首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial DNA (mtDNA) markers were used to assess the genetic diversity in allopatric populations of black spruce (Picea mariana [Mill.] BSP) and red spruce (P. rubens Sarg.). Patterns of mitochondrial haplotypes (mitotypes) were strikingly different between the two species. All mtDNA markers surveyed were polymorphic in black spruce, revealing four different mitotypes and high levels of mtDNA diversity (P(p) = 100%, A = 2.0, H = 0.496). In contrast, populations of red spruce had only two mitotypes and harbored low levels of ggenetic diversity (P(p) = 13.2%, A = 1.1, H = 0.120). When the southernmost allopatric populations of red spruce were considered, only one mitotype was detected. As previously reported for nuclear gene loci, the diversity observed for mtDNA in red spruce was a subset of that found in black spruce. Comparison of present and previously published data supports the hypothesis of a recent progenitor-derivative relationship between these species, red spruce presumably being derived by allopatric speciation of an isolated population of black spruce during the Pleistocene.  相似文献   

2.
Assessing species' range-wide cytoplasmic diversity provides valuable insights regarding their dispersal and adaptive potential in a changing environment. Transcontinental chloroplast (cpDNA) and mitochondrial DNA (mtDNA) population structures were compared to identify putative ancestral and new cytoplasmic genome assemblages in black spruce (Picea mariana), a North American boreal conifer. Mean within-population diversity and allelic richness for cpSSR markers were 0.80 and 4.21, respectively, and diminished westward. Population differentiation based on G(ST) was lower for cpDNA than for mtDNA (G(ST) =0.104 and 0.645, respectively) but appeared comparable when estimated using Jost differentiation index (D=0.459 and 0.537, respectively). Further analyses resulted in the delineation of at least three genetically distinct cpDNA lineages partially congruent with those inferred from mtDNA data, which roughly corresponded to western, central and eastern Canada. Additionally, the patterns of variation in Alaska for both cpDNA and mtDNA markers suggested that black spruce survived the last glacial maximum in this northern region. The range-wide comparison of the geographic extent of cytoplasmic DNA lineages revealed that extensive pollen gene flow between ancestral lineages occurred preferentially from west to east during the postglacial expansion of the species, while seed-mediated gene flow remained geographically restricted. This differential gene flow promoted intraspecific cytoplasmic capture that generated new assemblages of cpDNA and mtDNA genomes during the Holocene. Hence, black spruce postglacial colonization unexpectedly resulted in an increase in genetic diversity with possible adaptive consequences.  相似文献   

3.
Chihuahua spruce (Picea chihuahuana Martínez) is a montane subtropical conifer endemic to the Sierra Madre Occidental in northwestern México. Range-wide variation was investigated using maternally inherited mitochondrial (mtDNA) and paternally inherited chloroplast (cpDNA) DNA markers. Among the 16 mtDNA regions analysed, only two mitotypes were detected, while the study of six cpDNA microsatellite markers revealed eight different chlorotypes. The average cpDNA diversity (H = 0.415) was low but much higher than that for mtDNA (H = 0). The distribution of mitotypes revealed two clear nonoverlapping areas (G(ST) = N(ST) = 1), one including northern populations and the second one including the southern and central stands, suggesting that these two regions may represent different ancestral populations. The cpDNA markers showed lower population differentiation (G(ST) = 0.362; R(ST) = 0.230), implying that the two ancestral populations continued to exchange pollen after their initial geographic separation. A lack of a phylogeographic structure was revealed by different spatial analyses of cpDNA (G(ST) > R(ST); and samova), and reduced cpDNA gene flow was noted among populations (Nm = 0.873). Some stands deviated significantly from the mutation-drift equilibrium, suggesting recent bottlenecks. Altogether, these various trends are consistent with the hypothesis of a population collapse during the Holocene warming and suggest that most of the modern P. chihuahuana populations are now effectively isolated with their genetic diversity essentially modelled by genetic drift. The conservation efforts should focus on most southern populations and on the northern and central stands exhibiting high levels of genetic diversity. Additional mtDNA sequence analysis confirmed that P. martinezii (Patterson) is not conspecific with P. chihuahuana, and thus deserves separate conservation efforts.  相似文献   

