首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Debez  Ahmed  Ben Hamed  Karim  Grignon  Claude  Abdelly  Chedly 《Plant and Soil》2004,267(1-2):179-189
The growth ofEucalyptus regnans seedlings in forest soil is enhanced when it has been air-dried. In undried forest soil seedlings grow poorly and develop purple coloration in the foliage, indicating P deficiency. This paper reports the results of pot experiments designed to investigate the relationship between growth and P acquisition, ectomycorrhizal infection and age of seedlings grown in air-dried and undried soil. The effect on seedling growth of their inoculation with air-dried or undried soil or with ectomycorrhizal roots from plants growing in air-dried or undried soil was also investigated. Ectomycorrhizal root tips were detected in 3-week-oldE. regnans seedlings in both air-dried and undried soil, and from then on the frequency of ectomycorrhizal root tips increased rapidly. In air-dried soil, seedlings were fully ectomycorrhizal at 9 weeks, and the occurrence of maximum ectomycorrhizal infection coincided with enhanced P acquisition and the initiation of rapid seedling growth. In undried forest soil, seedling growth remained poor, even though the seedlings had well-developed ectomycorrhizae and the incidence of ectomycorrhizal root tips was the same as in air-dried soil. The dominant ectomycorrhizae in airdried soil were associated with an ascomycete fungus, whereas in undried, undisturbed soil they were commonly associated with basidiomycete fungi. Inoculation of sterile soil/sand mix with washed ectomycorrhizal roots from air-dried soil increased the P acquisition and growth of the seedlings significantly compared with controls, whereas ectomycorrhizal inocula from undried soil had no effect on seedling growth, although both inocula resulted in a similar incidence of ectomycorrhizal root tips. Similarly, addition of a small amount of air-dried soil into sterile soil/sand mix resulted in a significantly greater increase in the P content and dry weight of the seedlings, compared with the control, than addition of undried soil. In both treatments, the incidence of ectomycorrhial root tips was similar. As (i) the differentiation in seedling growth between air-dried and undried soil occurred after seedlings became ectomycorrhizal, (ii) the dominant ectomycorrhizae in air-dried soil were different from those in undried soil, and (iii) inocula from air-dried soil, but not from undried soil, stimulated seedling growth in sterile soil/sand mix, it is concluded that development of particular ectomycorrhizae may be involved in seedling growth stimulation and enhanced P acquisition associated with air drying of forest soil.  相似文献   

2.
Two experiments were carried out with coconut seedlings grown in polybags filled with soils from maritime and forest environments. Salination treatments of 0, 2, 4, 6, 8, 10 and 12 g of common salt were applied to each polybag seedling fortnightly. The youngest open leaf, which was next to the spear leaf, of each seedling was sampled for chemical analysis after 12 months of seedling growth. Na and Cl content of leaf increased appreciably as a consequence of increased salt application while N, K, Ca and, to a lesser extent, P decreased with salinity. N and K content were higher in leaves of coconut plants grown in the forest soil while Na content was higher in those grown in the maritime soil. Antagonistic effects also occurred between Na and K, and Ca and P in both soils.  相似文献   

3.
Using field and greenhouse studies, we examined the relationships among pinyon pines (Pinus edulis), their ectomycorrhizal mutualists, and their moth herbivores as a function of soil fertility. We studied two soil types—the ash and cinder soils of the San Francisco volcanic field and nearby sandy loam soils. In the field, pinyons growing in cinders suffered from reduced moisture, negative nitrogen mineralization rates, low phosphate levels, reduced growth, and high moth herbivory relative to pinyons growing in sandy loam. Pinyons growing in cinders also had twofold higher levels of ectomycorrhizal colonization than their noncinder counterparts. Similarly, in the greenhouse, seedlings grown in cinders had higher levels of ectomycorrhizal colonization and greater numbers of ectomycorrhizae than seedlings grown in sandy loam. Seedling shoot growth was significantly enhanced by ectomycorrhizae in both soils. These patterns support three conclusions. First, field and greenhouse studies demonstrated that trees growing in nutrient-poor soils had higher levels of ectomycorrhizal colonization than trees growing in better soils. Second, across soil types, variation in ectomycorrhizal colonization was better predicted by soil fertility than by herbivory. However, herbivory negatively affected ectomycorrhizae in the stressful cinder environment. Third, although mycorrhizae can be parasitic under some conditions, ectomycorrhizae had mutualistic impacts on pinyon seedlings across the environmental extremes we studied.  相似文献   

4.

