首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that expression of HIV-1 vpr in yeast results in cell growth arrest and structural defects, and identified a C-terminal domain of Vpr as being responsible for these effects in yeast.1 In this report we show that recombinant Vpr and C-terminal peptides of Vpr containing the conserved sequence HFRIGCRHSRIG caused permeabilization of CD4+ T lymphocytes, a dramatic reduction of mitochondrial membrane potential and finally cell death. Vpr and Vpr peptides containing the conserved sequence rapidly penetrated cells, co-localized with the DNA, and caused increased granularity and formation of dense apoptotic bodies. The above results suggest that Vpr treated cells undergo apoptosis and this was confirmed by demonstration of DNA fragmentation by the highly sensitive TUNEL assay. Our results, together with the demonstration of extracellular Vpr in HIV infected individuals,2,3 suggest the possibility that extracellular Vpr could contribute to the apoptotic death and depletion of bystander cells in lymphoid tissues4,5 during HIV infection.  相似文献   

2.
Vpr, one of the accessory gene products encoded by HIV-1, is a 96-residue protein with a number of functions, including targeting of the viral pre-integration complex to the nucleus and inducing growth arrest of dividing cells. We have characterized by 2D NMR the solution conformations of bioactive synthetic peptide fragments of Vpr encompassing a pair of H(F/S)RIG sequence motifs (residues 71–75 and 78–82 of HIV-1 Vpr) that cause cell membrane permeabilization and death in yeast and mammalian cells. Due to limited solubility of the peptides in water, their structures were studied in aqueous trifluoroethanol. Peptide Vpr59–86 (residues 59–86 of Vpr) formed an α-helix encompassing residues 60–77, with a kink in the vicinity of residue 62. The first of the repeated sequence motifs (HFRIG) participated in the well-defined α-helical domain whereas the second (HSRIG) lay outside the helical domain and formed a reverse turn followed by a less ordered region. On the other hand, peptides Vpr71–82 and Vpr71–96, in which the sequence motifs were located at the N-terminus, were largely unstructured under similar conditions, as judged by their CαH chemical shifts. Thus, the HFRIG and HSRIG motifs adopt α-helical and turn structures, respectively, when preceded by a helical structure, but are largely unstructured in isolation. The implications of these findings for interpretation of the structure–function relationships of synthetic peptides containing these motifs are discussed. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
We have previously reported that the accessory protein Vpr from human immunodeficiency virus type 1 forms cation-selective ion channels in planar lipid bilayers and is able to depolarize intact cultured neurons by causing an inward sodium current, resulting in cell death. In this study, we used site-directed mutagenesis and synthetic peptides to identify the structural regions responsible for the above functions. Mutations in the N-terminal region of Vpr were found to affect channel activity, whereas this activity was not affected by mutations in the hydrophobic region of Vpr (amino acids 53 to 71). Analysis of mutants containing changes in the basic C terminus confirmed previous results that this region, although not necessary for ion channel function, was responsible for the observed rectification of wild-type Vpr currents. A peptide comprising the first 40 N-terminal amino acids of Vpr (N40) was found to be sufficient to form ion channels similar to those caused by wild-type Vpr in planar lipid bilayers. Furthermore, N40 was able to cause depolarization of the plasmalemma and cell death in cultured hippocampal neurons with a time course similar to that seen with wild-type Vpr, supporting the idea that this region is responsible for Vpr ion channel function and cytotoxic effects. Since Vpr is found in the serum and cerebrospinal fluids of AIDS patients, these results may have significance for AIDS pathology.  相似文献   

4.
5.
HIV-1 Vpr is a virion-associated protein that can cause growth arrest when produced inside the cell but when added externally it can cause cell death. Employing the yeast model system, the C-terminal domain, in particular the sequence HFRIGCRHSRIG (Vpr(71-82)), is essential for both the growth arrest and cytocidal activities. Conservation of this sequence in HIV-2 and SIV suggests that these residues may be functionally important. Using site-directed mutagenesis we show that the most highly conserved aa residues, His71 and Gly75, were important for the cell cycle inhibitory effects. In contrast, we show that the wild-type Vpr(71-82) peptide and three variants of this peptide with Gly75 changed to Ser, Ala, and Ile all exhibited the same cytocidal activity suggesting that the intracellular and extracellular effects are unrelated.  相似文献   