4.
Range‐wide variation in 54 populations of Dahurian larch (Larix gmelinii) and related taxa in Northeast Asia was assessed with four mitochondrial PCR‐RFLP and five chloroplast SSR markers. Eleven mitotypes and 115 chlorotypes were detected. The highest diversity was observed in the southern Russian Far East where hybrids of L. gmelinii, L. olgensis and L. kamtschatica are distributed. In contrast, only two mitotypes occurred in L. cajanderi and L. gmelinii. The Japanese larch (L. kaempferi) was found to be closely related to populations of L. kamtschatica inhabiting the Kuril Islands and South Sakhalin, populations from the northern part of Sakhalin being more closely related to continental species. In general, both mitochondrial (GST = 0.786; NST = 0.823) and chloroplast (GST = 0.144; RST = 0.432) markers showed a strong phylogeographical structure and evidence of isolation‐by‐distance. Yet both markers did not allow a clear delineation of species borders. In particular, and contrary to expectations, cpDNA was not significantly better than mtDNA at delineating species borders. This lack of concordance between morphological species and molecular markers could reflect extensive ancestral haplotype sharing and past and ongoing introgression. Finally the distribution of mtDNA and cpDNA variation suggests the presence of several refugia during Pleistocene glacial intervals. In particular, mtDNA and cpDNA reveal weak but visible differentiation between L. gmelinii and L. cajanderi, suggesting independent glacial histories of these species.  相似文献   

5.
Variation in mitochondrial DNA was surveyed at four gene loci in and around the zone of contact between two naturally hybridizing conifers, black spruce (Picea mariana) and red spruce (P. rubens) in northeastern North America. Most of the mtDNA diversity of these species was found in populations next to or into the zone of contact, where some individuals bore rare mitotypes intermediate between the common mitotypes observed in the allopatric areas of each species. Sequence analysis and tests for mtDNA recombination point to this phenomenon, rather than to recurrent mutation, as the most tenable hypothesis for the origin of these rare mitotypes. From the 10 mitotypes observed, at least 4 would be the product of recombination between 4 of the 5 putative ancestral mitotypes. Tests for cytonuclear disequilibrium and geographical structure of the putative recombinant mitotypes suggest that mtDNA recombination is not frequent and relatively recent on the geological time scale. mtDNA recombination would have been promoted by transient heteroplasmy due to leakage of paternal mtDNA since the Holocene secondary contact between the two species.  相似文献   

6.
High-latitude ecotonal populations at the species margins may exhibit altered patterns of genetic diversity, resulting from more or less recent founder events and from bottleneck effects in response to climate oscillations. Patterns of genetic diversity were investigated in nine populations of the conifer black spruce (Picea mariana [Mill.] BSP.) in northwestern Québec, Canada, using seed-dispersed mitochondrial (mt) DNA and nuclear (nc) DNA. mtDNA diversity (mitotypes) was assessed at three loci, and ncDNA diversity was estimated for nine expressed sequence tag polymorphism (ESTP) loci. Sampling included populations from the boreal forest and the southern and northern subzones of the subarctic forest-tundra, a fire-born ecotone. For ncDNA, populations from all three vegetation zones were highly diverse with little population differentiation (thetaN = 0.014); even the northernmost populations showed no loss of rare alleles. Patterns of mitotype diversity were strikingly different: within-population diversity and population differentiation were high for boreal forest populations [expected heterozygosity per locus (HE) = 0.58 and thetaM = 0.529], but all subarctic populations were fixed for a single mitotype (HE = 0). This lack of variation suggests a founder event caused by long-distance seed establishment during postglacial colonization, consistent with palaeoecological data. The estimated movement of seeds alone (effective number of migrants per generation, NmM < 2) was much restricted compared to that estimated from nuclear variants, which including pollen movement (NmN > 17). This could account for the conservation of a founder imprint in the mtDNA of subarctic black spruce. After reduction, presumably in the early Holocene, the diversity in ncDNA would have been replenished rapidly by pollen-mediated gene flow, and maintained subsequently through vegetative layering during the current cooler period covering the last 3000 years.  相似文献   