Key message

Outplanted Polylepis australis seedling growth, survival and mycorrhizal response were not influenced by inoculation with soil from different vegetation types. Seedling inoculation would not be essential for reforestation practices.

Abstract

Polylepis forests are one of the most endangered high mountain ecosystems of South America and reforestation with native Polylepis species has been recommended. To determine whether native soil inoculation could help in reforestation success, a field trial was set up to evaluate the response of outplanted P. australis seedlings to the inoculation with soils from three vegetation types (a grassland, a mature forest and a degraded forest) and a sterile soil, used as control. We evaluated seedlings performance: growth and survival for 18 months, root/shoot ratio, phosphorous content and arbuscular mycorrhizal fungal (AMF) colonization. To interpret performance patterns we evaluated the colonization potential of the three inoculum soils and the changes of the AMF community composition of the seedlings rhizosphere in relation to inoculation treatment and season. Our main results showed no significant differences in seedlings survival and growth between treatments. The colonization potential of grassland and degraded forest soils was ~25 times greater than mature forest soil and specific spore density of some morphospecies varied with season. However, AMF spore community of seedlings rhizosphere became homogenized after outplanting and was similar between treatments after 12 months. Therefore, we conclude that soil inoculation is not essential for outplanted P. australis survival and increase in height, and thus all the tested soils could be used as inocula, including grassland soils which in practice are the easiest to collect.  相似文献   

5.
Seedlings of Eucalyptus regnans (mountain ash) grow poorly in undried forest soil, where they develop purple coloration in the foliage, but their growth is markedly improved when forest soil has been air dried. Whether this growth promotion is purely due to improved nutrient status of the soil, as a result of air drying, was investigated. In several pot experiments, E. regnans seedlings were grown (i) in air-dried and undried forest soil with addition of different levels of complete fertiliser, (ii) in air-dried or undried soil diluted to different extents with sand, or (iii) in undried soil mixed with different amounts of air-dried soil. Seedling dry weight, P content and incidence of ectomycorrhizal root tips were determined.In all experiments, the dry weights of seedlings were 3–6 times greater in 100% air-dried soil than in 100% undried soil. Fertiliser application resulted in a significant increase in dry weight of seedlings in both air-dried and undried soil, but the dry weights in air-dried soil were always significantly greater than those in undried soil at the same level of fertiliser application. Even at the highest level of fertiliser application, the growth difference between seedlings in air-dried and undried soil remained. When air-dried soil was diluted with sand, there was a significant reduction in seedling dry weight only when soil was diluted to 20% or less (air-dried soil:total mix). Conversly, when air-dried soil was mixed with undried soil, there was a proportional decrease in seedling dry weight with increasing amounts of undried soil. In all experiments, the dominant ectomycorrhizal morphotypes in 100% air-dried soil were different from those in undried soil. Fertilisation and dilution of air-dried and undried soil did not result in a reduction in the overall incidence of ectomycorrhizal root tips, although the frequency of occurrence of different ectomycorrhizal morphotypes was affected.It is concluded that the growth difference between seedlings in air-dried and undried forest soils is not due solely to differences in the direct availability of nutrients in the soils, and different ectomycorrhizae may indirectly affect nutrient availability to the plant.  相似文献   

