首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In guinea pigs, dose-dependent febrile responses were induced by injection of a high (100 microg/kg) or a low (10 microg/kg) dose of bacterial lipopolysaccharide (LPS) into artificial subcutaneously implanted Teflon chambers. Both LPS doses further induced a pronounced formation of prostaglandin E(2) (PGE(2)) at the site of localized subcutaneous inflammation. Administration of diclofenac, a nonselective cyclooxygenase (COX) inhibitor, at different doses (5, 50, 500, or 5,000 microg/kg) attenuated or abrogated LPS-induced fever and inhibited LPS-induced local PGE(2) formation (5 or 500 microg/kg diclofenac). Even the lowest dose of diclofenac (5 microg/kg) attenuated fever in response to 10 microg/kg LPS, but only when administered directly into the subcutaneous chamber, and not into the site contralateral to the chamber. This observation indicated that a localized formation of PGE(2) at the site of inflammation mediated a portion of the febrile response, which was induced by injection of 10 microg/kg LPS into the subcutaneous chamber. Further support for this hypothesis derived from the observation that we failed to detect elevated amounts of COX-2 mRNA in the brain of guinea pigs injected subcutaneously with 10 microg/kg LPS, whereas subcutaneous injections of 100 microg/kg LPS, as well as systemic injections of LPS (intra-arterial or intraperitoneal routes), readily caused expression of the COX-2 gene in the guinea pig brain, as demonstrated by in situ hybridization. Therefore, fever in response to subcutaneous injection of 10 microg/kg LPS may, in part, have been evoked by a neural, rather than a humoral, pathway from the local site of inflammation to the brain.  相似文献   

2.
《Journal of thermal biology》2001,26(4-5):319-324
(1) In guinea pigs, a high (100 μg/kg) or a low (10 μg/kg) dose of lipopolysaccharide (LPS) was injected into subcutaneously implanted Teflon chambers along with the prior injection of a local anesthetic (ropivacaine) or sterile saline. (2) Intra-chamber injection of the LPS alone induced fever and elevation of circulating cortisol. (3) Fever in response to the low dose of the LPS was attenuated by the pretreatment with the local anesthetic while circulating levels of cortisol were not impaired by this procedure. (4) There was a moderate increase in plasma interleukin-6 (IL-6) in response to both concentrations of locally administered LPS. The LPS did not enter the systemic circulation in measurable amounts. (5) These results favor the possibility of a participation of afferent neural as well as humoral signals (IL-6) in the manifestation of fever in this experimental model.  相似文献   

3.
Most published studies of thermoregulatory responses of mice to LPS involved a stressful injection of LPS, were run at a poorly controlled and often subneutral ambient temperature (T(a)), and paid little attention to the dependence of the response on the LPS dose. These pitfalls have been overcome in the present study. Male C57BL/6 mice implanted with jugular vein catheters were kept in an environmental chamber at a tightly controlled T(a). The relationship between the T(a)s used and the thermoneutral zone of the mice was verified by measuring tail skin temperature, either by infrared thermography or thermocouple thermometry. Escherichia coli LPS in a wide dose range (10(0)-10(4) microg/kg) was administered through an extension of the jugular catheter from outside the chamber. The responses observed were dose dependent. At a neutral T(a), low (just suprathreshold) doses of LPS (10(0)-10(1) microg/kg) caused a monophasic fever. To a slightly higher dose (10(1.5) microg/kg), the mice responded with a biphasic fever. To even higher doses (10(1.75)-10(4) microg/kg), they responded with a polyphasic fever, of which three distinct phases were identified. The dose dependence and dynamics of LPS fever in the mouse appeared to be remarkably similar to those seen in the rat. However, the thermoregulatory response of mice to LPS in a subthermoneutral environment is remarkably different from that of rats. Although very high doses of LPS (10(4) microg/kg) did cause a late (latency, approximately 3 h) hypothermic response in mice, the typical early (latency, 10-30 min) hypothermic response seen in rats did not occur. The present investigation identifies experimental conditions to study LPS-induced mono-, bi-, and polyphasic fevers and late hypothermia in mice and provides detailed characteristics of these responses.  相似文献   