7.
Range-wide genetic variation of the widespread cold-temperate spruce Picea jezoensis was studied throughout northeast Asia using maternally inherited mitochondrial DNA and paternally inherited chloroplast DNA markers. This study assessed 33 natural populations including three varieties of the species in Japan, Russia, China, and South Korea. We depicted sharp suture zones in straits around Japan in the geographical distribution pattern of mitochondrial haplotypes (GST=0.901; NST=0.934). In contrast, we detected possible extensive pollen flow without seed flow across the straits around Japan during the past population history in the distribution pattern of chloroplast haplotypes (GST=0.233; NST=0.333). The analysis of isolation by distance of the species implied that by acting as a barrier for the movement of seeds and pollen, the sharp suture zones contributed considerably to the level of genetic differentiation between populations. Constructed networks of mitochondrial haplotypes allowed inference of the phylogeographical history of the species. We deduced that the disjunction with Kamchatka populations reflects range expansion and contraction to the north of the current distribution. Within Japan, we detected phylogeographically different types of P. jezoensis between Hokkaido and Honshu islands; P. jezoensis in Honshu Island may have colonized this region from the Asian continent via the Korean peninsula and the species in Hokkaido Island is likely to have spread from the Asian continent via Sakhalin through land bridges. Japanese endemism of mitochondrial haplotypes in Hokkaido and Honshu islands might have been promoted by separation of these islands from each other and from the Asian continent by the straits during the late Quaternary.  相似文献   

8.
Wang HW  Ge S 《Molecular ecology》2006,15(13):4109-4122
Cathaya argyrophylla is an endangered conifer restricted to subtropical mountains of China. To study phylogeographical pattern and demographic history of C. argyrophylla, species-wide genetic variation was investigated using sequences of maternally inherited mtDNA and biparentally inherited nuclear DNA. Of 15 populations sampled from all four distinct regions, only three mitotypes were detected at two loci, without single region having a mixed composition (G(ST) = 1). Average nucleotide diversity (theta(ws) = 0.0024; pi(s) = 0.0029) across eight nuclear loci is significantly lower than those found for other conifers (theta(ws) = 0.003 approximately 0.015; pi(s) = 0.002 approximately 0.012) based on estimates of multiple loci. Because of its highest diversity among the eight nuclear loci and evolving neutrally, one locus (2009) was further used for phylogeographical studies and eight haplotypes resulting from 12 polymorphic sites were obtained from 98 individuals. All the four distinct regions had at least four haplotypes, with the Dalou region (DL) having the highest diversity and the Bamian region (BM) the lowest, paralleling the result of the eight nuclear loci. An AMOVA revealed significant proportion of diversity attributable to differences among regions (13.4%) and among populations within regions (8.9%). F(ST) analysis also indicated significantly high differentiation among populations (F(ST) = 0.22) and between regions (F(ST) = 0.12-0.38). Non-overlapping distribution of mitotypes and high genetic differentiation among the distinct geographical groups suggest the existence of at least four separate glacial refugia. Based on network and mismatch distribution analyses, we do not find evidence of long distance dispersal and population expansion in C. argyrophylla. Ex situ conservation and artificial crossing are recommended for the management of this endangered species.  相似文献   

9.
Kraus FB  Franck P  Vandame R 《Heredity》2007,99(2):233-240
The Africanization of the honeybee (Apis mellifera) in South America is one of the most spectacular examples of biological invasions. In this study, we analyzed the Africanization process in Central Mexico along an altitudinal transect from 72 to 2800 m, using both mitochondrial and nuclear DNA markers. The mitochondrial analysis revealed that the two high-altitude populations had a significantly greater percentage of African mitotypes (95%) than the three lowland populations (67%), indicating successful spreading of Africanized swarms to these altitudes. All populations (highland and lowland) had a similar overall proportion of African alleles at nuclear loci (58%). Thus, all populations showed an asymmetric introgression of African nuclear and mtDNA. Colonies with African mitotypes had, on average, significantly more African nuclear alleles (60%) than those with European mitotypes (51%). Furthermore, the three lowland populations showed clear signs of linkage disequilibrium, while the two high-altitude populations did not, indicating recent genetic introgression events into the lowland populations.  相似文献   