6.
红壤区桉树人工林炼山后土壤肥力变化及其生态评价   总被引:5,自引:0,他引:5  
炼山是我国南方林区清理林地的一种传统方法。以广西红壤区桉树人工林为研究区域,通过样地调查和采样,应用培养和非培养(PCR-DGGE)等传统与现代分析方法分别对火烧迹地土壤肥力演变及生态环境进行了评价。结果表明:与非炼山对照区相比,炼山1周后土壤剖面表层土壤(0-3 cm)中有机质、全氮、全磷、全钾以及碱解氮、速效磷和速效钾含量均不同程度地提高;同时,可培养土壤微生物数量和土壤微生物生物量碳、氮也显著地高于对照。虽然中层土(3-25 cm)中各理化性状和生物学性状指标也呈现出与表层土类似的变化趋势,但下层土(25 cm以下)却呈现出无规则的变化趋势;另一方面,炼山4个月后,除磷含量外,土壤剖面各土层土壤中理化性状指标均不同程度地低于非炼山对照区土壤。同时,炼山土壤中可培养微生物数量均低于对照区土壤,虽然表层土壤之间的差异均未达显著水平,但剖面各土层土壤微生物生物量碳、氮却显著低于对照区土壤。说明炼山无助于长效提高桉树人工林的土壤肥力。此外,虽然桉树人工林土壤细菌多样性指数、丰度和均与度指标在不同土层的变化不均一,但无论是炼山1周或4个月后,炼山方式均不同程度地导致了桉树人工林表层土壤细菌多样性指数、丰度和均与度指标的下降,说明炼山方式也不利于桉树人工林,尤其是表层土壤生态系统的持续稳定。  相似文献   

7.
Abstract. Natural regeneration of Pinus resinosa (red pine) seedlings around mature trees was studied in burned and unburned stands. Growth inhibitory effects of the forest organic matter on red pine seedlings was tested by a stair-step experiment using leachate of forest soil monoliths and also by a seed germination bio-assay using forest floor substrates. To test if higher burning temperatures can remove the allelopathic effects of red pine-Kalmia organic matter, a laboratory bio-assay was conducted by germinating red pine seeds on the organic matter burned at 200, 400, 600 and 800°C. Deposition of dry needles and a thick duff layer under red pine stands affected seedling establishment. Red pine seedling establishment increased with the decreasing thickness of duff layer away from the stump of the seed-bearing trees. Wildfire helped in removing the duff layer and increased seedling establishment. A high fuel load within a 0 - 1 m radius around the tree stump caused a deep burn of the organic matter including part of the soil seed reserve. On a burned-over surface, more seedlings established in a band between 1 and 2 m around the stump than inside and outside the band. Primary root growth of red pine was severely inhibited when the seedlings were grown in unburned forest floor organic matter where Kalmia was the principal understory species. Water leachate of a Pinus resinosa-Kalmia soil monolith was inhibitory to red pine seedling growth. In greenhouse conditions, the seedlings grew well in burned-over soil from a Pinus resinosa stand. Burned organic matter from a red pine forest showed an increase in pH with a burning temperature of 600°C. Primary root growth of red pine seedlings was similarly increased with increasing temperature up to 600°C; at higher temperatures the root length of seedlings did not increase any further.  相似文献   

8.
American chestnut (Castanea dentata) was once a dominant overstory tree in eastern USA but was decimated by chestnut blight (Cryphonectria parasitica). Blight-resistant chestnut is being developed as part of a concerted restoration effort to bring this heritage tree back. Here, we evaluate the potential of field soils in the northern portion of the chestnut's former range to provide ectomycorrhizal (EM) fungus inoculum for American chestnut. In our first study, chestnut seedlings were grown in a growth chamber using soil collected from three sites dominated by red oak (Quercus rubra) as inoculum and harvested after 5 months. Of the 14 EM fungi recovered on these seedlings, four species dominated in soils from all three sites: Laccaria laccata, a Tuber sp., Cenococcum geophilum, and a thelephoroid type. Seedlings grown in the nonsterilized soils were smaller than those growing in sterilized soils. In the second study, chestnut seedlings were grown from seed planted directly into soils at the same three sites. Seedlings with intermingling roots of established trees of various species were harvested after 5 months. Seventy-one EM fungi were found on the root tips of the hosts, with 38 occurring on chestnut seedlings. Multiple versus single host EM fungi were significantly more abundant and frequently encountered. The fungi observed dominating on seedlings in the laboratory bioassay were not frequently encountered in the field bioassay, suggesting that they may not have been active in mycelial networks in the field setting but were in the soils as resistant propagules that became active in the bioassay. These results show that soil from red oak stands can be used to inoculate American chestnut with locally adapted ectomycorrhizal fungi prior to outplanting, a relatively cost effective approach for restoration efforts.  相似文献   