4.
LPS enhanced antibacterial host defenses (ABHD) when given at low (75 micro g) doses (16 of 19 mice survived 3x LD(50) Escherichia coli vs 3 of 19 LPS-naive mice; p = 0.0001), but induced lethal inflammation at high (500 micro g) doses (5 of 5 died). Differences in the cytokine profiles induced by these LPS doses may provide insight into the mechanism(s) of transition from beneficial to lethal LPS responses. The 75 micro g LPS induced 5.9 +/- 0.9 ng/ml serum IL-18 at 8 h, which decreased to 2.3 +/- 0.4 ng/ml by 24 h, whereas 500 micro g LPS induced 11.1 +/- 1.6 ng/ml serum IL-18 levels at 8 h, which increased until death. Compared with 75 micro g, higher but sublethal (150 micro g) doses of LPS induced greater serum IL-18 levels and less effectively induced ABHD (3 of 8 survived). Reduction of serum IL-18 with neutralizing Ab improved the ABHD induced by 150 micro g, but reduced that produced by 75 micro g LPS, suggesting an optimal range of serum IL-18 level was essential for efficient ABHD. Increased expression of caspase-1 mRNA in response to the higher IL-18 levels induced at the 150 and 500 micro g, but not at the 75 micro g doses of LPS may represent a positive feedback regulatory loop leading to sustained serum IL-18 levels. We conclude that the regulation of serum IL-18 expression is critical to the outcome of innate immune responses to LPS.  相似文献   

5.
The purpose of these studies was to test whether pentoxifylline, a drug that can inhibit the production and action of cytokines hypothesized to be endogenous pyrogens (for example, interleukin 1 and tumor necrosis factor [TNF]), is antipyretic. We also tested the effects of pentoxifylline on plasma activities of interleukin 6 (IL 6) and TNF in response to an injection of a fever-inducing dose of lipopolysaccharide (LPS). Our results showed that a high dose of pentoxifylline (200 mg/kg) caused hypothermia in control rats and blocked LPS fever, while a low dose (50 mg/kg) did not have these effects. Injection of the high dose of pentoxifylline in control rats caused a rise in plasma IL 6 but not in plasma TNF. However, the peak levels of plasma IL 6 and TNF activities following an injection of LPS were significantly reduced by pretreatment with pentoxifylline. Overall, the data are consistent with the hypothesis that pentoxifylline is an antipyretic drug, which may act at least in part by inhibiting the secretion of pyrogenic cytokines.  相似文献   

6.
Abstract We established a mouse model to differentiate between a lethal and non-lethal presentation of endotoxic shock. The model involved injecting different amounts of Escherichia coli LPS into C3H/HeN mice which had been 'primed' with BCG. We found that the mice receiving non-lethal and lethal doses of LPS could not be differentiated in terms of their physical symptoms for the first 8 h post-injection. Tumour necrosis factor (TNF) was detected at concentrations 2–9-fold greater in mice receiving lethal doses of LPA when compared with non-lethally injected mice. However, given that (i) the successful detection of this differential was dependent on the time of sampling and (ii) that TNF was only detected in the first 3–4 h post LPS challenge, we suggest that TNF may not be very useful as a prognostic marker in endotoxic shock. In contrast, circulating IL-6 appeared to mirror the symptoms of the endotoxic mice. The relative disappearance of IL-6 after 10 h in the non-lethally injected mice corresponded with their symptomatic recovery, while IL-6 continued to circulate up to the time of death in the lethally injected mice. Furthermore, there appeared to be a good correlation between the levels of injected LPS and the levels of IL-6 induced into the circulation. Our results suggest that IL-6, rather than TNF, may serve as a prognostic marker for endotoxic shock.  相似文献   

7.
Recently, it has been shown that the Toll-like receptors-2 and -6 agonist fibroblast-stimulating lipopeptide-1 (FSL-1) have the capacity to induce fever and sickness behavior in rats. Since the mechanisms of the fever-inducing effects of FSL-1 are still unknown, we tested the pyrogenic properties of FSL-1 in guinea pigs and assessed a role for TNF-alpha and prostaglandins in the manifestation of the febrile response to this substance. Intra-arterial and intraperitoneal injections of FSL-1 caused dose-dependent fevers that coincided with elevated plasma levels of TNF and IL-6, the intraperitoneal route of administration being more effective than the intra-arterial route. Intra-arterial or intraperitoneal injection of a soluble form of the TNF type 1 receptor, referred to as TNF binding protein (TNFbp), together with FSL-1, completely neutralized FSL-1-induced circulating TNF and reduced fever and circulating IL-6. Intra-arterial or intraperitoneal injection of the nonselective cyclooxygenase (COX)-inhibitor diclofenac depressed fever and FSL-1-induced elevations of circulating PGE2. Circulating TNF and IL-6, however, remained unimpaired by treatment with diclofenac. In conclusion, FSL-1-induced fever in guinea pigs depends, in shape and duration, on the route of administration and is, to a high degree, mediated by pyrogenic cytokines and COX products.  相似文献   

