首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simplified pore-to-pore hopping model for the two-phase diffusion problem is developed for the analysis of the pulsed gradient spin echo (PGSE) attenuation of water diffusion in the condensed cell suspension systems. In this model, the two phases inside and outside the cells are treated as two different kinds of pores, and the spin-bearing molecules perform hopping diffusion between them. The size and the orientations of those two respective pores are considered, and then the diffraction pattern of the PGSE attenuation may be well simulated. Nevertheless, the intensity of the characteristic peak decreases with increasing membrane permeability, from which the exchange time may be estimated. We then analyze the experimental 1H PGSE results of the erythrocytes suspension system. The water-residence lifetime in the erythrocyte is obtained to be 10 ms, which is the same as that estimated from the two-region approximation. Furthermore, the PGSE attenuation curve of addition of p-Chloromercuribenzenesulfonate (p-CMBS) is also discussed. It predicts that the alignment of erythrocytes will become normal to the magnetic field direction after the addition of p-CMBS, and inspection using a light microscope confirms that result.  相似文献   

2.
The results of most filtration assays for deformability of erythrocytes do not distinguish whether the entire population or only its small fraction exhibits abnormal rheological properties. We developed a simple filtration method for determination of the percentage of nonfilterable cells in erythrocyte suspension using membrane filters with mean pore diameter of 3.1 microns. This method makes it possible to detect even minor abnormal subpopulations in erythrocyte suspensions. The flow rate of buffer depends on the number of free pores of a filter. The plot of the number of pores clogged by nonfilterable cells vs the total number of erythrocytes that were allowed to pass through the filter had a linear portion, with a slope representing the relative content, Z%, of nonfilterable cells in the suspension. We determined Z% for various medium osmolalities u and used the data to derive the distribution of erythrocytes in ucr (ucr is the maximum value of u at which an erythrocyte cannot pass through a pore of a given filter because of geometric limitations). The distribution of ucr in suspension of normal erythrocytes has a maximum of about 200 mOsm/kg and a half-width of about 20 mOsm/kg. The distributions of ucr are altered in normal erythrocyte suspensions at decreased pH values, in cryopreserved and ATP-depleted erythrocyte suspensions and in erythrocytes from a xerocytosis patient.  相似文献   

3.
The incorporation and accumulation of a certain amount of short-chain phosphatidylcholine or lysophosphatidylcholine into lipid bilayers of erythrocyte membranes is the first step causing membrane perturbation in the process of hemolysis. Accumulation of dilauroylglycerophosphocholine into membranes makes human erythrocytes "permeable cells"; Ions such as Na+ or K+ can permeate through the membrane, though large molecules such as hemoglobin can not. The "pore" formation was partially reproduced in liposomes prepared from lipids extracted from human erythrocyte membranes; C12:0PC induced the release of glucose from liposomes but did not significantly induce the release of dextran. It was suggested that the phase boundary between dilauroylglycerophosphocholine and the host membrane bilayer or dilauroylglycerophosphocholine rich domain itself behaves as "pores." Erythrocytes could expand to 1.5 times the original cell volume without any appreciable hemolysis when incubated with C12:0PC at 37 degrees C. The capacity of the erythrocytes to expand was temperature dependent. The capacity may play an important role in the resistance of the cells against lysis. The "permeable cell" stage could be hardly observed when erythrocytes were treated with didecanoylglycerophosphocholine and lysophosphatidylcholine. Perturbation induced by accumulation of didecanoylglycerophosphocholine or lysophosphatidylcholine may cause non specific destruction of membranes rather than formation of a kind of "pore."  相似文献   

4.
We have previously proposed the osmofiltration method based on a modified Hanss hemorheometer to analyze distributions of erythrocytes in their ability to pass through membrane filters with 3 microns pores. Upon decrease in medium osmolality (u) the erythrocyte volume increases. When cell volume becomes V = Vcr at u = ucr, such cell loses its ability to pass through a 3 microns pore. The flow rate of erythrocyte suspension containing cells with different ucr through a filter gradually decreases with decreasing medium osmolality. This rate becomes zero at some u = omega, when the number of non-filterable cells in the applied sample approaches the number of pores in filter. Experimental determination of the dependencies of the filtration rate on medium osmolality for various hematocrit values allows to obtain omega for each hematocrit and, thereby, to assess the distribution of erythrocytes in ucr. Here, we propose a simplified version of this method, which allows screening of the erythrocytes in heterogeneous suspensions for the distribution in ucr by measuring omega for only two hematocrit values, 0.1% and 1%. Applications of the proposed method are exemplified by analysing the erythrocyte populations of healthy donors, of patients with microspherocytosis, hemochromatosis and normal erythrocyte populations in an acidic environment.  相似文献   