9.
Soils are one of the first selective environments a seed experiences and yet little is known about the evolutionary consequences of plant-soil feedbacks. We have previously found that plant phytochemical traits in a model system, Populus spp., influence rates of leaf litter decay, soil microbial communities and rates of soil net nitrogen mineralization. Utilizing this natural variation in plant-soil linkages we examined two related hypotheses: (1) Populus angustifolia seedlings are locally adapted to their native soils; and (2) Soils act as agents of selection, differentially affecting seedling survival and the heritability of plant traits. We conducted a greenhouse experiment by planting seedlings from 20 randomly collected P. angustifolia genetic families in soils conditioned by various Populus species and measured subsequent survival and performance. Even though P. angustifolia soils are less fertile overall, P. angustifolia seedlings grown in these soils were twice as likely to survive, grew 24% taller, had 27% more leaves, and 29% greater above-ground biomass than P. angustifolia seedlings grown in non-native P. fremontii or hybrid soils. Increased survival resulted in higher trait variation among seedlings in native soils compared to seedlings grown in non-native soils. Soil microbial biomass varied significantly across soil environments which could explain more of the variation in seedling performance than soil texture, pH, or nutrient availability, suggesting strong microbial interactions and feedbacks between plants, soils, and associated microorganisms. Overall, these data suggest that a “home-field advantage” or a positive plant soil feedback helps maintain genetic variance in P. angustifolia seedlings.  相似文献   

10.
In the present study, a smouldering fire was reproduced in a substrate from a Pinus pinaster forest in the southeastern Iberian Peninsula. Experiments were carried out, in laboratory, using soil monoliths to assess the short-term fire-induced effects on germination, survival and morphological traits in young (3-year-old) specimens of Pinus pinaster Ait. The fire caused a severe reduction in the litter and humus layer relative to a control (unburnt) soil. A lower percentage of accumulated germination (29% in the burnt soil compared with 71% in the control soil) reduced final seedling density, and a lower seedling height was observed in burnt soil. Furthermore, the amount of biomass fixed per unit of leaf area and the concentration of foliar nutrients were lower in the seedlings grown in the burnt soil. However, the amount of biomass fixed per individual seedling was significantly higher in the burnt soil than in the control soil. The results confirm the observed lesser P. pinaster recruitment in burnt stands in southeastern Spain.  相似文献   

11.
Ectomycorrhizal fungi (ECMF) are an important biotic factor in the survival of conifer seedlings under stressful conditions and therefore have the potential to facilitate conifer establishment into alpine and tundra habitats. In order to assess patterns of ectomycorrhizal availability and community structure above treeline, we conducted soil bioassays in which Picea mariana (black spruce) seedlings were grown in field-collected soils under controlled conditions. Soils were collected from distinct alpine habitats, each dominated by a different ectomycorrhizal host shrub: Betula glandulosa, Arctostaphylos alpina or Salix herbacaea. Within each habitat, half of the soils collected contained roots of ectomycorrhizal shrubs (host+) and the other half were free of host plants (host). Forest and glacial moraine soils were also included for comparison. Fungi forming ectomycorrhizae during the bioassays were identified by DNA sequencing. Our results indicate that ECMF capable of colonizing black spruce are widespread above the current tree line in Eastern Labrador and that the level of available inoculum has a significant influence on the growth of seedlings under controlled conditions. Many of the host soils possessed appreciable levels of ectomycorrhizal inoculum, likely in the form of spore banks. Inoculum levels in these soils may be influenced by spore production from neighboring soils where ectomycorrhizal shrubs are present. Under predicted temperature increases, ectomycorrhizal inoculum in soils with host shrubs as well as in nearby soils without host shrubs have the potential to facilitate conifer establishment above the present tree line.  相似文献   

