首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new flow cytometric method is presented that quantifies the frequency of radiation-induced micronuclei in mammalian cell cultures with high precision. After preparing a suspension of main nuclei and micronuclei stained with ethidium bromide and Hoechst 33258, both types of particles are measured simultaneously in a flow cytometer using forward light scatter and three fluorescence emission intensities excited by UV, 488 nm, and by energy transfer from Hoechst 33258 to ethidium bromide. Nonspecific debris overlapping the micronucleus distribution especially in the low fluorescence intensity region was discriminated from micronuclei by calculating ratios of the different fluorescences. The frequencies of radiation-induced micronuclei measured with this new technique agreed well with results obtained by conventional microscopy. The lower limit of the DNA content of micronuclei identified by this technique was found to be about 0.5%-0.75% of the DNA content of G1-phase nuclei. Dose effect curves and the time-dependent induction of micronuclei were measured for two different mouse cell lines.  相似文献   

2.
Flow cytometric analysis of micronuclei found in cells after irradiation   总被引:6,自引:0,他引:6  
M Nüsse  J Kramer 《Cytometry》1984,5(1):20-25
Exposure of mammalian cells to either ionizing radiation or mutagenic and carcinogenic substances can induce chromosome aberrations. These aberrations in turn may give rise to micronuclei which can be found in cells during the interphase after division. A two-step method is presented that allows separation of micronuclei from cell nuclei. They can then be measured and analysed according to their DNA content in a flow cytometer. The method involves an initial detergent treatment of cells followed by a second treatment with sucrose and citric acid. Micronuclei with DNA content larger than 2% of the G1-nuclei can be measured. The method is tested and compared with microscopic observations of micronucleated cells in irradiated, asynchronous, and synchronized Ehrlich ascites tumour cells growing in vitro. The agreement between the flow cytometric technique and microscopic observations is excellent when the dose-dependent number of micronuclei per cell is taken into consideration.  相似文献   

3.
4.
In lymphocyte cultures, the number of aneuploid cell nuclei increases with proband age mainly because of the loss of sex chromosomes. Since one possible cause of aneuploidy in cell nuclei is chromosomal lag at anaphase, with subsequent chromosome loss via micronucleus formation, we scored 5000 interphase nuclei from ten female and ten male probands for associated micronuclei. Whereas, in young (< 10 years) probands, an average of 0.15% interphase nuclei exhibited micronuclei, the frequency rose to 0.46% in older probands (> 70 years). In situ hybridizations with X-specific and Y-specific DNA probes were carried out, and the signal distribution in ten nuclei with associated micronuclei was documented for each donor. Our results indicate that the exclusion of sex chromosomes into micronuclei doubles during a human life, from 11% in young probands to 20% in old donors.  相似文献   

5.
6.
7.
Micronuclei are formed from chromosomes and chromosomal fragments that lag behind in anaphase and are left outside daughter nuclei in telophase. They may also be derived from broken anaphase bridges. Nuclear buds, micronucleus-like bodies attached to the nucleus by a thin nucleoplasmic connection, have been proposed to be generated similarly to micronuclei during nuclear division or in S-phase as a stage in the extrusion of extra DNA, possibly giving rise to micronuclei. To better understand these phenomena, we have characterized the contents of 894 nuclear buds and 1392 micronuclei in normal and folate-deprived 9-day cultures of human lymphocytes using fluorescence in situ hybridization with pancentromeric and pantelomeric DNA probes. Such information has not earlier been available for human primary cells. Surprisingly, there appears to be no previous data on the occurrence of telomeres in micronuclei (or buds) of normal human cells in general. Our results suggest that nuclear buds and micronuclei have partly different mechanistic origin. Interstitial DNA without centromere or telomere label was clearly more prevalent in nuclear buds (43%) than in micronuclei (13%). DNA with only telomere label or with both centromere and telomere label was more frequent in micronuclei (62% and 22%, respectively) than in nuclear buds (44% and 10%, respectively). Folate deprivation especially increased the frequency of nuclear buds and micronuclei harboring telomeric DNA and nuclear buds harboring interstitial DNA but also buds and micronuclei with both centromeric and telomeric DNA. According to the model we propose, that micronuclei in binucleate lymphocytes primarily derive from lagging chromosomes and terminal acentric fragments during mitosis. Most nuclear buds, however, are suggested to originate from interstitial or terminal acentric fragments, possibly representing nuclear membrane entrapment of DNA that has been left in cytoplasm after nuclear division or excess DNA that is being extruded from the nucleus.  相似文献   

