首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During an effort to search for more potent growth hormone secretagogues, we discovered a class of compounds of which the best compound 8 was 7-fold more active in vitro than the best compound in the series we revealed before [Tata, J. R.; Lu, Z.; Jacks, T. M.; Schleim, K. D.; Cheng, K.; Wei, L.; Chan, W.-S.; Butler, B.; Tsou, N.; Leung, K.; Chiu, S.-H. L.; Hickey, G. J.; Smith, R. G.; Patchett, A. A. Bioorg. Med. Chem. Lett.1997, 7, 2319.]. Animal studies show that compound 8 can stimulate growth hormone release at the oral dose as low as 0.06 mpk. Chemistry and biological studies are discussed.  相似文献   

2.
Inappropriate activity of p90 ribosomal S6 kinase (RSK) has been implicated in various human cancers as well as other pathologies. We previously reported the isolation, characterization, and synthesis of the natural product kaempferol 3-O-(3',4'-di-O-acetyl-alpha-l-rhamnopyranoside), termed SL0101 [Smith, J. A.; Poteet-Smith, C. E.; Xu, Y.; Errington, T. M.; Hecht, S. M.; Lannigan, D. A. Cancer Res., 2005, 65, 1027-1034: Xu, Y.-M; Smith, J. A.; Lannigan, D. A.; Hecht, S. M. Bioorg. Med. Chem., 2006, 14, 3974-3977: Maloney, D. J.; Hecht, S. M. Org. Lett., 2005, 7, 1097-1099]. SL0101 is a potent and specific inhibitor of RSK; therefore, we performed an analysis of the structural basis for the inhibitory activity of this lead compound. In in vitro kinase assays we found that acylation of the rhamnose moiety and the 4', 5, and 7-hydroxyl groups are responsible for maintaining a high affinity interaction of RSK with SL0101. It is likely that the hydroxyl groups facilitate RSK binding through their ability to form hydrogen bonds. To determine whether the SL0101 derivatives were specific for inhibition of RSK we analyzed their ability to preferentially inhibit the growth of the human breast cancer line, MCF-7, compared to the normal human breast line, MCF-10A. We have previously validated this differential growth assay as a convenient readout for analyzing the specificity of RSK inhibitors [Smith, J. A.; Maloney, D. J.; Clark, D. E.; Xu, Y.-M.; Hecht, S. M.; Lannigan, D. A. Bioorg. Med. Chem., 2006, 14, 6034-6042]. We found that acylation of the rhamnose moiety was essential for maintaining the selectivity for RSK inhibition in intact cells. Further, the efficacy of SL0101 in intact cells is limited by cellular uptake as well as possible hydrolysis of the acetyl groups on the rhamnose moiety by ubiquitous intracellular esterases. These studies should facilitate the development of a RSK inhibitor, based on the SL0101 pharmacophore, as an anti-cancer chemotherapeutic agent.  相似文献   

3.
Two different series of very potent and selective EP(3) antagonists have been reported: a novel series of ortho-substituted cinnamic acids [Belley, M., Gallant, M., Roy, B., Houde, K., Lachance, N., Labelle, M., Trimble, L., Chauret, N., Li, C., Sawyer, N., Tremblay, N., Lamontagne, S., Carrière, M.-C., Denis, D., Greig, G. M., Slipetz, D., Metters, K. M., Gordon, R., Chan, C. C., Zamboni, R. J. Bioorg. Med. Chem. Lett.2005, 15, 527] and the acylsulfonamides of ortho-(arylmethyl)cinnamates. [(a) Juteau, H., Gareau, Y., Labelle, M., Sturino, C. F., Sawyer, N., Tremblay, N., Lamontagne, S., Carrière, M.-C., Denis, D., Metters, K. M. Bioorg. Med. Chem. 2001, 9, 1977; (b) Juteau, H., Gareau, Y., Labelle, M., Lamontagne, S., Tremblay, N., Carrière, M.-C., Denis, D., Sawyer, N., Metters, K. M. Bioorg. Med. Chem. Lett.2001, 11, 747] The structural differences between the two series, along with their biological activity in vivo, in vitro, and metabolism, are analyzed. Some of those compounds, including hybrids containing the best structural features of both series, possess K(i) as low as 0.6 nM on the EP(3) receptor.  相似文献   

4.
This article expands upon our original submission to the Eddington, N. D.; Cox, D. S.; Khurana, M.; Salama, N. N.; Stables, J. P.; Harrison, S. J.; Negussie, A.; Taylor, R. S.; Tran, U. Q.; Moore, J. A.; Barrow, J. C.; Scott, K. R. Eur. J. Med. Chem. 2003, 38, 49 on a series of twenty (20) compounds, all 5-methyl-3-[(substituted)-phenylamino]-cyclohex-2-enone derivatives. This article provides the reasons why the compounds are active/inactive. By use of computational methods, the reasons for activity/inactivity are explained.  相似文献   