8.
Hyperlipidemia frequently accompanies infectious diseases and may be due to increases in lipoprotein production or decreases in lipoprotein clearance. The administration of endotoxin (LPS) has been used to mimic infection and prior studies demonstrate that LPS produces hypertriglyceridemia. In the present study in rodents, the dose of LPS necessary to induce hyperlipidemia was orders of magnitude less than that necessary to induce shock and death. As little as 10 ng/100 g body weight induced hypertriglyceridemia and this increase in serum triglyceride levels occurred rapidly (78% increase at 2 h). At high doses of LPS (50 micrograms/100 g body weight), the clearance of triglyceride-rich lipoproteins was decreased. At low doses of LPS (100 ng/100 g body weight), triglyceride clearance was not altered but the hepatic secretion of triglyceride was increased. Low dose LPS stimulated hepatic de novo fatty acid synthesis and lipolysis, both of which provided a source of fatty acids for the increase in hepatic triglyceride production. High dose LPS did not increase hepatic fatty acid synthesis or peripheral lipolysis, and hepatic triglyceride secretion was not stimulated. Thus, low dose LPS produces hypertriglyceridemia by increasing hepatic lipoprotein production, while high dose LPS produces hypertriglyceridemia by decreasing lipoprotein catabolism. Administration of anti-tumor necrosis factor (TNF) antibodies or interleukin 1 (IL-1) receptor antagonist did not prevent the increase in serum triglyceride levels induced by LPS. However, anti-TNF antibodies and interleukin 1 receptor antagonist (IL-1ra) blocked the increase in serum triglycerides induced by TNF or IL-1, respectively. These data suggest that neither of these cytokines is absolutely required for the increase in serum triglycerides induced by LPS, raising the possibility that other cytokines, small molecular mediators, or LPS itself may play a crucial role.  相似文献   

9.
The development of LPS tolerance has been suggested to be mediated by an inhibition of cytokine synthesis. Here we have studied serum IL-6 and TNF levels in mice after LPS administration. Repeated administration of LPS (35 micrograms daily for 4 days) to mice induced a refractoriness (tolerance) to subsequent administrations of LPS in terms of induction of circulating IL-6 and TNF. To investigate the mechanism by which LPS down-regulates its own induction of cytokine synthesis and the relationship between IL-6 and TNF production, we attempted to revert the inhibition of IL-6 and TNF production using agents like PMA or IFN-gamma, previously reported to activate macrophage production of cytokines. Pretreatment with PMA (4 micrograms, 10 min before LPS) partially restored IL-6 production in LPS-tolerant mice given 2 micrograms LPS. On the other hand, PMA did not restore TNF induction in LPS-tolerant mice, even when administered with high doses of LPS (up to 200 micrograms). A similar reversal of LPS resistance to IL-6, but not TNF, induction by PMA was observed in genetically LPS-resistant C3H/HeJ mice. IFN-gamma also restored, although to a lesser extent than PMA, IL-6 production. However, unlike PMA, IFN-gamma could also partially restore TNF production in LPS-tolerant mice, although only when LPS was administered at high doses. By contrast with PMA, IFN-gamma was clearly more active in restoring TNF synthesis than that of IL-6. Similar results were obtained in genetically LPS-unresponsive C3H/HeJ mice. These data suggest that different mechanisms are implicated in the inhibition of IL-6 and TNF synthesis in LPS-tolerant mice and that part of this inhibition can be overcome by PMA or IFN-gamma.  相似文献   