10.
Thirty-seven populations of Norway spruce [Picea abies (L.) Karst.] across the Austrian Alps and Bohemian Massif were sampled to elucidate the geographical pattern of genetic differentiation. Three polymorphic mitochondrial DNA (mtDNA) loci were surveyed. Two or three alleles were detected at each locus, resulting in seven multilocus mtDNA haplotypes (A–F). Western populations proved to be monomorphic, whereas eastern and central Austrian populations were slightly to highly polymorphic, respectively. As revealed by spatial analysis of molecular variance and Monmonier’s analysis, the two main haplotypes A and B are not randomly distributed. Haplotype A was restricted to central and eastern Austria, whereas haplotype B occurred in all Austrian populations but was the only haplotype identified in western populations. This pattern may be explained by different glacial refugia located in the Dinaric Alps and the Carpathian mountains.  相似文献   

11.
The geographical structure of mitochondrial (mt)DNA variants (mitotypes) was investigated in 38 western European populations of Scots pine Pinus sylvestris using restriction fragment length polymorphism (RFLP) analysis of total DNA and a homologous cox1 probe. Three major mitotypes (designated a, b and d ) were detected. Within Spain all three major mitotypes were found, gene diversity was high, HT = 0.586, and this diversity was distributed predominantly among rather than within populations (FST(M) = 0.813 for the seven Spanish populations). Mitotype d was present only in the most southerly population from the Sierra Nevada . Elsewhere in Europe, populations showed little or no mtDNA diversity within regions, but there were marked differences between regions. Italian populations were fixed for mitotype b ; populations from northern France, Germany, Poland, Russia and southern Sweden were fixed for mitotype a ; while populations in northern Fennoscandia were fixed for mitotype b . The isolated Scottish populations were predominantly of mitotype a , but mitotype b was present in three of the 20 populations scored. In Scotland, UK gene diversity (HT = 0.120) and genetic differentiation among populations (FST(M) = 0.37) was much lower than in Spain. When interpreted in the light of complementary data from pollen analysis and nuclear genetic markers, the results suggest that present-day populations of P. sylvestris in western Europe have been derived from at least three different sources after glaciation.  相似文献   

12.
The phylogeographic structure and postglacial history of balsam fir (Abies balsamea), a transcontinental North American boreal conifer, was inferred using mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) markers. Genetic structure among 107 populations (mtDNA data) and 75 populations (cpDNA data) was analyzed using Bayesian and genetic distance approaches. Population differentiation was high for mtDNA (dispersed by seeds only), but also for cpDNA (dispersed by seeds and pollen), indicating that pollen gene flow is more restricted in balsam fir than in other boreal conifers. Low cpDNA gene flow in balsam fir may relate to low pollen production due to the inherent biology of the species and populations being decimated by recurrent spruce budworm epidemics, and/or to low dispersal of pollen grains due to their peculiar structural properties. Accordingly, a phylogeographic structure was detected using both mtDNA and cpDNA markers and population structure analyses supported the existence of at least five genetically distinct glacial lineages in central and eastern North America. Four of these would originate from glacial refugia located south of the Laurentide ice sheet, while the last one would have persisted in the northern Labrador region. As expected due to reduced pollen-mediated gene flow, congruence between the geographic distribution of mtDNA and cpDNA lineages was higher than in other North American conifers. However, concordance was not complete, reflecting that restricted but nonetheless detectable cpDNA gene flow among glacial lineages occurred during the Holocene. As a result, new cpDNA and mtDNA genome combinations indicative of cytoplasmic genome capture were observed.  相似文献   

13.
The phylogegraphic pattern of Cycas taitungensis, an endemic species with two remaining populations in Taiwan, was investigated based on genetic variability and phylogeny of the atpB-rbcL noncoding spacer of chloroplast DNA (cpDNA) and the ribosomal DNA (rDNA) internal transcribed spacer (ITS) of mitochondrial DNA (mtDNA). High levels of genetic variation at both organelle loci, due to frequent intramolecular recombination, and low levels of genetic differentiation were detected in the relict gymnosperm. The apportionment of genetic variation within and between populations agreed with a migrant-pool model, which describes a migratory pattern with colonists recruited from a random sample of earlier existing populations. Phylogenies obtained from cpDNA and mtDNA were discordant according to neighbour-joining analyses. In total four chlorotypes (clades I-IV) and five mitotypes (clades A-E) were identified based on minimum spanning networks of each locus. Significant linkage disequilibrium in mitotype-chlorotype associations excluded the possibility of the recurrent homoplasious mutations as the major force causing phylogenetic inconsistency. The most abundant chlorotype I was associated with all mitotypes and the most abundant mitotype C with all chlorotypes; no combinations of rare mitotypes with rare chlorotypes were found. According to nested clade analyses, such nonrandom associations may be ascribed to relative ages among alleles associated with the geological history through which cycads evolved. Nested in networks as interior nodes coupled with wide geographical distribution, the most dominant cytotypes of CI and EI may represent ancestral haplotypes of C. taitungensis with a possible long existence prior to the Pleistocene glacial maximum. In contrast, rare chlorotypes and mitotypes with restricted and patchy distribution may have relatively recent origins. Newly evolved genetic elements of mtDNA, with a low frequency, were likely to be associated with the dominant chlorotype, and vice versa, resulting in the nonrandom mitotype-chlorotype associations. Paraphyly of CI and EI cytotypes, leading to the low level of genetic differentiation between cycad populations, indicated a short period for isolation, which allowed low possibilities of the attainment of coalescence at polymorphic ancestral alleles.  相似文献   