8.
Macroautophagy is known to participate in the quality control and turnover of cytoplasmic organelles, yet there is little evidence that macroautophagy targets nuclei in mammalian cells. Here, we investigated whether autophagy may target micronuclei, which arise as a result of deficient bipolar chromosome segregation in cells exposed to cell cycle perturbations. After removal of several distinct cell cycle blockers (nocodazole, cytochalasin D, hydroxyurea or SP600125), cells manifested an increase in the frequency of micronuclei (positive for histone H2B-RFP) as well as an increase in autophagic puncta (positive for GFP-LC3) over several days. A small but significant percentage of micronuclei co-localized with GFP-LC3 in autophagy-competent cells and this co-localization was lost after knockdown of ATG5 or ATG7. Electron microscopy analyses confirmed autophagic sequestration of micronuclei. "Autophagic micronuclei" (GFP-LC3+) were also decorated with p62/SQSTM1, while non-autophagic (GFP-LC3-) micronuclei where p62/SQSTM1 negative. In addition, GFP-LC3+ micronuclei exhibited signs of envelope degradation and γH2AX+ DNA damage foci, yet stained less intensively for chromatin markers, whereas GFP-LC3- micronuclei were surrounded by an intact envelope and rarely exhibited markers or DNA damage. These results indicate that micronuclei can be subjected to autophagic degradation. Moreover, it can be speculated that removal of micronuclei may contribute to the genome-stabilizing effects of autophagy.  相似文献   

9.
DNA double-strand breaks are thought to precede the formation of most radiation-induced micronuclei. Phosphorylation of the histone H2AX is an early indicator of DNA double-strand breaks. Here we studied the phosphorylation status of the histone H2AX in micronuclei after exposure of cultured cells to ionizing radiation or treatment with colchicine. In human astrocytoma SF268 cells, after exposure to gamma radiation, the proportion of gamma-H2AX-positive to gamma-H2AX-negative micronuclei increases. The majority of the gamma-H2AX-positive micronuclei are centromere-negative. The number of gamma-H2AX-positive micronuclei continues to increase even 24 h postirradiation when most gamma-H2AX foci in the main nucleus have disappeared. In contrast, in normal human fibroblasts (BJ), the proportion of gamma-H2AX-positive to gamma-H2AX-negative micronuclei remains constant, and the majority of the centromere-negative cells are gamma-H2AX-negative. Treatment of both cell lines with colchicine results in mostly centromere-positive, gamma-H2AX-negative micronuclei. Immunostaining revealed co-localization of MDC1 and ATM with gamma-H2AX foci in both main nuclei and micronuclei; however, other repair proteins, such as Rad50, 53BP1 and Rad17, that co-localized with gamma-H2AX foci in the main nuclei were not found in the micronuclei. Combination of the micronucleus assay with gamma-H2AX immunostaining provides new insights into the mechanisms of the formation and fate of micronuclei.  相似文献   