10.
The hypothesis that cytokines mediate neutrophil emigration induced by endotoxin (LPS) was studied by examining the potency, the kinetics of neutrophil emigration, and the tachyphylaxis of intradermal sites with IL-1, TNF-alpha and LPS. Human rIL-1 alpha and IL-1 beta, synthetic lipid A, and LPS were several orders of magnitude more potent than human rTNF. The kinetic profiles of neutrophil emigration induced by IL-1 alpha, TNF, and LPS were characterized by minimal emigration in the first 30 min, followed by rapid and transient emigration. After the injection of LPS, the onset and the time at which the rate of emigration was maximal consistently appeared 30 min later than IL-alpha or TNF, suggesting that neutrophil emigration in response to LPS was mediated by a locally generated cytokine. IL-1 and TNF were then examined as potential secondary mediators of LPS-induced emigration by comparing the patterns of tachyphylaxis between LPS and IL-1 alpha or TNF; i.e., the magnitude of neutrophil emigration into inflammatory sites was compared with sites injected 6 h previously (desensitizing injections) with a cytokine or with LPS. Tachyphylaxis was dose dependent with each and also between the IL-1 species; therefore, when tachyphylaxis between the cytokines and LPS was examined, relatively higher doses were selected for the desensitizing injections than for the test injections. With this approach, desensitizing injections of IL-1 alpha diminished the neutrophil accumulation after LPS, and LPS also desensitized sites to IL-1 alpha. However, tachyphylaxis was not observed between TNF and LPS, or between TNF and IL-1 alpha. These data suggest that IL-1, but not TNF, is a potential mediator of LPS-induced neutrophil emigration.  相似文献   

11.
Abstract Endotoxin (lipopolysaccharide, LPS) induces the production of mediators of inflammation, which exerts pathophysiological effects such as fever or shock in mammals. In the present study we have investigated the modulation of LPS by the synthetic non-active tetraacylated precursor Ia of lipid A (compound 406) in the induction of tumor necrosis factor (TNF), interleukin 1 (IL-1) and interleukin 6 (IL-6) in human peripheral blood mononuclear cells (PBMC) and in human peripheral blood monocytes (PBMo). PBMC stimulated with LPS released TNF in a concentration dependent manner. Release of biologically active TNF, IL-1 and IL-6 was first detectable 4 h after LPS stimulation. Compound 406 alone in all concentrations tested did not induce TNF, IL-1 or IL-6 release, intracellular TNF or IL-1β, or mRNA for TNF or IL-1. Added to PBMC 1 h before LPS compound 406 enhanced or suppressed TNF release and suppressed IL-1 and IL-6 release depending on the ratio of concentrations between stimulator (LPS) and modulator (compound 406). In contrast to LPS stimulation alone TNF, IL-1 and IL-6 release in presence of compound 406 was delayed and first detectable after 6 to 8 h. Compound 406 was able to suppress LPS-induced intracellular TNF and IL-1β in PBMC. Added to PBMo 1 h before LPS it totally inhibited the production of mRNA for TNF and IL-1. When added to PBMC 1 h after LPS, TNF release was suppressed in a concentration-dependent way and release of biologically active TNF, IL-1 and IL-6 could again be detected for the first time after 4 h. Compound 406 was not able to inhibit phorbol 12-myristate 13-acetate (PMA)-induced TNF and IL-1 release in PBMo which suggests that its modulating effect is LPS-specific. This study provides evidence that the modulating effect of compound 406 on the LPS induction of TNF, IL-, 1 and IL-6 could be due to competitive binding.  相似文献   

12.
We have studied, using a telemetry system, the pyrogenic properties of recombinant murine interleukin-18 (rmIL-18) injected into the peritoneum of C57BL/6 mice. The effect of IL-18 was compared with the febrile response induced by human IL-1beta, lipopolysaccharide (LPS), and recombinant murine interferon-gamma (rmIFN-gamma). Both IL-1beta and LPS induced a febrile response within the first hour after the intraperitoneal injection, whereas rmIL-18 (10-200 microg/kg) and rmIFN-gamma (10-150 microg/kg) did not cause significant changes in the core body temperature of mice. Surprisingly, increasing doses of IL-18, injected intraperitoneally 30 min before IL-1beta, significantly reduced the IL-1beta-induced fever response. In contrast, the same pretreatment with IL-18 did not modify the febrile response induced by LPS. IFN-gamma does not seem to play a role in the IL-18-mediated attenuation of IL-1beta-induced fever. In fact, there was no elevation of IFN-gamma in the serum of mice treated with IL-18, and a pretreatment with IFN-gamma did not modify the fever response induced by IL-1beta. We conclude that IL-18 is not pyrogenic when injected intraperitoneally in C57BL/6 mice. Furthermore, a pretreatment with IL-18, 30 min before IL-1beta, attenuates the febrile response induced by IL-1beta.  相似文献   

