首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity of the plasma-derived lipid transfer protein to facilitate the transfer of various cholesteryl ester species has been investigated. Four different molecular species of cholesteryl ester were incorporated into either reconstituted high density lipoproteins or phosphatidylcholine liposomes, and the resulting particles were used as donors in standardized lipid transfer assays. With reconstituted high density lipoproteins as substrate, the rate of transfer of cholesteryl esters was cholesteryl oleate greater than cholesteryl linoleate greater than cholesteryl arachidonate greater than cholesteryl palmitate. The transfer rate for cholesteryl oleate was 154% of that for cholesteryl palmitate. Liposome substrates gave similar results. It is concluded that lipid transfer protein transfers all major species of cholesteryl ester found in plasma; however, the relative rates of transfer were significantly affected by acyl chain composition. The transfer rates appeared to reflect substrate specificity rather than substrate availability within the donor particle.  相似文献   

2.
Cholesterol ester hydrolase (EC 3.1.1.13) activity from the 104,000 X g supernatant of rat testis was fractionated into 28-kDa, 72-kDa, and 420-kDa molecular mass forms by high performance size exclusion chromatography. The 72-kDa and 420-kDa forms (temperature-labile) were completely inactivated by elevation of temperature from 32 to 37 degrees C. Apparent disaggregation of the 420-kDa form suggested that the 72-kDa and 420-kDa enzymes are monomeric and multimeric forms of the same enzyme. The 28-kDa form was shown to be a different enzyme (temperature-stable) which retained activity at 37 degrees C. In contrast, cholesteryl ester hydrolase activities from 104,000 X g supernatants of liver or adrenal gland were unaffected and increased 4-fold, respectively, by elevation of temperature from 32 to 37 degrees C. Both testicular enzymes exhibited pH optima at about 7.3, and were activated by sodium cholate at concentrations near the critical micellar concentration (0.03-0.07%), but inhibited by higher concentrations. The temperature-labile cholesteryl ester hydrolase exhibited a high specificity for cholesteryl esters of monoenoic fatty acids of 18-24 carbons, especially nervonate (24:1), whereas the temperature-stable cholesteryl ester hydrolase exhibited highest specificity for cholesteryl oleate and arachidonate. Neither enzyme hydrolyzed cholesteryl acetate, myristate, palmitate, linoleate, or docosahexaenoate . Both enzymes reached maximum rates of hydrolysis at 150 microM substrates, with each substrate and at both reaction temperatures. Substrate inhibition was observed at higher concentrations (200 microM). The temperature-labile cholesteryl ester hydrolase was induced 20-fold in hypophysectomized rats by injection of follicle-stimulating hormone (FSH) and was localized in Sertoli cells, the target cells for FSH, but was not induced by luteinizing hormone. The temperature-stable cholesteryl ester hydrolase was induced by both FSH and LH and was found in both Sertoli cells and Leydig cells, the respective target cells for FSH and luteinizing hormone. Neither form of the enzyme was present at detectable levels in the germinal cells. The unique properties, localization, and hormonal regulation of both temperature-labile and temperature-stable cholesterol ester hydrolases suggest important roles for these enzymes in the testis.  相似文献   

3.
The hypothesis that clearance of cellular cholesteryl ester deposits may be a function of the physical state of the stored lipid has been investigated. Cultured rat hepatoma cells were induced to store cholesteryl ester in either anisotropic inclusions by exposure to free cholesterol-rich phospholipid dispersions or isotropic inclusions by exposure to identical dispersions supplemented with oleic acid. Differential scanning calorimetry demonstrated an order/disorder transition at 43 degrees C for cholesteryl esters stored in anisotropic inclusions; the enthalpy of this transition was consistent with a smectic liquid crystalline to liquid transition. Lipids in cells with isotropic inclusions displayed no order/disorder transitions over the range 20-80 degrees C, indicating that the lipids are in a liquid state. The presence of oleic acid did not influence the mass of cholesteryl ester stored but increased the amount of stored triglyceride. Fatty acyl compositions of the cholesteryl esters were different under the two loading conditions; in particular, there was 38% cholesteryl oleate in anisotropic inclusions and 65% cholesteryl oleate in isotropic inclusions. Kinetics of cholesteryl ester clearance from cells with either anisotropic or isotropic inclusions were studied during a 12-h exposure to acceptors of free cholesterol. In both cases, cholesteryl ester clearance is essentially linear over 12 h and is directly proportional to the initial content of cholesteryl ester. However, the fraction of initial content of cholesteryl ester cleared in 12 h is 0.17 +/- 0.05 for cells with anisotropic inclusions and 0.34 +/- 0.09 for cells with isotropic inclusions. Our data demonstrate that the more rapid clearance of cholesteryl ester by cells with isotropic inclusions can be correlated with the physical state of the cholesteryl ester.  相似文献   

