulated by the same signalling pathways, we examined the role of mitogen-activated protein kinase (MAPK) signalling in FGF-induced lens cell proliferation and differentiation. We show that FGF induced a dose-dependent activation of extracellular regulated kinase 1/2 (ERK1/2) as early as 15 minutes in culture, with a high (differentiating) dose of FGF stimulating a greater level of ERK phosphorylation than a lower (proliferating) dose. Subsequent blocking experiments using UO126 (a specific inhibitor of ERK activation) showed that activation of ERK is required for FGF-induced lens cell proliferation and fibre differentiation. Interestingly, inhibition of ERK signalling can block the morphological changes associated with FGF-induced lens fibre differentiation; however, it cannot block the synthesis of some of the molecular differentiation markers, namely, beta-crystallin. These findings are consistent with the in vivo distribution of the phosphorylated (active) forms of ERK1/2 in the lens. Taken together, our data indicate that different levels of ERK signalling may be important for the regulation of lens cell proliferation and early morphological events associated with fibre differentiation; however, multiple signalling pathways are likely to be required for the process of lens fibre differentiation and maturation.  相似文献   

17.
Lens growth involves the proliferation of epithelial cells, followed by their migration to the equator region and differentiation into secondary fiber cells. It is widely accepted that fibroblast growth factor (FGF) signaling is required for the differentiation of lens epithelial cells into crystallin-rich fibers, but this signaling is insufficient to induce full differentiation. To better understand lens development, investigatory and functional analyses of novel molecules are required. Here, we demonstrate that Equarin, which is a novel secreted molecule, was expressed exclusively in the lens equator region during chick lens development. Equarin upregulated the expression of fiber markers, as demonstrated using in ovo electroporation. In a primary lens cell culture, Equarin promoted the biochemical and morphological changes associated with the differentiation of lens epithelial cells to fibers. A loss-of-function analysis was performed using zinc-finger nucleases targeting the Equarin gene. Lens cell differentiation was markedly inhibited when endogenous Equarin was blocked, indicating that Equarin was essential for normal chick lens differentiation. Furthermore, biochemical analysis showed that Equarin directly bound to FGFs and heparan sulfate proteoglycan and thereby upregulated the expression of phospho-ERK1/2 (ERK-P) proteins, the downstream of the FGF signaling pathway, in vivo and in vitro. Conversely, the absence of endogenous Equarin clearly diminished FGF-induced fiber differentiation. Taken together, our results suggest that Equarin is involved as an FGF modulator in chick lens differentiation.  相似文献   

18.
Our previous studies showed that dietary nucleotides fed to mice enhanced the secretion of interleukin 7 (IL-7) and transforming growth factor β (TGF-β) from intestinal epithelial cells (IECs). To explore whether nucleotides influence IECs directly to enhance the secretion of the cytokines or not, the effects of nucleotides added in vitro on the cytokine secretion from primary-cultured murine IECs were examined. When the mixture of nucleotide 5′-monophosphates (CMP, GMP, IMP, and UMP) or individual nucleotide 5′-monophosphates were added to the primary culture of IECs derived from BALB/c mice, the secretion of IL-7, but not that of TGF-β, was increased significantly. Addition of nucleotides to the culture did not alter the number of the IECs. Secretion of IL-6 and granulocyte-macrophage colony-stimulating factor, which are known to be secreted from IECs, was not enhanced by the addition of nucleotides. These results demonstrate that nucleotides can affect IECs directly to enhance the secretion of IL-7, and suggest that the increased secretion of TGF-β from IECs by dietary nucleotides was due to indirect effects of the nucleotides, which may affect intestinal microflora or cells other than IECs that in turn influence the cytokine secretion of IECs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The level of galactosyltransferase activity was followed during conversion of iris epithelial cells into lens cells in lentectomized adult newts. A moderate increase during the dedifferentiation phase is followed by a remarkable increase when the lens tissue is differentiating. Maturation of the lens is associated with a decline in the enzyme activity.  相似文献   

20.
Previous studies have suggested that intestinal epithelial cells (IECs) have the capacity to function as nonprofessional antigen presenting cells that in the normal state preferentially activate CD8+ T cells. However, under pathological conditions, such as those found in inflammatory bowel disease (IBD), persistent activation of CD4+ T cells is seen. The aim of this study was to determine whether the IBD IECs contribute to CD4+ T cell activation. Freshly isolated human IECs were obtained from surgical specimens of patients with or without IBD and cocultured with autologous or allogeneic peripheral blood T lymphocytes. Cocultures of normal T cells and IECs derived from IBD patients resulted in the preferential activation of CD4+ T cell proliferation that was associated with significant IFN-gamma, but not IL-2, secretion. Cytokine secretion and CD4+ T cell proliferation was inhibited by pretreatment of the IBD IECs with the anti-DR MAb L243. In contrast, normal IECs stimulated the proliferation and cytokine secretion by CD4+ T cells to a significantly lesser degree than IBD IECs. Furthermore, blockade of human leukocyte antigen-DR had a lesser effect in the normal IEC-CD4+ T cell cocultures. We conclude that IECs can contribute to the ongoing CD4+ T cell activation seen in IBD. We suggest that the apparent differences between the secreted levels of IFN-gamma indicate that it may play a dual role in intestinal homeostasis, in which low levels contribute to physiological inflammation whereas higher levels are associated with an uncontrolled inflammatory state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号