6.
HIV-1, the etiologic agent of human AIDS, causes cell death in host and non-host cells via HIV-1 Vpr, one of its auxiliary gene product. HIV-1 Vpr can also cause cell cycle arrest in several cell types. The cellular processes that link HIV-1 Vpr to the cell death machinery are not well characterized. Here, we show that the C terminal portion of HIV-1 Vpr which encompasses amino acid residues 71-96 (HIV-1 Vpr(71-96)), also termed HIV-1 Vpr cell death causing peptide, is an activator of protein phosphatase-2A(1) when applied extracellularly to CD(4+) T cells. HIV-1 Vpr(71-96) is a direct activator of protein phosphatase-2A(1) that has been purified from CD(4+) T cells. Full length HIV-1 Vpr by itself does not cause the activation of protein phosphatase-2A(1) in vitro. HIV-1 Vpr(71-96) also causes the activation of protein phosphatase-2A(0) and protein phosphatase-2A(1) from brain, liver, and adipose tissues. These results indicate that HIV-1 can cause cell death of infected cells and non-infected host and non-host cells via HIV-1 Vpr derived C terminal peptide(s) which act(s) by cell penetration and targeting of a key controller of the cell death machinery, namely, protein phosphatase-2A(1). The activation of other members of the protein phosphatase-2A subfamily of enzymes which are involved in the control of several metabolic pathways in brain, liver, and adipose tissues by HIV-1 Vpr derived C terminal peptide(s) may underlie various metabolic disturbances that are associated with HIV-1 infection.  相似文献   

7.
Rapid CD4+ lymphocyte depletion due to cell death caused by HIV infection is one of the hallmarks of acquired immunodeficiency syndrome. HIV-1 viral protein R (Vpr) induces apoptosis and is believed to contribute to CD4+ lymphocyte depletion. Thus, identification of cellular factors that potentially counteract this detrimental viral effect will not only help us to understand the molecular action of Vpr but also to design future antiviral therapies. In this report, we describe identification of elongation factor 2 (EF2) as such a cellular factor. Specifically, EF2 protein level is responsive to vpr gene expression; it is able to suppress Vpr-induced apoptosis when it is overproduced beyond its physiological level. EF2 was initially identified through a genome-wide multicopy suppressor search for Vpr-induced apoptosis in a fission yeast model system. Overproduction of fission yeast Ef2 completely abolishes Vpr-induced cell killing in fission yeast. Similarly, overexpression of the human homologue of yeast Ef2 in a neuroblastoma SKN-SH cell line and two CD4+ H9 and CEM-SS T-cell lines also blocked Vpr-induced apoptosis. The anti-apoptotic property of EF2 is demonstrated by its ability to suppress caspase 9 and caspase 3-mediated apoptosis induced by Vpr. In addition, it also reduces cytochrome c release induced by Vpr, staurosporine and TNFα. The fact that overproduction of EF2 blocks Vpr-induced cell death both in fission yeast and human cells, suggested that EF2 posses a highly conserved anti-apoptotic activity. Moreover, the responsive elevation of EF2 to Vpr suggests a possible host innate antiviral response.  相似文献   

8.
Cell cycle G2 arrest, nuclear localization, and cell death induced by human immunodeficiency virus type 1 Vpr were examined in fission yeast by using a panel of Vpr mutations that have been studied previously in human cells. The effects of the mutations on Vpr functions were highly similar between fission yeast and human cells. Consistent with mammalian cell studies, induction of cell cycle G2 arrest by Vpr was found to be independent of nuclear localization. In addition, G2 arrest was also shown to be independent of cell killing, which only occurred when the mutant Vpr localized to the nucleus. The C-terminal end of Vpr is crucial for G2 arrest, the N-terminal alpha-helix is important for nuclear localization, and a large part of the Vpr protein is responsible for cell killing. It is evident that the overall structure of Vpr is essential for these cellular effects, as N- and C-terminal deletions affected all three cellular functions. Furthermore, two single point mutations (H33R and H71R), both of which reside at the end of each alpha-helix, disrupted all three Vpr functions, indicating that these two mutations may have strong effects on the overall Vpr structure. The similarity of the mutant effects on Vpr function in fission yeast and human cells suggests that fission yeast can be used as a model system to evaluate these Vpr functions in naturally occurring viral isolates.  相似文献   