4.
The alignment of cholesteryl esters in multilayer phosphatidylcholine membranes was investigated using two spin-labelled cholesteryl esters: 10 : 3 ester (I) and 1 : 14 ester (II). The nitroxide label of I is aligned in the membrane with a very large angle of tilt (47 degrees +/- 1.5 degrees) with respect to the normal to the membrane surface; II does not show such a tilt. I gives spectra corresponding to immobilized label while II gives nearly isotropic spectra. Ascorbate treatment of the multilayers shows that the labels in I and II are not present at the phosphatidylcholine-water interphase. The data supports a 'horseshoe' configuration for the cholesteryl ester in the bilayer, with both the fatty acid chain and the cholesteryl moiety extending deep into the hydrophobic region of the membrane and with the ester linkage near the surface.  相似文献   

5.
Acyl-CoA:cholesterol acyltransferase was found predominantly (85%) in RNA-rich microsomes, the rest being in RNA-poor and smooth microsomes. However, the esterified cholesterol concentration of smooth microsomes was 2-fold greater than that of RNA-rich microsomes, suggesting the possibility of an interaction between RNA-rich and smooth microsomes. The distribution of cholesteryl ester between microsome subfractions was examined after incubation of a mixture of RNA-rich and smooth microsomes with [1-14C]palmitoyl-CoA. Based upon specific acyl-CoA:cholesterol acyltransferase activities of the individual fractions, only 31 +/- 3% of the total cholesteryl ester radioactivity should have been found in the smooth component. However, the smooth microsomes contained 54 +/- 3% (p < 0.01) of the radioactive cholesteryl esters. The entrapment of radioactive cholesteryl ester in the smooth microsomes could not be accounted for by passive transfer of cholesteryl ester from RNA-rich microsomes to smooth microsomes. It is proposed that cholesterol in the smooth microsomal membranes may have been esterified by acyl-CoA:cholesterol acyltrasferase located on the surface of RNA-rich microsomes with the resulting cholesteryl ester retained in the smooth microsomes. This hypothesis was strengthened by the observation that acyl-CoA:cholesterol acyl-transferase was located on the cytoplasmic surface of the RNA-rich microsomal vesicle.  相似文献   

6.
The use of five cholesterol ester hydrolases (CEH), numbered 1 to 5, for the enzymatic determination of total cholesterol of human and rat serum are compared. All CEH gave approximately the same value (no statistical difference) for human serum. However, when rat serum cholesterol was determined, CEH-2 yielded a value significantly lower when compared to the four other CEH. The ability of each CEH to hydrolyze individual cholesterol esters was tested. During a 15-min incubation, all CEH were capable of hydrolyzing nearly 100% of cholesteryl oleate and linoleate. In contrast, the hydrolysis of cholesteryl arachidonate was only partial and varied from 20 to 80% depending on the CEH used. The highest hydrolysis was obtained by CEH-1 while the value given by CEH-2 was only 22% of that obtained by CEH-1. The rate of hydrolysis of cholesteryl arachidonate differed markedly among the CEH. The CEH-2-hydrolyzed the cholesteryl arachidonate at a rate seven times lower than the rate obtained with CEH-1. The data suggest that, Under our incubation conditions, CEH-2 did not properly hydrolyze the cholesteryl arachidonate. This phenomenon may be crucial whenever total cholesterol has to be determined enzymatically in the serum of species that contain large amount of cholesteryl arachidonate such as rat, mouse, or dog serum.  相似文献   