13.
C-reactive protein (CRP) is a component of the acute phase response to infection, inflammation, and trauma. A major activity of acute phase proteins is to limit the inflammatory response. It has been demonstrated that CRP protects mice from lethal doses of LPS. In the mouse, CRP binds to the regulatory receptor, FcgammaRIIb, and to the gamma-chain-associated receptor, FcgammaRI. The goal ofthis study was to determine whether FcgammaRs are necessary for the protective effect of CRP. The ability of CRP to protect mice from a lethal dose of LPS was confirmed using injections of 500 and 250 micro g of CRP at 0 and 12 h. CRP treatment of FcgammaRIIb-deficient mice increased mortality after LPS challenge and increased serum levels of TNF and IL-12 in response to LPS. CRP did not protect FcR gamma-chain-deficient mice from LPS-induced mortality. Treatment of normal mice, but not gamma-chain-deficient mice, with CRP increased IL-10 levels following LPS injection. In vitro, in the presence of LPS, CRP enhanced IL-10 synthesis and inhibited IL-12 synthesis by bone marrow macrophages from normal, but not gamma-chain-deficient mice. The protective effect of CRP appears to be mediated by binding to FcgammaRI and FcgammaRII resulting in enhanced secretion of the anti-inflammatory cytokine IL-10 and the down-regulation of IL-12. These results suggest that CRP can alter the cytokine profile of mouse macrophages by acting through FcgammaR leading to a down-regulation of the inflammatory response.  相似文献   

14.
Information on avian fever is limited, and, in particular, very little is known about the mediators and modulators of the febrile response in birds. Therefore, in this study, the possible mediatory roles of nitric oxide (NO) and prostaglandins (PGs), together with a potential modulatory role for adrenocortical hormones in the generation of fever was investigated in conscious Pekin ducks. Their body temperatures were continuously measured by abdominally implanted temperature-sensitive data loggers. The febrile response induced by intramuscular injection of LPS at a dose of 100 microg/kg was compared with and without inhibition of NO production by N-nitro-L-arginine methyl ester (L-NAME), inhibition of PG synthesis (by diclofenac), and elevation of circulating concentrations of dexamethasone and corticosterone (by exogenous administration). LPS administration induced a marked, monophasic fever with a rise in temperature of more than 1 degrees C after 3-4 h. In the presence of L-NAME, diclofenac, and adrenocorticoids at doses that had no effect upon normal body temperature in afebrile ducks, there was a significant inhibition of the LPS-induced fever. In addition, during the febrile response, the blood concentration of corticosterone was significantly elevated (from a basal level of 73.6 +/- 9.8 ng/ml to a peak level of 132.6 +/- 16.5 ng/ml). The results strongly suggest that the synthesis of both NO and PGs is a vital step in the generation of fever in birds and that the magnitude of the response is subject to modulation by adrenocorticoids.  相似文献   

15.
16.
TNF, IL-1, and IL-6 are integral components of the cytokine cascade released in the response to inflammatory stimuli such as LPS. IL-8 is produced both in response to LPS as well as TNF and IL-1. The early, local production of TNF and IL-1 may therefore contribute to the subsequent expression of IL-8. This hypothesis was tested using LPS-stimulated human whole blood as an ex vivo model of local cytokine production. The production of TNF, IL-1 alpha, IL-1 beta, IL-6, and IL-8 was found to be responsive to a wide range of LPS concentrations (0.1 ng/ml-10 micrograms/ml). These cytokines were first detected between 1 to 4 h post-LPS stimulation, and reached plateau levels after 6 to 12 h. IL-8, however, also displayed a secondary wave of production, with the levels again increasing between 12 to 24 h. The IL-8 present in the plasma after LPS stimulation was biologically active, as assessed by neutrophil chemotaxis. In further studies, addition of anti-TNF and anti-IL-1 neutralizing antibodies, alone and in combination, to LPS-stimulated blood resulted in nearly complete ablation of the secondary phase of IL-8 synthesis at both the levels of protein and mRNA, while leaving the first, LPS-mediated phase of IL-8 synthesis unaffected. This model of cytokine production in human whole blood may reflect the sequence of events in a localized environment of inflammation where both a primary stimulus and the induced early cytokine mediators may serve to elicit multiple, temporally distinct phases of IL-8 production.  相似文献   