5.
The O-specific polysaccharide of P. fluorescens IMV 2366 was studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D gsCOSY, TOCSY, gsNOESY, H-detected 1H,(13)C gsHSQC, HMQC-TOCSY, and gsHMBC experiments. The polysaccharide contains L-rhamnose, 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc) and 3-acylamido-3,6-dideoxy-D-glucose (D-Qui3NAcyl, where Acyl is 3-hydroxy-2,3-dimethyl-5-oxoprolyl). The structure 1 of the polysaccharide was found to be similar to the structure 2 of a 6-deoxy-L-talose (L-6dTal)-containing O-specific polysaccharide of a non-classified P. fluorescens strain, 361, studied earlier [Khomenko, V. A.; Naberezhnykh, G. A.; Isakov, V. V.; Solov'eva, T. F.; Ovodov, Y. S.; Knirel, Y. A.; Vinogradov, E. V. Bioorg. Khim. 1986, 12, 1641-1648; Naberezhnykh, G. A.; Khomenko, V. A.; Isakov, V. V., El'kin, Y. N.; Solov'eva, T. F.; Ovodov, Y. S. Bioorg. Khim. 1987, 13, 1428-1429]. --> 2)-beta-D-Quip3NAcyl-(1 --> 3)-alpha-L-Rhap-(1 --> 3)-alpha-D-FucpNAc-(1 --> 1. --> 4)-beta-D-Quip3NAcyl-(1 --> 3)-alpha-L-6dTalp4Ac-(1 --> 3)-alpha-D-FucpNAc-(1 -->2.  相似文献   

6.
Following the discovery of 4-(substituted amino)-1-alkyl-pyrazolo[3,4-b]pyridine-5-carboxamides as potent and selective phosphodiesterase 4B inhibitors, [Hamblin, J. N.; Angell, T.; Ballentine, S., et al. Bioorg. Med. Chem. Lett. 2008, 18, 4237] the SAR of the 5-position was investigated further. A range of substituted heterocycles showed good potencies against PDE4. Optimisation using X-ray crystallography and computational modelling led to the discovery of 16, with sub-nM inhibition of LPS-induced TNF-α production from isolated human peripheral blood mononuclear cells.  相似文献   

7.
A series of novel metronidazole derivatives were recently reported as potent anticancer agents targeting EGFR and HER-2 by our group [Qian, Y.; Zhang, H. J.; Zhang, H.; Xu, C.; Zhao, J.; Zhu, H. L. Bioorg. Med. Chem.2010, 18, 4991]. Based on the previous results, we designed and synthesized a new series of metronidazole acid acyl sulfonamide derivatives and a new series of phenylacetyl benzenesulfonamide derivatives and their anticancer activities were evaluated as potential EGFR and HER-2 kinase inhibitors. Among all the compounds, compound 12 displayed the most potent inhibitory activity EGFR and HER-2 (IC(50)=0.39 μM for EGFR and IC(50)=1.53 μM for HER-2) and it also showed the most potent growth inhibitory activity against A549 and B16-F10 cancer cell line in vitro, with an IC(50) value of 1.26 μg/mL for A549 and 0.35 μg/mL for B16-F10. Docking simulation was further performed to position compound 12 into the EGFR active site to determine the probable binding model.  相似文献   