7.
The distribution of apolipoprotein A-I, apolipoprotein D, lecithin:cholesterol acyltransferase, and cholesteryl ester transfer protein in fasting normal human plasma was determined by two-dimensional electrophoresis followed by immunoblotting. The synthesis and transfer of labeled cholesteryl esters generated in plasma briefly incubated with [3H]cholesterol-labeled fibroblasts was followed in terms of the lipoprotein species containing these antigens. Following the early appearance of labeled free cholesterol in two pre beta-migrating apolipoprotein A-I species (Castro, G. R., and Fielding, C. J. (1988) Biochemistry 27, 25-29), labeled esters were first detected, after a 2-min delay, in a third pre beta-migrating species which also contained apolipoprotein D, lecithin:cholesterol acyltransferase, and cholesteryl ester transfer protein. Pulse-chase experiments determined that label generated in this fraction was the precursor of at least a major part of labeled cholesteryl esters in the bulk of alpha-migrating high density lipoprotein. Over the maximum time course of these experiments (15 min, 37 degrees C), less than 10% of labeled cholesteryl esters were recovered in low or very low density lipoproteins separated by electrophoresis, immunoaffinity, or heparin-agarose chromatography. These data suggest channeling of cell-derived cholesterol and cholesteryl esters derived from it through a preferred pathway involving several minor pre beta-migrating lipoproteins to alpha-migrating high density lipoprotein.  相似文献   

8.
Carboxyl ester lipase (CEL; EC 3.1.1.13) hydrolyzes cholesteryl esters and retinyl esters in vitro. In vivo, pancreatic CEL is thought to liberate cholesterol and retinol from their esters prior to absorption in the intestine. CEL is also a major lipase in the breast milk of many mammals, including humans and mice, and is thought to participate in the processing of triglycerides to provide energy for growth and development while the pancreas of the neonate matures. Other suggested roles for CEL include the direct facilitation of the intestinal absorption of free cholesterol and the modification of plasma lipoproteins. Mice with different CEL genotypes [wild type (WT), knockout (CELKO), heterozygote] were generated to study the functions of CEL in a physiological system. Mice grew and developed normally, independent of the CEL genotype of the pup or nursing mother. Consistent with this was the normal absorption of triglyceride in CELKO mice. The absorption of free cholesterol was also not significantly different between CELKO (87 +/- 26%, mean +/- SD) and WT littermates (76 +/- 10%). Compared to WT mice, however, CELKO mice absorbed only about 50% of the cholesterol provided as cholesteryl ester (CE). There was no evidence for the direct intestinal uptake of CE or for intestinal bacterial enzymes that hydrolyze it, suggesting that another enzyme besides CEL can hydrolyze dietary CE in mice. Surprisingly, CELKO and WT mice absorbed similar amounts of retinol provided as retinyl ester (RE). RE hydrolysis, however, was required for absorption, implying that CEL was not the responsible enzyme. The changes in plasma lipid and lipoprotein levels to diets with increasing lipid content were similar in mice of all three CEL genotypes. Overall, the data indicate that in the mouse, other enzymes besides CEL participate in the hydrolysis of dietary cholesteryl esters, retinyl esters, and triglycerides.  相似文献   

9.
A simple method has been developed for labelling human plasma lipoproteins to high specific radioactivity with radioactive cholesteryl esters in vitro. After isolation by preparative ultracentrifugation, the selected lipoprotein was incubated for 30 min at 4 degrees C in human serum (d greater than 1.215) that had been prelabelled with [4-14C]cholesteryl oleate or [1,2-3H]cholesteryl linoleate, and was then re-isolated by ultracentrifugation. All major lipoprotein classes were labelled by the procedure. Specific radioactivities of up to 18 d.p.m. . pmol-1 (46 d.p.m. . ng-1) were achieved. When radiolabelled high-density lipoprotein was infused intravenously, the radioactive cholesteryl ester behaved in vivo indistinguishably from endogenous cholesteryl esters produced by the lecithin (phosphatidylcholine): cholesterol acyltransferase reaction.  相似文献   

10.
Normal rats were subjected to unilateral adrenalectomy and were killed 3 hr later. The concentration and composition of the cholesteryl esters in adrenals removed at operation and after death were compared. The esterified cholesterol concentration was lower in the adrenals obtained 3 hr after surgery. Cholesteryl arachidonate decreased in concentration significantly more than any other ester, followed in order of magnitude by linoleate and oleate. The cholesteryl ester concentration of adrenals removed from sham-operated rats 3 hr after surgery was also greatly reduced. On the basis of comparison with other work on the hydrolysis of cholesteryl esters by adrenal homogenates, it is concluded that the apparent selectivity in depletion of cholesteryl esters is due to differences in their rates of hydrolysis.  相似文献   