14.
The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya–10 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia—the Mississippi, Bering, and Atlantic refugia—not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia.  相似文献   

15.
The level of genetic differentiation within and between evolutionary lineages of the common vole (Microtus arvalis) in Europe was examined by analyzing mitochondrial sequences from the control region (mtDNA) and 12 nuclear microsatellite loci (nucDNA) for 338 voles from 18 populations. The distribution of evolutionary lineages and the affinity of populations to lineages were determined with additional sequence data from the mitochondrial cytochrome b gene. Our analyses demonstrated very high levels of differentiation between populations (overall FST: mtDNA 70%; nucDNA 17%). The affinity of populations to evolutionary lineages was strongly reflected in mtDNA but not in nucDNA variation. Patterns of genetic structure for both markers visualized in synthetic genetic maps suggest a postglacial range expansion of the species into the Alps, as well as a potentially more ancient colonization from the northeast to the southwest of Europe. This expansion is supported by estimates for the divergence times between evolutionary lineages and within the western European lineage, which predate the last glacial maximum (LGM). Furthermore, all measures of genetic diversity within populations increased significantly with longitude and showed a trend toward increase with latitude. We conclude that the detected patterns are difficult to explain only by range expansions from separate LGM refugia close to the Mediterranean. This suggests that some M. arvalis populations persisted during the LGM in suitable habitat further north and that the gradients in genetic diversity may represent traces of a more ancient colonization of Europe by the species.  相似文献   

16.
The restriction fragment length polymorphism (RFLP) of the major noncoding region of mitochondrial DNA (mtDNA) was studied in the Bashkir (N = 217), Tatar (N = 57), Chuvash (N = 44), Mari (N = 52), Mordovian (N = 55), Udmurt (N = 62), and Komi (N = 45) populations. Of seven polymorphic AvaII, BamHI, EcoRV, KpnI, and RsaI restriction sites, five were found in Bashkirs and Tatars, and four were found in each of the other populations. In total, 13 mitotypes were detected, and only three of them were common to all populations from the Volga-Ural region. The parameters of gene diversity were calculated with respect to the polymorphic sites and mitotypes. Comparison with published data revealed both Mongoloid and Caucasoid components in the gene pool of the modern populations from the Volga-Ural region. The Mongoloid component was prevalent in the mitochondrial gene pool, which is consistent with historical, anthropological, and ethnographic data.  相似文献   

17.
Aim We aim to infer the post‐glacial history of the narrowly distributed endemic spruce Picea alcoquiana in Japan, and to assess the hypothesis that the existing narrow natural range of the species has resulted from the diminution of the past natural range since the last glacial period. Location Mountainous forests in central Honshu Island in Japan. Methods We assessed the geographical patterns of genetic variation across nine populations of P. alcoquiana across its natural range using five nuclear microsatellites and polymerase chain reaction–restriction fragment length polymorphism markers for chloroplast (cp) and mitochondrial (mt) DNA. This study focuses on the genetic differentiation between northern peripherally isolated and southern core populations within the natural range of the species in central Honshu. In addition, based on diagnostic morphological traits of the cone, we used reliable macrofossil evidence to gain further insight into the past natural range of the species. Results Picea alcoquiana shows a level of genetic differentiation among populations (ΦST = 0.082) that was higher than the levels observed in nuclear microsatellites for other anemophilous and widespread tree species in Japan. A notable finding for the nuclear microsatellites was the loss of rare alleles and strong evidence of a recent bottleneck in the peripherally isolated populations. Analysis of molecular variance in cpDNA and mtDNA markers showed an absence of genetic differentiation between the peripherally isolated and core populations. Macrofossil evidence indicated that the past natural range of the species extended to a lower elevation and c. 135 km north of the existing peripherally isolated populations during the last glacial period (c. 28,000 yr bp ). Main conclusions During the last glacial period, P. alcoquiana had a wider natural range in which the peripherally isolated and core populations could have been geographically continuous with each other, and effective gene flow by means of pollen and seeds might have occurred. The recent bottleneck and consequent loss of rare alleles in the peripherally isolated populations might have evolved during the diminution and retreat of the northern part of the past natural range southwards to the core area and during the subsequent separation of the peripherally isolated populations from the core area since the last glacial period.  相似文献   