10.
We have examined the relationship between checkpoint adaptation (mitosis with damaged DNA) and micronuclei. Micronuclei in cancer cells are linked to genomic change, and may induce chromothripsis (chromosome shattering). We measured the cytotoxicity of the cancer drug cisplatin in M059K (glioma fibroblasts, IC50 15 μM). Nearly 100% of M059K cells were positive for histone γH2AX staining after 48 h treatment with a cytotoxic concentration of cisplatin. The proportion of micronucleated cells, as confirmed by microscopy using DAPI and lamin A/C staining, increased from 24% to 48%, and the total micronuclei in surviving cells accumulated over time. Promoting entry into mitosis with a checkpoint inhibitor increased the number of micronuclei in cells whereas blocking checkpoint adaptation with a Cdk inhibitor reduced the number of micronuclei. Interestingly, some micronuclei underwent asynchronous DNA replication, relative to the main nuclei, as measured by deoxy-bromo-uracil (BrdU) staining. These micronuclei stained positive for histone γH2AX, which was linked to DNA replication, suggesting that micronuclei arise from checkpoint adaptation and that micronuclei may continue to damage DNA. By contrast the normal cell line WI-38 did not undergo checkpoint adaptation when treated with cisplatin and did not show changes in micronuclei number. These data reveal that the production of micronuclei by checkpoint adaptation is part of a process that contributes to genomic change.  相似文献   

11.
Micronuclei are small interphase nuclei containing part of the genome; the DNA content of the smallest micronuclei is equivalent to one chromosome. For analysis by biochemical method and by cytofluorometry of interphase micronuclei containing a single chromosome, several isolation and purification procedures were tested and checked by fluorescent microscopy using the DNA dye Hoechst 33 342 and electron microscopy. Micronucleation of rat kangaroo epithelial cells was induced by colchicine treatment for three days. Micronuclei were isolated in a low ionic strength buffer containing collagenase, with concomitant mechanical shocks. Eighty % of the micronuclei were released after 3 to 7 min, with minimum nuclear breakage. Subsequent filtration through several polycarbonate filters 12, 8 and 5 micron in diameter enabled purification of the smallest micronuclei without aggregates or debris. Micronuclear morphology was well preserved, as shown by electron microscope observations. Therefore, we established the optimal conditions allowing gentle mass isolation of individual micronuclei of cultured PtK1 cells, compatible with flow cytometry analysis.  相似文献   

12.
Fluorescence in situ hybridization using simultaneously a combination of DNA probes for the telomeric hexamer repeat (TTAGGG) and the centromerically repeated murine gamma-satellite DNA was applied to analyze the nature of radiation-induced micronuclei in mouse NIH 3T3 fibroblasts. After subtraction of spontaneously occurring micronuclei independent from the dose and time after irradiation, approximately 22% of the radiation-induced micronuclei did not reveal any hybridization signal. Approximately 17% showed one centromeric hybridization signal and about four telomeric signals, suggesting their origin from whole chromosomes. Almost 60% of radiation-induced micronuclei had telomeric signals only, suggesting their origin from acentric fragments. A fraction of micronuclei were found to contain two or more acentric fragments. Micronuclei derived from whole chromosomes or from multiple acentric fragments might, together with DNA synthesis in micronuclei, explain the occurrence of radiation-induced micronuclei with DNA contents greater than the largest chromosome arm.  相似文献   

13.
We have calculated the distribution of DNA contents in micronuclei (MN) induced by ionizing radiation in human lymphocytes on two assumptions: the MN arise from acentric chromosome fragments (ACF), and the ACF result from the random breakage and rejoining of chromosomes. Measurements show that about 80 per cent of MN have a DNA content in the range of 0.5-6 per cent of the G1 nucleus. This group is consistent with the model and shows little dependence on radiation dose over the dose range of 0.5-4 Gy, or on lymphocyte culture time, varying from 48 to 76 hours. The MN with DNA content from 6 to 20 per cent of the G1 nucleus are probably the result both of spindle defects and of DNA synthesis in MN.  相似文献   

14.
Initial studies of the use of computerised image analysis to determine micronucleus frequencies in human lymphocytes that have completed one nuclear division are described. Two methods, based on (a) bromodeoxyuridine incorporation and (b) cytokinesis blocking with cytochalasin-B, were studied. The former method is directly amenable to automation. Cytokinesis-blocked cells could not be automatically recognised by image analysis but it was possible to obtain the correct micronucleus frequency from the integrated optical density histograms by using the mononucleate/binucleate cell ratio obtained by visual analysis. The mean (+/- 1 S.E.) integrated optical density of X-ray-induced micronuclei was 11.2% (+/- 1.1) of that measured for nuclei of G1 cells.  相似文献   