5.
The polyene antibiotic amphotericin B (AmB) is known to form aqueous pores in lipid membranes and biological membranes. Here, membrane potential and ion permeability measurements were used to demonstrate that AmB can form two types of selective ion channels in human erythrocytes, differing in their interaction with cholesterol. We show that AmB induced a cation efflux (negative membrane polarization) across cholesterol-containing liposomes and erythrocytes at low concentrations (≤1.0 × 10−6 M), but a sharp reversal of such polarization was observed at concentrations greater than 1.0 × 10−6 M AmB, an indication that aqueous pores are formed. Cation-selective AmB channels are also formed across sterol-free liposomes, but aqueous pores are only formed at AmB concentrations 10 times greater. The effect of temperature on the AmB-mediated K+ efflux across erythrocytes revealed that the energies of activation for channel formation are negative and positive at AmB concentrations that lead predominantly to the formation of cation-selective channels and aqueous pores, respectively. These findings support the conclusion that the two types of AmB channels formed in human erythrocytes differ in their interactions with cholesterol and other membrane components. In effect, a membrane lipid reorganization, as induced by incubation of erythrocytes with tetrathionate, a cross-linking agent of the lipid raft–associated protein spectrin, led to differential changes in the activation parameters for the formation of both types of channels, reflecting the different lipid environments in which such structures are formed.  相似文献   

6.
Measurements were made of the viscosity of suspensions of synthetic erythrocytes composed of hemoglobin solutions encapsulated in liposomes, as a function of shear rate, temperature, suspension concentration, lipid membrane composition, and the viscosity of the suspending medium. It was found that the viscous behavior of the synthetic erythrocyte suspensions was non-Newtonian and nearly the same as that of suspensions of natural erythrocytes prepared similarly, with the major difference being that synthetic erythrocyte suspensions are somewhat more viscous. Suspensions of Fluosol FC-43 prepared similarly were found to be essentially Newtonian fluids, and substantially different and more viscous than either erythrocyte suspension. The higher viscosity of synthetic erythrocyte suspensions probably accounts for the ability of these suspensions to maintain normal systemic vascular resistance in transfusion experiments, in spite of the fact that synthetic erythrocytes are smaller than natural erythrocytes.  相似文献   

7.
Isotonic suspensions of erythrocytes were exposed to intense electric fields for a duration in microseconds. Time-dependent increase in the conductivity of the suspension was observed under fields greater than a threshold of about 1.5 kV/cm. The threshold was independent of the ionic strength of the medium, and changed little with temperature or with the rise time of the applied field. Under fields greater than 3 kV/cm, the time course of the conductivity increase consisted of a rapid (approx. 1 μs) and a slow (approx. 100 μs) phases. The increase is attributed primarily to large membrane conductance induced by the applied field. The membrane conductance is in the order of 10 Ω?1/cm2 in the rapid phase and 102 Ω?1/cm2 in the slow phase. Comparison with previous results indicates that this induced membrane conductance corresponds to the formation of aqueous pores in the cell membrane. After the applied field was removed, the conductivity of the suspension returned nearly to its initial value, indicating that the induced membrane conductance is strongly dependent on the membrane potential. The conductivity then increased again in the time range of 10 s. This is attributed to the diffusional efflux of intracellular ions through the voltage-induced pores. From the rate of the efflux, number of the pores/cell is estimated to be in the order of 102. Final stage of the conductivity change was a slow decrease, corresponding to the colloid osmotic swelling of the perforated cells.  相似文献   