12.
The production and quality of Tie-Guan-Yin tea (Camellia sinensis) decrease with time after continuous picking over multiple years. However, it is unclear how the soils of consecutively cultured tea plantations affect the growth of tree seedlings. In this study, soil samples were collected from 4-, 9-, and 30-age Tie-Guan-Yin plantations within the original production area, Longjuan town, Anxi County, China. The toxicity of soil samples were tested by laboratory bioassay. Then, new tea seedlings were transplanted in situ into the land of three age tea plantations. One year after transplantation, the growth indexes, physiological parameters (protective enzymes and primary metabolites), photosynthesis parameters, and main tea quality indicators were measured. The results showed that the 4-, 9-, and 30-age soils inhibited lettuce root growth by 10.32, 24.19, and 48.04 %, respectively. The consecutively cultured soil negatively impacted on the growth, physiology, photosynthesis, and overall quality of transplanted tea seedlings. For example, seedlings grown in the 30-age soil had 20 % lower growth rates, 17 % less soluble sugar, 28 % less soluble protein, 37 % less polyphenol, 34 % less theanine, 25 % less amino acid, 37 % less caffeine, and 40 % less of eight catechols than tea seedlings grown in new soil with no history of tea production. These results indicated that the soils of consecutively cultured tea plantations resulted in significant autotoxicity which negatively affected tea seedling growth, metabolism, tea yield, and tea quality. Greater understanding of the causes and mechanisms of autotoxicity is critical to the reclamation of longstanding tea plantation and improvement of the yield and quality of the tea they produce.  相似文献   

13.
接种彩色豆马勃对模拟酸沉降下马尾松幼苗生物量的影响   总被引:1,自引:0,他引:1  
陈展  王琳  尚鹤 《生态学报》2013,33(20):6526-6533
外生菌根能够提高宿主植物对外界环境胁迫的抵抗力,促进植物的生长,本文试图揭示外生菌根对酸雨胁迫下马尾松生长的保护作用。本研究采用盆栽试验,共设置四个处理:酸雨对照处理(Control check (CK), 约pH值5.5)不接种,酸雨对照处理接种,酸雨pH值3.5处理不接种,酸雨pH值3.5处理接种。pH值3.5的酸雨处理降低马尾松的生物量,在试验前期降低根冠比,试验中后期则提高根冠比,在试验初期增加了叶面积,但中后期显著降低了叶面积。接种外生菌根菌有利于马尾松幼苗的生长,pH值3.5处理下接种外生菌根菌能提高马尾松幼苗的生物量,外生菌根菌对生物量分配和叶面积的影响与酸雨胁迫的影响是相反的,即外生菌根菌抵消了酸雨胁迫对马尾松的影响。  相似文献   

14.
Current decreasing precipitation and increasing temperatures promote the likelihood of extreme drought events and may alter the recruitment capacities of tree species. Spanish black pine (Pinus nigra ssp. salzmannii) initial recruitment is being one of the most affected pine species by changing conditions with alterations in the future species distribution. In this context, a cross-exchange experiment was implemented using an outdoor nursery located in a warmer and drier location for testing different Spanish Black pine seeds and soil provenance combinations in relation to early recruitment and initial seedling growth. Soil and seeds were collected at a high (HA, 1641 m.a.s.l.) and low (LA, 1099 m.a.s.l.) altitude in Cuenca Mountains (Spain). Then, a cross-sown experiment using HA and LA soils and seeds was set up in an outdoor nursery, which is located in Albacete (704 m.a.s.l.). Soil quality, seedling emergence, seedling survival, initial seedling growth and total seedling dry mass were measured after one year. We found higher seed emergence and seedling survival by combining LA soil with LA seeds or HA soil with HA seeds. Seedlings from LA seeds with both soil origins and seedlings from HA seeds with LA soils allocated more biomass to roots than seedlings from HA sites growing in HA soils under drier and warmer conditions. These results support the idea that autochthonous provenances have the potential to adapt to changing climatic conditions in their habitats.  相似文献   