11.
The effects of cholestyramine and of clofibrate on the turnover rates of individual cholesteryl esters in whole human plasma and in each of the three classes of plasma lipoproteins have been studied. Four hyperlipidemic patients (two under treatment with each of the two drugs) were injected intravenously with cholesterol-(14)C, and serial plasma samples were collected after 3-4 hr, 8 hr, 24 hr, and 4-5 days. The plasma samples were separated into three classes of lipoproteins by ultracentrifugation. The cholesteryl esters and free cholesterol were isolated from each sample, and the specific radioactivity of the free and esterified cholesterol was determined. The specific radioactivity of each individual cholesteryl ester was then determined for each sample, by separately measuring the distribution of cholesterol mass and of radioactivity among four different cholesteryl ester groups, namely the saturated, mono-, di-, and tetra-unsaturated esters. In all subjects the plasma cholesteryl esters were metabolically heterogeneous, and could be divided into three pools corresponding to the three classes of plasma lipoproteins. High density lipoprotein (d > 1.063) cholesteryl esters showed the greatest fractional turnover rate, and low density lipoprotein (d 1.019-1.063) cholesteryl esters showed the smallest fractional turnover rate. In each subject the cholesteryl ester composition of the three classes of plasma lipoprotein was almost identical. Within each lipoprotein, and in whole plasma, all the different individual cholesteryl esters were found to turn over at the same fractional rate. In all respects these results were similar to those previously obtained with normal subjects. The results suggest that neither drug has a strongly selective effect on the turnover of one particular cholesteryl ester, or on the turnover or composition of the cholesteryl esters in one particular plasma lipoprotein.  相似文献   

12.
Lipid microemulsions with various core and surface lipid compositions were prepared by co-sonication of cholesteryl esters, triolein (TO), egg phosphatidylcholine (egg PC), and cholesterol. The heterogeneous emulsion particle mixture was purified by gel filtration and particles with the size and general organization of low density lipoproteins were obtained. These lipid microemulsion particles were used for studies of the cellular metabolism of lipoprotein-derived cholesterol and cholesteryl esters as catalyzed by the enzyme acid sterol ester hydrolase (EC 3.1.1.13). The hydrolysis of cholesteryl oleate (CO) was more than twice and that of cholesteryl linoleate (CL) more than three times faster than the hydrolysis of cholesteryl stearate (CS) over the temperature range 25-39.6 degrees C. Both the synthesis and hydrolysis of cholesteryl esters were insensitive to the physical state of the microemulsion cores. The synthesis of cholesteryl esters by this enzyme was also insensitive to the ratios of cholesterol and egg PC in the microemulsion surface layers. Incorporation of triolein into the microemulsion cholesteryl ester core slightly increased the rate of cholesteryl ester synthesis. A decreasing fatty acyl chain length (C18:0 to C14:0) and an increasing degree of unsaturation (C18:0 to C18:2) enhanced the synthesis rate. It is suggested that the hydrolysis and synthesis of cholesteryl esters in microemulsions (and lipoproteins) take place only in the particle surface layer and that the rate of catalysis is directly dependent on the amount of substrate in this surface layer.  相似文献   

13.
We studied the effects of endurance training on the metabolism of high-density lipoprotein (HDL, 1.063 less than density less than 1.15 kg/l) cholesteryl ester and proteins in rats fed a cholesterol-rich (1%) semipurified diet. The HDL were labeled with 131I in the apoproteins and with cholesteryl-[1-14C]oleate in the esters. The HDL were intravenously administered to endurance-trained (n = 10) and cage-sedentary (n = 10) rats. Blood samples were taken over the next 36 h while the rats were conscious and feeding. The trained rats had higher plasma HDL cholesterol (0.72 vs. 0.28 mM) and HDL apoprotein (461 vs. 267 mg/l) concentrations than the sedentary rats. The production or disposal rate of HDL cholesteryl ester was higher in the trained rats (1.36 mumol/h) than in the sedentary rats (0.72 mumol/h), whereas the production or disposal rate of HDL apoproteins was similar in the trained (0.64 mg/h) and sedentary (0.60 mg/h) rats. The residence time of the HDL cholesteryl esters (4.72 +/- 0.22 vs. 3.37 +/- 0.21 h) and HDL apoprotein (7.65 +/- 0.36 vs. 4.55 +/- 0.28 h) was longer for the trained than for the sedentary rats. These data indicate that endurance training resulted in a significant change in the metabolism of HDL cholesteryl esters and apoproteins as well as an increase in their concentrations.  相似文献   