8.
Temperature measurements in a plastic tube isolated from external influences containing an erythrocyte suspension of the scorpion fish (Scorpaena porcus Linnaeus, 1758) showed that these red blood cells are able to generate heat. Heat release in the cell suspension was expressed by a linear temperature increase in the tube during the entire experiment. Addition of extracellular ATP (1 mg mL–1) caused the effect of a thermal shift: a sharp temperature rise in the cell suspension for 30–60 s. We believe that the heat release was caused by hydrolysis of extracellular ATP by membrane ecto-ATPase. Inhibition of ecto-ATPase activity through the addition of EDTA (1 mM) to the erythrocyte suspension led to complete blockage of heat release; the effect of the thermal shift ceased. We assume that thermal properties of red blood cells play an important role in blood hemodynamics, especially in providing the “non-Newtonian” properties of blood. The thermal phenomena observed in suspensions of fish erythrocytes open new scientific directions in exploring the capabilities of multifunctional extracellular ATP.  相似文献   

9.
Properties of cell membrane of human erythrocytes are studied using the mechanistic formalism of membrane transport developed earlier. We estimate that an erythrocyte with a membrane surface of 176 x 10(6)nm2 has about 1900 water-permeable pores with cross-section areas ranging from 0.07 to 0.2 nm2.  相似文献   

10.
Moderate osmotic shocks of human erythrocytes by hypotonic dialysis (0.06 mosmol/kg) induce cell swelling and formation of pores, without causing apparent lysis. Using 125I-labeled macromolecules of different molecular weight and net charge, we followed the kinetics and efficiency of their encapsulation into erythrocytes. After a 20-30 min period of cell dialysis, macromolecules of up to 50 kDa begin diffusing into the swollen cells by a process which can be described by a first-order two-compartment kinetics. Adsorption to the external cell surface was insignificant, while adsorption to the inner membrane surface was substantial (15-20%) only for positively charged proteins, at physiological pH. After resealing, pores of a 12-14 kDa cut-off might remain open allowing some release of entrapped material (20-30%), depending on the final cytocrit, while the remaining might be associated with inner membrane or cytosolic components. Although the method of hypotonic dialysis is known to affect minimally the biophysical and immunological properties of red blood cell membranes, the interaction of encapsulated material with cell constituents would need to be further assessed when considering red cells as macromolecular carriers.  相似文献   

11.
S Yamaguchi  H Niimi 《Biorheology》1989,26(6):989-1002
Filtrability of a suspension of polymorphonuclear leukocytes (PMNs) was examined in a Nuclepore membrane filtration system utilizing a gradually reduced pressure difference with or without an additional negative pressure. The filtration process was continuously recorded using a TV-video system for data analysis. The PMN content in the filtrate was directly measured. The pressure-flow relation was analyzed in terms of the relative resistance of the PMN suspension to that of the suspending medium. The relative resistance of the PMN suspension increased with an increase in the filtered volume until it approached infinity at the level of low pressure difference (2.8 - 0 cmH2O). The remarkable increase in flow resistance was closely associated with the plugging of PMNs in the membrane pores. At high pressure differences (12.8 - 10 cmH2O, 7.8 - 5 cmH2O), the relative resistance increased up to finite values, as the filtered volume increased. The variation in the relative resistance was greatly dependent upon the pressure difference or the flow condition. The amount of filtered cell fraction increased with an increase of additional pressure, indicating that the relative resistance was changed according to the rate of PMN plugging and dislodging in the pores of the membrane.  相似文献   

12.
It is known that human erythrocytes in saline fragment by development of an unstable surface wave on the cell rim when cells are heated through the denaturation temperature of the structural protein, spectrin. Here the influence of tetracaine on the fragmentation process has been recorded and analysed by video microscopy of cells heated in rectangular glass microcapillaries. The number of waves per cell rim decreases with increasing tetracaine concentration until, at 0.5 mM tetracaine, wave growth on the cell rim is suppressed on most cells and the cells internalize membrane at the cell dimple. The rate constant for the change in the number of waves per cell with increasing tetracaine concentration is 9.6 mM?1 at a heating rate of 0.5 K/s. 50% of heated cells internalize membrane at 0.14 mM tetracaine. When cells are heated rapidly in suspension in test tubes the presence of tetracaine reduces the temperature for 50% haemolysis from 66°C for washed control cells to 60.5°C for cells in 2 mM tetracaine. Cells heated in microcapillaries in tetracaine concentrations of 3 mM and higher begin to swell before the spectrin denaturation temperature is reached. Cell fusion was observed at and above the spectrin denaturation temperature in cells heated in 3 and 4 mM tetracaine. It was also noted that the morphology of erythrocytes maintained in 3.6 mM tetracaine for times up to 30 min at 37°C or 20°C was strongly dependent on temperature and time.  相似文献   