8.
One limitation of almost all antiviral Quantitative Structure–Activity Relationships (QSAR) models is that they predict the biological activity of drugs against only one species of virus. Consequently, the development of multi-tasking QSAR models (mt-QSAR) to predict drugs activity against different species of virus is of the major vitally important. These mt-QSARs offer also a good opportunity to construct drug–drug Complex Networks (CNs) that can be used to explore large and complex drug-viral species databases. It is known that in very large CNs we can use the Giant Component (GC) as a representative sub-set of nodes (drugs) and but the drug–drug similarity function selected may strongly determines the final network obtained. In the three previous works of the present series we reported mt-QSAR models to predict the antimicrobial activity against different fungi [Gonzalez-Diaz, H.; Prado-Prado, F. J.; Santana, L.; Uriarte, E. Bioorg. Med. Chem. 2006, 14, 5973], bacteria [Prado-Prado, F. J.; Gonzalez-Diaz, H.; Santana, L.; Uriarte E. Bioorg. Med. Chem. 2007, 15, 897] or parasite species [Prado-Prado, F.J.; González-Díaz, H.; Martinez de la Vega, O.; Ubeira, F.M.; Chou K.C. Bioorg. Med. Chem. 2008, 16, 5871]. However, including these works, we do not found any report of mt-QSAR models for antivirals drug, or a comparative study of the different GC extracted from drug–drug CNs based on different similarity functions. In this work, we used Linear Discriminant Analysis (LDA) to fit a mt-QSAR model that classify 600 drugs as active or non-active against the 41 different tested species of virus. The model correctly classifies 143 of 169 active compounds (specificity = 84.62%) and 119 of 139 non-active compounds (sensitivity = 85.61%) and presents overall training accuracy of 85.1% (262 of 308 cases). Validation of the model was carried out by means of external predicting series, classifying the model 466 of 514, 90.7% of compounds. In order to illustrate the performance of the model in practice, we develop a virtual screening recognizing the model as active 92.7%, 102 of 110 antivirus compounds. These compounds were never use in training or predicting series. Next, we obtained and compared the topology of the CNs and their respective GCs based on Euclidean, Manhattan, Chebychey, Pearson and other similarity measures. The GC of the Manhattan network showed the more interesting features for drug–drug similarity search. We also give the procedure for the construction of Back-Projection Maps for the contribution of each drug sub-structure to the antiviral activity against different species.  相似文献   

9.
Heterodimeric compounds H-Dmt-Tic-NH-hexyl-NH-R (R = Dmt, Tic, and Phe) exhibited high affinity to δ- (Kiδ = 0.13–0.89 nM) and μ-opioid receptors (Kiμ = 0.38–2.81 nM) with extraordinary potent δ antagonism (pA2 = 10.2–10.4). These compounds represent the prototype for a new class of structural homologues lacking μ-opioid receptor-associated agonism (IC50 = 1.6–5.8 μM) based on the framework of bis-[H-Dmt-NH]-alkyl (Okada, Y.; Tsuda, Y.; Fujita, Y.; Yokoi, T.; Sasaki, Y.; Ambo, A.; Konishi, R.; Nagata, M.; Salvadori, S.; Jinsmaa, Y.; Bryant, S. D.; Lazarus, L. H. J. Med. Chem. 2003, 46, 3201), which exhibited both high μ affinity and bioactivity.  相似文献   

10.
Site-directed mutagenesis was used to investigate the mechanism of interaction between the catalytic subunit of human protein phosphatase-1 (PP-1cgamma) and members of the calyculin family of toxins. Clavosines A and B are related to calyculins but are glycosylated with a trimethoxy rhamnose group. We provide experimental evidence implicating Tyr-134 as an important residue in PP-1cgamma that mediates interactions with the calyculins. Mutation of Tyr-134 to Phe, to prevent hydrogen bond formation, resulted in a slight increase in sensitivity of PP-1cgamma to clavosines A and B and calyculin A. In contrast, a Y134A mutant was 10-fold less sensitive to inhibition by all three inhibitors. The greatest effect on inhibition was found by substituting an Asp for Tyr-134 in the phosphatase. Clavosine B inhibited PP-1cgamma Y134D with a 310-fold decrease in potency. Clavosine A and calyculin A were also markedly poorer inhibitors of this mutant. These results suggest that a hydrogen bond between Tyr-134 and the calyculins is unlikely to be essential for inhibitor binding to the phosphatase. The clavosines and calyculin A were tested for their ability to inhibit other mutants of PP-1cgamma (including Ile-133, Val-223, and Cys-291). Our mutagenesis studies provide an experimental basis for assessing models of calyculin binding found in the literature (Lindvall, M. K., Pihko, P. M., and Koskinen, A. M. (1997) J. Biol. Chem. 272, 23312-23316; Gupta, V., Ogawa, A. K., Du, X., Houk, K. N., and Armstrong, R. W. (1997) J. Med. Chem. 40, 3199-3206; Gauss, C. M., Sheppeck, I. J., Nairn, A. C., and Chamberlain, R. (1997) Bioorg. Med. Chem. 5, 1751-1773). A new model for clavosine and calyculin A binding to PP-1c is presented that is consistent with previous structure-function experiments and which accommodates key structural features of the clavosines, including the novel rhamnose moiety.  相似文献   