14.
Properties of cholesteryl esters in pure and mixed monolayers   总被引:1,自引:0,他引:1  
The surface properties of cholesteryl palmitate, stearate, linoleate, linolenate, arachidonate, and acetate were investigated. Long-chain esters were not surface-active and force-area (pi-A) isotherms were not obtained. Unsaturated cholesteryl esters were oxidized at the air-water interface and these oxidized lipids gave expanded pi-A isotherms. Cholesteryl acetate had an equilibrium spreading pressure of 14.0 dynes/cm and formed a stable monolayer indistinguishable from cholesterol below that surface pressure. Cholesteryl linoleate formed mixed monolayers with surface-active lipids, and the amount of cholesteryl linoleate in the monolayer depended both on its solubility in the other lipid and on the surface pressure. Even at moderate surface pressures cholesteryl linoleate was extruded from the monolayer into a bulk phase. Cholesteryl acetate exhibited the well-known condensing effect of cholesterol in mixed monolayers with egg lecithin.  相似文献   

15.
p-Nitrophenyl N-butyl, N-octyl, and N-dodecyl carbamates and a newly synthesized diethyl phosphate compound were studied as potential inhibitors of the cholesteryl ester hydrolases of Fu5AH rat hepatoma cells. Whole homogenates of Fu5AH cells were used as an enzyme source for the assay of cholesteryl ester hydrolase activity. All four compounds led to marked inhibition (70-80%) of neutral cholesteryl ester hydrolase activity (assayed at pH 7) at concentrations where the activity of acid cholesteryl ester hydrolase (assayed at pH 4) was unaffected. Cholesteryl ester hydrolysis was also evaluated in intact cultured cells induced to accumulate cholesteryl esters in cytoplasmic lipid droplets by exposure to cholesterol-rich phospholipid dispersions. Hydrolysis was then assessed during subsequent incubations in the presence of an inhibitor of cholesterol esterification. All compounds caused significant inhibition of cholesterol ester hydrolysis with the diethyl phosphate being the most effective. At a concentration that caused greater than 90% inhibition of the hydrolysis of cytoplasmic cholesteryl esters, the compound had only a minimal effect on lysosomal hydrolysis of cholesteryl esters. These results suggest that diethyl phosphates and N-alkylcarbamates may be of value in future studies on the substrate specificities, regulation, and physiological role(s) of cholesteryl ester hydrolases.  相似文献   

16.
Acetone powders of a 20,000g pellet fraction from spinach leaves (Spinacia oleracea L.) synthesized [4-(14)C]cholesteryl esters when incubated with [4-(14)C]cholesterol. The reaction was inhibited by digitonin. There was a reciprocal relationship between the decline of label in cholesterol and its incorporation into cholesteryl ester, indicating that free cholesterol was the direct precursor for cholesteryl ester biosynthesis. The hydrolysis of cholesteryl [1-(14)C]palmitate into free cholesterol and [1-(14)C]palmitate was not detected in these acetone powder preparations. Exogenous cholesteryl palmitate had no effect on the esterification of [4-(14)C]cholesterol. The data indicate that an esterase-type mechanism was not involved in the biosynthesis of these steryl esters. Label from [1-(14)C]palmitoyl-CoA was incorporated into steryl esters when incubated with spinach leaf acetone powder preparations. The optimal buffer for steryl ester biosynthesis was 2-(N-morpholino)ethanesulfonate and the optimal pH was 6. Iodoacetamide, N-ethylmaleimide, and dithiothreitol had no effect on the esterification reaction. Ethylenediaminetetraacetate, MgCl(2), CaCl(2), MnCl(2), and ZnSO(4) inhibited at concentrations of 10 to 30 mm.  相似文献   

17.
The effect of lipid transfer proteins on the exchange and transfer of cholesteryl esters from rat plasma HDL2 to human very low (VLDL) and low density (LDL) lipoprotein populations was studied. The use of a combination of radiochemical and chemical methods allowed separate assessment of [3H]cholesteryl ester exchange and of cholesteryl ester transfer. VLDL-I was the preferred acceptor for transferred cholesteryl esters, followed by VLDL-II and VLDL-III. LDL did not acquire cholesteryl esters. The contribution of exchange of [3H]cholesteryl esters to total transfer was highest for LDL and decreased in reverse order along the VLDL density range. Inactivation of lecithin: cholesterol acyltransferase (LCAT) and heating the HDL2 for 60 min at 56 degrees C accelerated transfer and exchange of [3H]cholesteryl esters. Addition of lipid transfer proteins increased cholesterol esterification in all systems. The data demonstrate that large-sized, triglyceride-rich VLDL particles are preferred acceptors for transferred cholesteryl esters. It is suggested that enrichment of very low density lipoproteins with cholesteryl esters reflects the triglyceride content of the particles.  相似文献   