15.
OBJECTIVE: To establish a diploid reference value for DNA ploidy analysis of mouse cells (Mus musculus) by image cytometry using the CAS 200, an analysis system suitable for DNA content studies in human cells. STUDY DESIGN: To establish this standard, we used spleen imprints from 26 normal animals. A minimum of 150 lymphocytes present in each imprint was counted. The mean DNA content (pg/cell) of the G0/G1 peak and the DNA index observed in all samples were statistically analyzed. Cytospins with peritoneal cells from the same animals were then analyzed with this reference DNA value to confirm the diploid range. RESULTS: The DNA diploid reference value was determined by the mean DNA content of all spleen samples, which was 6.42 +/- 0.234 pg/cell, and the diploid range, defined as the diploid value +/- 10%, was 5.78-7.06 pg/cell. All the peritoneal samples showed a DNA diploid histogram, with a mean value for the G0/G1 peak DNA content of 6.742 +/- 0.15. CONCLUSION: The diploid reference value found in this study differs from those reported for other species, including the human being, and should be used in further studies of mouse pathology.  相似文献   

16.
Madin-Darby bovine kidney (MDBK) cells were treated with the bifunctional DNA cross-linker, L-7, to examine the generation of micronuclei and other nuclear abnormalities. The preceding paper demonstrates that L-7 treatment induces the formation of triradial and quadriradial chromosomes in MDBK cells. These chromosomes are believed to result from interduplex DNA cross-links formed between G-C rich centromeric satellite DNA regions on non-sister chromatids. Treatment produces a majority of centromere-positive micronuclei. In addition, many daughter cells remain attached by chromatin bridges which are sometimes beaded with micronuclei. Up to 15% of cell nuclei become lobular and fused with numerous micronuclear-like structures attached to their membranes. These attached structures are classified as attached micronuclear-like structures (AMNLS). Fluorescence in situ hybridization (FISH) using a centromeric satellite sequence was performed on treated cells. Hybridization reveals that intercellular bridges are composed of centromeric sequences and initiate at centromeric foci in daughter cells. Furthermore, the majority of junctions between AMNLS and nuclei contain an enhancement of centromeric signal. The frequency of AMNLS appears dependent on the concentration of L-7 and the duration of treatment. Similar results were found for the generation of cross-linked chromosome products in the previous paper. We suggest that AMNLS result from the abnormal mitotic segregation of cross-linked chromosome products.  相似文献   

17.
The macro- and micronucleus of Tetrahymena pyriformis are formed from a common diploid synkaryon during conjugation. Shortly after the 2nd postzygotic division, distinct morphologic and physiologic differences develop between the 2 nuclei. Micronuclei remain small, presumably diploid, and electronmicroscopic observations indicate that micronuclear DNA is contained in a dense, fibrous, chromosome-like coil. Macronuclei contain considerably more DNA than micronuclei, and the DNA of the macronucleus is found largely in the chromatin bodies typical of ciliate nuclei. The functional differences between macro- and micronuclei in vegetative cells also are striking. The template activity of DNA in the micronucleus is highly restricted compared to that in the macronucleus. Micronuclei synthesize and contain little RNA, and do not contain either nucleoli or ribonucleoprotein granules. Macronuclei, on the other hand, synthesize and contain large amounts of RNA and have many nucleoli and ribonucleoprotein granules. Macro- and micronuclei also have distinct differences in the timing of DNA synthesis during the cell cycle and in the timing and mechanism of nuclear division. Finally, during conjugation the macronucleus becomes pycnotic and disappears while the micronucleus undergoes meiosis and fertilization, ultimately giving rise to new macro- and new micronuclei. In short, the macro- and micronuclei of Tetrahymena provide an excellent system for studying the molecular mechanisms by which the same (or related) genetic information is maintained in different structural and functional states. Methods have been devised to isolate and purify macro- and micronuclei of Tetrahymena in the hope of correlating differences in the nucleoprotein composition of these nuclei with differences in their structure and function. The DNAs of macro- and micronuclei have been found to differ markedly in their content of a methylated base, N6-methyl adenine, and major differences in the histones of the 2 nuclei have been observed. Macronuclei contain histones similar to those found in vertebrate nuclei, while 2 major histone fractions seem to be missing in micronuclei. In addition, histone fraction F2A1 which is found in multiple, acetylated forms in macronuclei, is present only as a single, unacetylated form in micronuclei.  相似文献   