11.
Phosphorothioate oligodeoxynucleotides (PS-oligos) containing the CpG motif have immunostimulatory properties. Our earlier study had shown that the immunostimulatory activity of PS-oligos containing the CpG motif can be modulated by incorporation of 2'-O-methylribonucleosides (Zhao, Q.; Yu, D.; Agrawal, S. Bioorg. Med. Chem. Lett. 1999, 9, 3453). Here we show that the immunostimulatory activity of a PS-oligo containing a CpG motif can be modulated by substitution of a single deoxynucleoside at specific sites with either 2'-O-methylribonucleoside or 3'-O-methylribonucleoside in the flanking region to CpG motif. Furthermore, substitution of deoxynucleosides with 2'-O-methoxyethoxyribonucleosides also results in modulating immunostimulatory activity of PS-oligos.  相似文献   

12.
Ru(II)/Ru(III) polypyridyl complexes containing 2,6-(2'-benzimidazolyl)-pyridine or chalcone as co-ligands were synthesized and characterized previously (Mishra, L.; Sinha, R. Indian J. Chem., Sec. A 2001, in press. Mishra, L.; Sinha, R. Indian J. Chem., Sec. A, 39A, 2000, 1131). Their interaction with aqueous buffered calf thymus DNA was measured. (Novakova, O.; Kasparkova, J.; Vrana, O.; van Vliet, P. M., Reedijk, J.; Brabec, V., Biochem. 34, 1995, 12369 and these results prompted additional screening for anti-HIV (human immunodeficiency virus) activity against DNA replication in H9 lymphocytes and cytotoxic activity against eight tumor cell lines. The most active compounds were 17 in the former assay (EC(50) < 0.1 microg/mL and TI > 23.1) and 3, 8, 10, and 14 in the latter assay, especially selectively against the 1A9 ovarian cancer cell line (IC(50) = 4.1, 3.8, 3.6, and 2.5 microg/mL, respectively).  相似文献   

13.
The synthesis and biological evaluation of new potent opioid receptor-like 1 (ORL1) antagonists are presented. Conversion of the thioether linkage of the prototype [It is reported prior to this communication as a consecutive series.: Kobayashi, K.; Kato, T.; Yamamoto, I.; Shimizu, A.; Mizutani, S.; Asai, M.; Kawamoto, H.; Ito, S.; Yoshizumi, T.; Hirayama, M.; Ozaki, S.; Ohta, H.; Okamoto, O. Bioorg. Med. Chem. Lett., in press] to the carbonyl linker effectively reduces susceptibility to P-glycoprotein (P-gp) efflux. This finding led to the identification of 2-cyclohexylcarbonylbenzimizole analogue 7c, which exhibited potent ORL1 activity, excellent selectivity over other receptors and ion channels, and poor susceptibility to P-gp. Compound 7c also showed satisfactory pharmacokinetic profiles and brain penetrability in laboratory animals. Furthermore, 7c showed good in vivo antagonism. Hence, 7c was selected as a clinical candidate for a brain-penetrable ORL1 antagonist.  相似文献   

14.
Novel ω-N-amino analogs of B13 (Class E) were designed, synthesized and tested as inhibitors of acid ceramidase (ACDase) and potential anticancer agents deprived of unwanted lysosomal destabilization and ACDase proteolytic degradation properties of LCL204 [Szulc, Z. M.; Mayroo, N.; Bai, A.; Bielawski, J.; Liu, X.; Norris, J. S.; Hannun, Y. A.; Bielawska, A. Bioorg. Med. Chem. 2008, 16, 1015].Representative analog LCL464, (1R,2R)-2-N-(12′-N,N-dimethylaminododecanoyl amino)-1-(4″-nitrophenyl)-1,3-propandiol, inhibited ACDase activity in vitro, with a similar potency as B13 but higher than LCL204. LCL464 caused an early inhibition of this enzyme at a cellular level corresponding to decrease of sphingosine and specific increase of C14- and C16-ceramide. LCL464 did not induce lysosomal destabilization nor degradation of ACDase, showed increased cell death demonstrating inherent anticancer activity in a wide range of different cancer cell lines, and induction of apoptosis via executioner caspases activation. LCL464 represents a novel structural lead as chemotherapeutic agent acting via the inhibition of ACDase.  相似文献   

15.
16.
As a part of study of selectin blockers, we have already reported that a non-sugar selectin antagonist (3) was successfully discovered using a computational screening (Hiramatsu, Y.; Tsukida, T.; Nakai, Y.; Inoue, Y.; Kondo, H. J. Med. Chem. 2000, 43, 1476). To investigate the SARs of compound 3 against E-, P-, and L-selectins, we synthesized the derivatives of compound 3 and evaluated their inhibitory activities toward selectin bindings. The structural diversity of compound 3 contained the following: (1) a modification of the spacer unit (4--7), (2) a modification of the tail unit (8--11), (3) a modification of the head unit (12--18). As a result, it was found that a non-sugar based selectin blocker (3) could be a potential lead compound for E-, P-, and L-selectin blockers and some of the derivatives showed broad and/or selective inhibitory activities toward the E-, P-, and L-selectins. In addition, it was found that the experimental evidence well supported that the computational screening using 3D-pharmacophore model could be useful methodology to find out a new lead for the several type of selectin blockers, which included a broad and/or a selective inhibitor.  相似文献   