13.
Cell disaggregation behavior in shear flow.   总被引:3,自引:0,他引:3       下载免费PDF全文
P Snabre  M Bitbol    P Mills 《Biophysical journal》1987,51(5):795-807
  相似文献   

14.
The results of filtration assays provide estimates of the deformability of erythrocytes averaged over the entire suspension. These assays do not distinguish whether the entire population or only its small fraction exhibits abnormal rheological properties. We developed a simple method using a filtrometer to determine the percentage of non-filterable (under given conditions) cells in the erythrocyte suspension. Membrane filters made of a polyethylene terphthalate film had the mean pore diameter of 3.1 microns and the length of cylindrical micropores of 7 microns. The buffer flow rate tb depends on the number of free pores in a filter. The plot of the number of pores clogged by non-filterable cells versus the total number of erythrocytes passed through the filter had a linear portion whose slope represents the relative content Z of non-filterable cells in the suspension. We determined Z for various medium osmolarities u. These data were used to derive the distribution of erythrocytes in ucr, the value of u at which an erythrocyte cannot pass through a pore of a given filter because of geometric limitations. The distribution maximum corresponded to 190-200 mOsm/kg for erythrocytes from the normal blood. This means that normal erythrocytes have the median values of their surface area and area-to-volume ratio of 155-151 microns2 and 1.72-1.68 microns-1, respectively. The half-width of the distribution was approximately 30 mOsm/kg. This finding suggests that the normal blood contains a certain fraction of erythrocytes with a decreased area-to-volume ratio. Our results showed that the distribution is altered in various forms of anemia and in ATP-depleted erythrocyte suspensions.  相似文献   

15.
Addition of an amphiphilic lipid, such as phosphatidylcholine (PC) species with two identical saturated chains or lysophosphatidylcholine (lysoPC) species with one saturated acyl chain of various lengths, into a suspension of intact human erythrocytes resulted in lipid incorporation into the erythrocytes membrane to produce echinocytes (crenated cells). The altered shape gradually reverted on incubation at 37 degrees C until the cells reassumed their normal disc shape. The rate of such recovery of shape increased with decreasing acyl chain length for both PC with C8-C12 acyl chains and lysoPC with a C14-C18 acyl chain, and was strongly influenced by incubation temperature. The identical rate of recovery of shape was observed for cells with normal, decreased or increased ATP content, implying that the metabolic state of the cell had no influence on the recovery process. Recovery of shape is therefore considered to be caused by translocation of the incorporated lipid molecules from the outer to the inner leaflet of the membrane lipid bilayer and the rate of recovery increases with decreasing hydrophobicity of the lipid.  相似文献   

16.
1. Pigeon erythrocytes, resealed lysed erythrocytes or liposomes derived from erythrocyte lipids were suspended in solutions containing up to 2 micrometer-3,3'-dipropyloxadicarbocyanine iodide. Gramicidin, valinomycin, nigericin or carbonyl cyanide p-trifluoromethoxy-phenylhydrazone, or combinations of these, were used to induce electrical diffusion potentials dependent on Na+, K+ or protons. In each instance hyperpolarization of the cell membrane lowered the fluorescence of the cell suspension, a process that was completed in about 1 min. Subsequent depolarization caused an increase in fluorescence. 2. Quenching of the fluorescence of the cell suspension appeared to be due to the reversible binding of the dye to the cells. Much larger amounts of dye were bound, both to the intact and to the resealed erythrocytes, than would be expected if partitioning of the dye cation followed the Nernst equation. The dependence of the binding on the extracellular dye concentration was studied in the presence and absence of valinomycin. The results were consistent with the suggestion of Sims, Waggoner, Wang & Hoffman [(1974) Biochemistry 13, 3315-3330] that the dye was bound at both membrane surfaces and that, at low dye concentrations, hyperpolarizing the cells promoted dye binding at the inner membrane surface. 3. The applications of the technique are limited by the circumstance that the direct effect of the electric field on the uptake of the dye into the cells is amplified by a binding process that may be affected by other physiological variables.  相似文献   