17.
Patients with high level of serum endotoxin did not necessarily develop into lethal shock, whereas some patients died of septic shock even when their serum endotoxin levels were low. These results indicate that limiting factor which determines the host to be endotoxin shock principally depends on the host susceptibility to endotoxin instead of serum endotoxin level. To understand this susceptible status of the host to endotoxin, we used Propionibacterium acnes primed mouse endotoxin shock model. We found that P. acnes-primed mice responded to low dose of LPS by enhanced production of IL-1 and TNF. And such mice were highly susceptible to the lethal shock inducing effect of IL-1 and/or TNF, which also induced high level of serum IL-6 in these mice. Therefore, measurement of serum IL-6 level provides us with the information of the preceding exposure of the host to either LPS or IL-1 and/or TNF and the highly susceptible status of the host to these stimuli. Based on these results obtained from animal model, we investigated the relationship between serum IL-6 levels and serum endotoxin levels in the patients with malignant hematologic disorders. We found that these patients fell into two groups; an endotoxin susceptible group, equivalent to P. acnes-primed mice, showing high level of serum IL-6 with low level of serum endotoxin, and a nonendotoxin susceptible group, equivalent to P. acnes-nonprimed mice, showing low or undetectable level of serum IL-6 with high level of serum endotoxin. We propose that the measurement of serum IL-6 level in the patients positive for endotoxin is a useful tool in evaluating diagnosis and prognosis of endotoxin shock.  相似文献   

18.
BALB/c mice were sensitized to lethal effects of human rTNF-alpha and of human rIL-1 alpha by simultaneous treatment with sublethal doses of actinomycin D (Act D) or D-galactosamine (GalN). In contrast, treatment with sublethal doses of TNF or IL-1 themselves resulted in desensitization of the mice to the lethal effect of these cytokines: mice injected with TNF or IL-1 in the absence of Act D or GalN responded to a second injection of TNF or IL-1, this time together with Act D or GalN, by a significantly delayed death, or even survived. Desensitization developed rapidly (0.5-1.0 h) and abated 24 to 48 h postinjection. Each of the two cytokines induced hyporesponsiveness to its own lethal effect as well as to that of the other. Injection of TNF or IL-1 at sublethal doses resulted also in hyporesponsiveness to the lethal effect of LPS on mice primed with bacillus Calmette-Guérin, an effect which most likely is mediated by TNF and IL-1 produced in those mice in response to the LPS. TNF and IL-1 in combination had an additive effect both in lethality and in desensitization of the mice. These findings suggest that some of the deleterious effects of TNF and IL-1 are modulated by antagonistic mechanisms; mechanisms which can be suppressed by sensitizing agents, specifically by agents inhibiting the synthesis of RNA or protein; but which, in the absence of such agents, are found to be augmented in response to TNF and IL-1, thus resulting in desensitization.  相似文献   

19.
The MNK kinases are downstream of both the p38 and ERK MAP kinase pathways and act to increase gene expression. MNK inhibition using the compound CGP57380 has recently been reported to inhibit tumor necrosis factor (TNF) production in macrophage cell lines stimulated with Escherichia coli lipopolysaccharide (LPS). However, the range of receptors that signal through the MNK kinases and the extent of the resultant cytokine response are not known. We found that TNF production was inhibited in RAW264.7 macrophage cells by CGP57380 in a dose-responsive manner with agonists for Toll-like receptor (TLR) 2 (HKLM), TLR4 (Salmonella LPS), TLR6/2 (FSL), TLR7 (imiquimod), and TLR9 (CpG DNA). CGP57380 also inhibited the peak of TNF mRNA production and increased the rate of TNF mRNA decay, effects not due to the destabilizing RNA binding protein tristetraprolin (TTP). Similar to its effects on TNF, CGP57380 caused dose-responsive inhibition of TTP production from stimulation with either LPS or CpG DNA. MNK inhibition also blocked IL-6 but permitted IL-10 production in response to LPS. Studies using bone marrow-derived macrophages (BMDM) isolated from a spontaneous mouse model of Crohn's disease-like ileitis (SAMP1/YitFc strain) revealed significant inhibition by CGP57380 of the proinflammatory cytokines TNF, IL-6, and monocyte chemoattractant protein-1 at 4 and 24 h after LPS stimulation. IL-10 production was higher in CGP53870-treated BMDM at 4 h but was similar to the controls by 24 h. Taken together, these data demonstrate that MNK kinases signal through a variety of TLR agonists and mediate a potent innate, proinflammatory cytokine response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号