17.
Alzheimer's disease (AD) represents the most common neurodegenerative disorder, which is expressed through decline of mental function. Current treatment approaches include acetylcholinesterase inhibitors and NMDA-receptor partial antagonists. The most explored recent approaches that are closely related to the pathogenesis of this disease based on formally articulated amyloid hypothesis are: Abeta fibril formation inhibitors, amyloid precursor protein, and secretase inhibitors. [Scarpini, E.; Scheltens, P.; Feldman, H. Lancet Neurol.2003, 2, 539] In view of the development of new AChE inhibitors as drugs capable of reducing the symptoms of AD, the capacity of newly synthesized AChE inhibitors of pyridinium-type to inhibit the AChE was examined and compared to those of other inhibitors of this type presented earlier. [Kapková, P.; Stiefl, N.; Sürig, U.; Engels, B.; Baumann, K.; Holzgrabe, U. Arch. Pharm. Pharm. Med. Chem.2003, 336, 523; Alptüzun, V.; Kapková, P.; Baumann, K.; Erciyas, E.; Holzgrabe, U. J. Pharm. Pharmacol.2003, 55, 1397] Furthermore, the anti-Abeta fibril formation property of AChE inhibitors of pyridinium- and bispyridinium-type was evaluated to expand their activity profile and to reveal potential additive pharmacological effects which may reinforce their therapeutic application besides their capacity of increasing acetylcholine levels. Abeta fibril formation studies were performed by means of thioflavin T fluorescence assay.  相似文献   

18.
19.
Previously, we reported that certain tetrasubstituted 1,3,5-triaryl-4-alkyl-pyrazoles bind to the estrogen receptor (ER) with high affinity (Fink, B. E.; Mortenson, D. S.; Stauffer, S. R.; Aron, Z. D.; Katzenellenbogen, J. A. Chem. Biol. 1999, 6, 205-219; Stauffer, S. R.; Katzenellenbogen, J. A. J. Comb/. Chem. 2000, 2. 318 329; Stauffer, S. R.: Coletta, C. J.: Sun, J.; Tedesco, R., Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 2000, submitted). To investigate how cyclic permutation of the two nitrogen atoms of a pyrazole might affect ER binding affinity, we prepared a new pyrazole core isomer, namely a 1,3,4-triaryl-5-alkyl-pyrazole (2), to compare it with our original pyrazole (1). We also prepared several peripherally matched core pyrazole isomer sets to investigate whether the two pyrazole series share a common binding orientation. Our efficient, regioselective synthetic route to these pyrazoles relies on the acylation of a hydrazone anion, followed by cyclization, halogenation, and Suzuki coupling. We found that the ER accommodates 1,3,4-triaryl-pyrazoles of the isomeric series only somewhat less well than the original 1,3,5-triaryl series, and it appears that both series share a common binding mode. This preferred orientation for the 1,3,5-triaryl-4-alkyl-pyrazoles is supported by binding affinity measurements of analogues in which the phenolic hydroxyl groups were systematically removed from each of the three aryl groups, and the orientation is consistent, as well, with molecular modeling studies. These studies provide additional insight into the design of heterocyclic core structures for the development of high affinity ER ligands by combinatorial methods.  相似文献   

20.
In this study we describe a new comparative molecular field analysis (CoMFA) model of dihydroquinazolinone and tetrasubstituted imidazole compounds with p38 MAPK inhibitory activity. A series of 51 (a training set of 40 and a test set of 11) dihydroquinazolinone [Bioorg. Med. Chem. Lett. 2003, 13, 277.] and tetrasubstituted imidazole [J. Med. Chem. 1999, 42, 2180.] derivatives known as p38 mitogen-activated protein kinase (p38 MAPK) selective inhibitors was studied by quantitative structure-activity relationship (3D-QSAR) analysis using comparative molecular field analysis. The 3D-QSAR models were generated and evaluated by a scheme that combines a genetic algorithm (GA) optimization with partial least squares (PLS) regression and by crossvalidation using the leave-one-out technique. The model was able to efficiently predict the activities of the compounds of the test set, suggesting that it can be used for the planning of new p38 MAPK inhibitor candidates useful to treat chronic inflammatory states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号