18.
The cholesteryl ester content of the ovaries was determined in rats diets containing corn oil or hydrogenated coconut oil (essential fatty acid (EFA) deficient) and subjected to superovulation by injection of luteinizing hormone and follicle-stimulating hormone. Superovulation increased ovarian weight; the effect was greater in animals fed corn oil. Superovulation significantly decreased total ovarian cholesteryl ester concentration in animals fed corn oil, with disproportionately large decreases occurring in the esters of 20:1, 20:2, 22:5w6, and 22:6w3. Significant decreases were observed in these esters when the data were expressed on a unit mass of tissue basis or in relation to total ovarian mass. In superovulated, EFA-deficient rats, esters of 18:1, 20:1, 22:5w6, and 22:6w3 were significantly lower per unit mass of tissue but this was due, in all cases except that of 22:6w3, to the increased mass of ovarian tissue; there was no decrease in total esters per ovary weight during superovulation of deficient rats. The pattern and degree of selective changes in ovarian cholesteryl esters during superovulation were different from those previously reported for adrenal esters of stressed rats.  相似文献   

19.
X Y Shi  S Azhar  E Reaven 《Biochemistry》1992,31(12):3230-3236
Steroidogenic cells are able to utilize lipoprotein-derived cholesteryl esters for steroidogenesis without internalizing intact lipoproteins. In the current report, we provide evidence that an early step in this process may be the selective extraction of cholesteryl esters at the cell (plasma membrane) surface. We have used a highly purified plasma membrane preparation from rat luteinized ovaries for incubation with rat- and human-derived high density (HDL) and low density (LDL) lipoproteins. The lipoproteins were modified with residualizing [125I]apoprotein or [3H]cholesteryl ester markers. Following trypsin treatment to remove intact surface-bound apoprotein particles, the membranes were analyzed for transferred radioactive labels. The results show that all the lipoproteins tested could serve as cholesteryl ester donors. Although far more [3H]cholesteryl ester than [125I]apoprotein radioactivity was transferred to plasma membranes in each case, and varied with the ligand used, the total (net) mass of cholesteryl ester transferred was comparable with the different lipoproteins. These data were confirmed using direct chemical methodology. Transfer was found to be specific for cholesteryl esters or ethers and did not involve other lipoprotein core lipids tested. Endomembranes from the same tissue could not substitute for plasma membranes as the primary cholesteryl ester acceptor. These results provide evidence that a reconstituted lipoprotein-plasma membrane system can simulate the cholesteryl ester extraction process described in situ and suggest uses for this methodology in future experiments designed to understand the transfer process.  相似文献   

20.
J Snow  M C Phillips 《Biochemistry》1990,29(10):2464-2471
In order to understand the phase behavior of the approximately 1-micron-diameter droplets which occur in the cytoplasm of cholesterol-enriched cells, differential scanning calorimetry has been utilized to elucidate the factors controlling the rate of crystallization of cholesteryl esters. The kinetics of the thermotropic transitions between liquid, liquid-crystal, and crystal states which occur in mixtures of cholesteryl oleate and cholesteryl palmitate present in monodisperse, phospholipid-stabilized, emulsion droplets have been determined and are compared to the characteristics of these transitions in bulk mixtures. Cholesteryl palmitate is observed to crystallize in undercooled phospholipid-stabilized dispersions of cholesteryl palmitate/cholesteryl oleate (50/50 w/w) at temperatures up to 50 degrees C lower than it does in bulk mixtures of the same cholesteryl ester composition. It is postulated that this difference between crystallization temperatures is due primarily to the presence of impurities present in bulk mixtures which act as catalysts that promote crystallization. It is suggested that phospholipid-stabilized dispersions of cholesteryl palmitate/cholesteryl oleate are more appropriate models than bulk mixtures of these cholesteryl esters for studying the kinetic and thermodynamic basis of the phase behavior in cholesteryl ester rich inclusions characteristic of foam cells and atherosclerotic plaque. The thermotropic phase behavior of these dispersions can be satisfactorily analyzed by using the equations of homogeneous nucleation theory. The interfacial tension between the crystal nucleus and the surrounding fluid cholesteryl ester is about 10 erg/cm2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号