15.
王良民 《生态学报》2009,29(12):6401-6406
王桉 (Eucalyptus regnans F. Muell.) 是澳大利亚桉树中最重要的商业用材和人工造林树种之一.研究王桉的施肥与其体内氨基酸的积累和转化及与食叶虫害之间的相关性具有重要的经济和生态意义.在温室内利用2种不同来源的土壤对王桉幼苗进行了不同磷施用量(100 kg hm~(-2)和 200 kg hm~(-2))处理.结果显示,不同土壤和不同磷施用量对苗木生长影响显著,但均未显著影响苗木各部分的氮和磷含量水平.苗木木质部渗出液中的氨基酸含量以谷氨酰胺为主,并与苗木生长和磷施用量呈反相关.不同土壤和磷施用量对苗木组织中游离氨基酸组分和含量的影响不显著,但游离氨基酸的组分和相对水平随叶龄变化明显,尤其是精氨酸在嫩叶氨基酸总量中只占2%~3%,但在老叶中占到20%多;精氨酸在老叶中的积累极有可能是某些蛋白质降解而精氨酸即时合成所致,因为精氨酸一般不在韧皮部转运.谷氨酰胺在树液中含量最高并与苗木生长呈反相关或许可以作为预测桉树发生食叶昆虫危害的一个有用指标.  相似文献   

16.
The growth of fungi causing apple replant disease (ARD) was inhibited by the addition of N and P to the growing medium. The population of bacteria antagonistic to ARD-causing fungi was significantly increased in the growing medium supplemented with N 400 P 400 mg/l or greater. The application of nitrogen alone or in combination with phosphorus to soil infested with fungi or bacteria that cause apple replant disease significantly increased seedling height. The addition of P alone to these infested soils did not have any effect on seedling height. Significant increases in seedling height occurred with N applications when seedlings were grown in soil to which bacteria that are antagonistic to fungi causing ARD had been added. These results suggest that the application of N, with or without P, to apple replant soils may suppress the growth of ARD-causing fungi or bacteria and promote the growth of antagonistic bacteria.  相似文献   

17.
Summary The influence of ozone, mist chemistry, rain chemistry, and soil type on CO2 assimilation and growth of red spruce (Picea rubens Sarg.) seedlings was investigated over a 4-month period under controlled laboratory and glasshouse conditions. Growth was evaluated through interval estimates of aboveground relative growth rates (RGR) and the partitioning of biomass components at harvest to root, stem, and needle fractions. Precipitation chemistry treatments and O3 exposure dynamics were based on reported characteristics of air chemistry and/or deposition in high-elevation forests of eastern North America. The two soils were collected from Camels Hump in the Green Mountains of Vermont and Acadia National Park on the Maine coast. Soil from Acadia had higher organic content, higher levels of extractable base cations, and lower levels of extractable aluminum and heavy metals. The only treatment variables that consistently influenced the growth of P. rubens were soil type and rain chemistry. In comparison with seedlings grown in soil from Acadia National Park, those grown in Camels Hump soil had significantly less needle (27%), stem (33%), and root (26%) biomass at harvest and statistically lower aboveground RGR within 2 months after initiation of the treatments. Seedlings grown in Camels Hump soil had significantly higher levels of aluminum (6.5X), copper (1.4X), and nickel (2.7X) in new needle tissue. The only influence of precipitation chemistry on the growth of P. rubens was a pattern of greater root and shoot biomass in seedlings experiencing the more acidic rain treatments. Interactive effects among the main treatment variables (e.g., acidic mist and O3, acidic rain and soil type) on seedling growth were not notable. Rates of CO2 assimilation and transpiration on a per gram needle dry weight basis [mol·g-1·s-1] were not influenced by any of the main treatment variables or their interaction. Because neither soil type nor precipitation chemistry influenced the efficiency of CO2 assimilation per gram dry weight of needle tissue, the physiological mechanism underlying the growth response of P. rubens is attributed to a change in either whole-plant allocation of carbon resources or a direct toxic effect in the rhizosphere on root growth.  相似文献   