18.
When the mouse mammary adenocarcinoma 755 (Ca-755) reaches the plateau phase of growth, non-cycling cells with a G2-DNA content can be observed. They may belong to the diploid cell cycle but they could also be blocked in G0 or G1 of a tetraploid cycle. This hypothesis was tested in three ways: (1) non-cycling G2 nuclei were stained with a combination of Feulgen and naphthol yellow which revealed two populations, one with a low protein content and the other with a high protein content--the latter may represent nuclei ready to begin a new phase of DNA synthesis; (2) Feulgen staining and autoradiography were performed after tritiated thymidine had been administered to mice continuously: this showed that there were cells synthesizing DNA with a DNA index above 2; and (3) cells having 80 chromosomes, corresponding to the tetraploid cycle, were found almost exclusively in the plateau phase tumours. On the other hand, the use of texture and DNA parameters of the Feulgen stained nuclei showed that they were concentrated in a diploid cycle for tumours in the exponential phase of growth and were divided between a diploid and tetraploid cycle for 'plateau' cells. Neither the cause for, nor the role played by, polyploid cells is known.  相似文献   

19.
The short-term evolution of micronuclei derived from acentric fragments and whole chromosomes was studied in root tips of Vicia faba. Micronuclei were induced by X-rays (30 cGy and 120 cGy) and colchicine (10(-5) M and 3 X 10(-4) M). Frequencies of chromosome breakage or loss of micronuclei in interphase and mitotic cells were studied. The DNA content of micronuclei in interphase cells was also measured. Micronuclei derived from whole chromosome showed a higher probability to survive and to undergo mitotic condensation in synchrony with main nuclei than micronuclei derived from an acentric fragment. PCC (Premature Chromosome Condensation) was not observed for both types of micronuclei in Vicia faba, in contrast to the ones reported in mammalian cells in culture.  相似文献   

20.
Macronuclei of Tetrahymena pyriformis contain approximately 200 copies of the genes for 25S and 17S ribosomal RNA (rRNA) per haploid genome. Micronuclei, however, contain only a few copies of the rRNA genes per haploid complement. Since macronuclei develop from, products of meiosis, fertilization and division of micronuclei, we suggested that the multiple copies of the rRNA genes in macronuclei are generated by amplification of the small number of genes in micronuclei (Yao et al., 1974). This process provides a simple mechanism for maintaining the homogeneity of the repeated rRNA genes. To test if amplification is a general mechanism operating on all repeated genes in Tetrahymena, we have examined the numbers of 5S RNA and tRNA genes in macro- and micronuclei. 5S RNA was purified by polyacrylamide gel electrophoresis and hybridized to saturation against macro- and micronuclear DNA. Approximately 0.013–0.014% of macronuclear DNA and about 0.009% of micronuclear DNA is complementary to 5S RNA. After correcting for the differences in the DNA sequence complexities between the two nuclei, we calculate that there are 300–350 5S genes per haploid macro- or micronuclear genome. From these data we conclude that there is little or no detectable amplification of the 5S genes in macronuclei relative to micronuclei. Similar studies using tRNA indicate that these genes are also highly repeated in both nuclei; about 800 genes are present per haploid genome. Thus, amplification from a small number of genes can be excluded as the mechanism for generating the repeated copies of the 5S and tRNA genes in Tetrahymena and it is likely that another, as yet unidentified, mechanism operates to maintain the homogeneity of these genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号