17.
The amplitude-frequency dependence of the polarizability of erythrocytes, yeast cells, and latex particles in the range of 1–106 Hz was studied by the method of dielectrophoresis (DEP). Positive DEP of erythrocytes and yeast cells in a frequency range of 60–100 Hz was revealed. The positive DEP of cells in the given range is theoretically explained by appearance of a great number of transverse pores through the membrane and wall of the cell.  相似文献   

18.
Various organic compounds are applied upon cryopreservation and their adding into cell suspension causes modification of subcellular systems, providing cell survival during freeze–thawing. The aim of the study was to assess the modifying effect of cryoprotectant PEG-1500 and low temperatures on Ca2+-ATPase activity in saponin-permeabilized erythrocytes. PEG-1500 was revealed to inhibit erythrocyte Ca2+-ATPase activity despite the presence of endogenous effectors able to stimulate the enzyme function. Presumably, the Ca2+-ATPase modification was determined by the physicochemical properties of the polymer solution, since the removal of PEG-1500 out of the medium recovered the enzyme activity. Reversibility of Ca2+-ATPase inhibition was characteristic of erythrocytes both exposed to cryoprotectant without freezing and frozen–thawed in the PEG-1500 presence. The cell freeze–thawing without cryoprotectant had no effect on Ca2+-ATPase, suggesting that membrane form of enzyme is cryoresistent. Although the efficiency of erythrocyte cryopreservation with PEG-1500 depends on the incubation temperature before freezing stage, the functional indices of Ca2+-ATPase in erythrocytes exposed to PEG-1500 at 37 and 5–7°C had no significant distinctions if the subsequent ATP hydrolysis was conducted at 37°C. However, the enzyme activity was additionally slowed down when the temperature of enzymatic reaction was decreased to 5–7°C after erythrocyte preincubation with PEG-1500 under the same conditions. The identified changes in Ca2+-ATPase activity in erythrocytes in the PEG-1500 presence were most likely determined by a modifying effect of the cryoprotectant on the membrane structure; as a result, the Ca2+-ATPase endogenous effectors present in the medium could not overcome the restrictions imposed on the enzyme function by a modified membrane macroenvironment.  相似文献   

19.
Electric fields of a few kV/cm and of duration in microseconds are known to implant pores of limited size in cell membranes. We report here a study of kinetics of pore formation and reversibility of pores. Loading of biologically active molecules was also attempted. For human erythrocytes in an isotonic saline, pores allowed passive Rb+ entry formed within 0.5 microsecond when a 4 kV/cm electric pulse was used. Pores that admitted oligosaccharides were introduced with an electric pulse of a longer duration in an isosmotic mixture of NaCl and sucrose. These pores were irreversible under most circumstances, but they could be resealed in an osmotically balanced medium. A complete resealing of pores that admitted Rb+ took approximately 40 min at 37 degrees C. Resealing of pores that admitted sucrose took much longer, 20 h, under similar conditions. In other cell types, resealing step may be omitted due to stronger membrane structures. Experimental protocols for loading small molecules into cells without losing cytoplasmic macromolecules are discussed.  相似文献   

20.
Further investigations of red cell deformability with nickel mesh   总被引:2,自引:0,他引:2  
K Arai  M Iino  H Shio  N Uyesaka 《Biorheology》1990,27(1):47-65
Although the filtration method has been widely employed in red cell deformability studies, the structural irregularity of the pores of a Nuclepore polycarbonate membrane has always been a major problem. Anegawa, T. et al. (Clin. Hemorheol., 7, 1987) obtained a higher reproducibility with the filtration method using a newly designed thin metal film with pores engraved by the photofabrication technique. We further studied the pressure - flow rate relationship of red cell suspension employing this nickel mesh. The filtration of red cell suspensions through the nickel mesh was not influenced by leukocytes contamination or added leukocytes up to a leukocyte count of 250 cells/mm3 within an experimental limitation. On the other hand, the flow was greatly influenced by leukocytes contamination when the polycarbonate membrane was used. The nickel mesh was found to be useful in detecting major determinants of red cell deformability, such as cell geometry and internal cellular viscosity, and in detecting abnormalities of red cell deformability in a patient with microangiopathic hemolytic anemia. In conclusion, the present study clearly shows that the nickel mesh is preferable for investigating red cell deformability to the polycarbonate membrane from a quantitative point of view. This material should contribute to the physiologic and clinical investigation of red cell deformability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号