18.
Pleistocene ice‐ages greatly influenced the historical abundances of Pacific cod, Gadus macrocephalus, in the North Pacific and its marginal seas. We surveyed genetic variation at 11 microsatellite loci and mitochondrial (mt) DNA in samples from twelve locations from the Sea of Japan to Washington State. Both microsatellite (mean H = 0.868) and mtDNA haplotype (mean h = 0.958) diversities were large and did not show any geographical trends. Genetic differentiation between samples was significantly correlated with geographical distance between samples for both microsatellites (FST = 0.028, r2 = 0.33) and mtDNA (FST = 0.027, r2 = 0.18). Both marker classes showed a strong genetic discontinuity between northwestern and northeastern Pacific populations that likely represents groups previously isolated during glaciations that are now in secondary contact. Significant differences appeared between samples from the Sea of Japan and Okhotsk Sea that may reflect ice‐age isolations in the northwest Pacific. In the northeast Pacific, a microsatellite and mtDNA partition was detected between coastal and Georgia Basin populations. The presence of two major coastal mtDNA lineages on either side of the Pacific Ocean basin implies at least two ice‐age refugia and separate postglacial population expansions facilitated by different glacial histories. Northward expansions into the Gulf of Alaska were possible 14–15 kyr ago, but deglaciation and colonization of the Georgia Basin probably occurred somewhat later. Population expansions were evident in mtDNA mismatch distributions and in Bayesian skyline plots of the three major lineages, but the start of expansions appeared to pre‐date the last glacial maximum.  相似文献   

19.
The number of Asian black bears (Ursus thibetanus) in Japan has been reduced and their habitats fragmented and isolated because of human activities. Our previous study examining microsatellite DNA loci revealed significant genetic differentiation among four local populations in the western part of Honshu. Here, an approximate 700-bp nucleotide sequence of mitochondrial DNA (mtDNA) control region was analysed in 119 bears to infer the evolutionary history of these populations. Thirteen variable sites and variation in the number of Ts at a T-repeat site were observed among the analysed sequences, which defined 20 mtDNA haplotypes with the average sequence divergence of 0.0051 (SD = 0.00001). The observed haplotype frequencies differed significantly among the four populations. Phylogeographic analysis of the haplotypes suggested that black bears in this region have gone through two different colonisation histories, since the observed haplotypes belonged to two major monophyletic lineages and the lineages were distributed with an apparent border. The spatial genetic structure revealed by using mtDNA was different from that observed using microsatellite DNA markers, probably due to female philopatry and male-biased dispersal. Since nuclear genetic diversity will be lost in the three western populations because of the small population size and genetic isolation, their habitats need to be preserved, and these four populations should be linked to each other by corridors to promote gene flow from the easternmost population with higher nuclear genetic diversity.  相似文献   

20.
The structure of the D-loop region in mitochondrial DNA (mtDNA) of Russian sturgeon Acipenser gueldenstaedtii from the Azov Sea population was studied with the method of direct sequencing. Interindividual heteroplasmy of the length of mtDNA in the region of D-loop realized by the presence of a different number of tandem repeats (82 pairs of bases) was found. Analysis of tandem repeats in the D-loop region in mtDNA in the studied sample (28 individuals) revealed eight mitotypes differed in the pattern of nucleotide substitution and in the number of tandem repeats (2, 3, and 4 repeats). Revealed mitotypes can be considered as potential genetic markers for different biological groups, schools, or seasonal races of A. gueldenstaedtii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号