18.
The potential for mycorrhizal formation and Frankia nodulation were studied in soils from six sites in the Pacific Northwest. The sites included young and old alder stands, a 1-year-old conifer clear-cut, a young conifer plantation, and rotation-aged and old-growth conifer stands. A bioassay procedure was used with both red alder and Douglas fir seedlings as hosts. After 6 weeks growth, seedlings of both hosts were harvested every 3 weeks for 21 weeks and numbers of nodules and ectomycorrhizal types estimated. Nodules formed on red alder and ectomycorrhizae formed on both alder and Douglas fir in soil from all sites. Nodulation potential was highest in soil from the alder stands and the conifer plantation. Seven morphologically distinct ectomycorrhizal types were recovered on Douglas fir and five on alder. Only Thelephora terrestris, a broad-host-range mycobiont, formed mycorrhizae on both hosts. New ectomycorrhizal types formed on both hosts throughout the bioassay. Ectomycorrhizal colonization of alder was greatest in the alder and clear-cut soils. Low ectomycorrhizal colonization on alder was found in soils from sites where conifers were actively growing. Ectomycorrhizal colonization of Douglas fir was highest in the young alder and conifer plantation soils and was low in the rotation-aged conifer soil. The highest diversity of ectomycorrhizal types was found on alder in the conifer clear-cut soil and on Douglas fir in the rotation-aged conifer soil. Effects of host specificity, nodulation and mycorrhiza-forming potential and nodule-mycorrhiza interactions on seedling establishment are discussed in relation to seral stage dynamics and attributes of pioneer ectomycorrhizal fungal species.  相似文献   

19.
20.
This study was conducted to evaluate the competitiveness and effectiveness of Thelephoroid fungal sp. ORS.XM002 against native ectomycorrhizal fungal species colonizing potted Afzelia africana seedlings during 3 months of growth in different forest soils collected from under mature trees. Using morphotyping and restriction fragment length polymorphism (RFLP) analysis of the nuclear rDNA internal transcribed spacer (ITS), we were able to distinguish the introduced Thelephoroid fungal sp. ORS.XM002 among native ectomycorrhizal fungal species that form ectomycorrhizae in A. africana seedlings. The morphotype (MT) of the introduced fungus showed some color variation, with a shift from light- to dark-brown observed from younger to older mycorrhizal tips. We were able to differentiate the ITS type xm002 of the introduced fungus from the 14 ITS-RFLP types characterizing the 9 native MT that occurred in forest soils. The frequency of ITS type xm002 ranged from 40% to 49% depending on the forest soil used, and was always higher than those of ITS types from native dark-brown MT that occurred in inoculated seedlings 3 months after inoculation. We considered Thelephoroid fungal sp. ORS.XM002 to be responsible for stimulation of mycorrhizal colonization of inoculated A. africana seedlings when compared with control seedlings in forest soils. This fungus appeared to be more effective in increasing the root dry weight of A. africana seedlings. To identify the unknown introduced fungal species and native MT, we sequenced the ML5/ML6 region of the mitochondrial large subunit rRNA. Sequence analysis showed that these fungi belong to three ML5/ML6 groups closely related to the Cortinarioid, Thelephoroid, and Sclerodermataceous taxa. The molecular evidence for the persistence of Thelephoroid fungal sp. ORS.XM002 despite competition from native fungi argues in favor of using this fungus with A. africana in nursery soil conditions in Senegal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号