9.
A growing body of literature suggests that the HIV accessory proteins Nef and Vpr could be involved in depletion of CD4(+) and non-CD4(+) cells and tissue atrophy, and in delaying the death of HIV-infected cells. Cell depletion is likely to be predominantly a bystander effect because the number of cells dying far outnumbers HIV-infected cells and is not confined to CD4(+) cells. The myristylated N-terminal region of Nef has severe membrane disordering properties, and when present in the extracellular medium causes rapid lysis in vitro of a wide range of CD4(+) and non-CD4(+) cells, suggesting a role for extracellular Nef in the depletion of bystander cells. A direct role for HIV-1 Nef in cytopathicity is supported by studies in HIV-infected Hu Liv/Thy SCID mice, in transgenic mice expressing nef gene alone, and in rhesus macaques infected with SIV/HIV chimeric virus containing HIV-1 nef. The N-terminal region of Nef has been directly implicated in development of simian AIDS. Extracellular Vpr and C-terminal fragments of Vpr cause membrane permeabilization and apoptosis of a wide range of CD4(+) and non-CD4(+) cells, and could also contribute to depletion of bystander cells. A direct in vivo role for Vpr in thymocyte depletion, thymic atrophy, and nephropathy is suggested in studies with vpr transgenic mice. Intracellular Nef and Vpr could help HIV-infected cells evade cell death by inhibiting apoptosis of infected cells and by avoiding virus-specific CTL response. Nef and Vpr are potential targets for therapeutic intervention and vaccine development, and strategies that prevent the death of bystander cells while promoting the early death of HIV-infected cells could arrest or retard progression to AIDS.  相似文献   

10.
Elevated levels of glucose and lipids can result in cellular dysfunction in eukaryotic cells ranging from Saccharomyces cerevisiae yeasts to human cells. Moreover, glucotoxicity and lipotoxicity can cause cell death, although the mechanism(s) for lethality is unclear. In the present study, we utilized Candida parapsilosis fatty acid desaturase (OLE1) and fatty acid synthase (FAS2) gene deletion mutants and wild-type (WT) yeast cells to unravel the relationship to glucose and lipid induced cell death in eukaryotic cells. Incubation of WT yeast cells with glucose led to the rapid accumulation of lipid droplets, whereas lipid droplet formation was severely impaired in yeast cells with deletion of OLE1 (ole1Δ/Δ) or FAS2 (fas2Δ/Δ). Interestingly, ole1Δ/Δ yeast cells died within hours in a 1% glucose medium without fatty acid supplementation, whereas the WT or fas2Δ/Δ yeast cells did not. In glucose medium, ole1Δ/Δ yeast cells accumulated saturated fatty acids, while fas2Δ/Δ did not. Addition of saturated fatty acids (e.g., palmitic acid) enhanced ole1Δ/Δ yeast cell death, whereas the addition of unsaturated fatty acids (e.g., oleic or palmitoleic acid) rescued cell death. Furthermore, palmitic acid and glucose medium induced apopotic cell death in ole1Δ/Δ yeast cells, which was dependent on mitochondrial function. Thus, our results show that glucotoxicity is directly linked to lipotoxicity, which we demonstrate is mediated by mitochondrial function.  相似文献   

11.
Anti-Vpr activity of a yeast chaperone protein   总被引:6,自引:0,他引:6       下载免费PDF全文
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) exerts multiple effects on viral and host cellular activities during viral infection, including nuclear transport of the proviral integration complex, induction of cell cycle G(2) arrest, and cell death. In this report, we show that a fission yeast chaperone protein Hsp16 inhibits HIV-1 by suppressing these Vpr activities. This protein was identified through three independent genome-wide screens for multicopy suppressors of each of the three Vpr activities. Consistent with the properties of a heat shock protein, heat shock-induced elevation or overproduction of Hsp16 suppressed Vpr activities through direct protein-protein interaction. Even though Hsp16 shows a stronger suppressive effect on Vpr in fission yeast than in mammalian cells, similar effects were also observed in human cells when fission yeast hsp16 was expressed either in vpr-expressing cells or during HIV-1 infection, indicating a possible highly conserved Vpr suppressing activity. Furthermore, stable expression of hsp16 prior to HIV-1 infection inhibits viral replication in a Vpr-dependent manner. Together, these data suggest that Hsp16 inhibits HIV-1 by suppressing Vpr-specific activities. This finding could potentially provide a new approach to studying the contribution of Vpr to viral pathogenesis and to reducing Vpr-mediated detrimental effects in HIV-infected patients.  相似文献   

12.
In this study we investigated the effects of Vpr during human immunodeficiency virus (HIV) infection of proliferating Jurkat T cells by using a vesicular stomatitis virus envelope G glycoprotein pseudotyped HIV superinfection system. We observe that the expression of Vpr results in a severe reduction in the life span of HIV type 1 (HIV-1)-infected dividing T cells in culture. In agreement with a recent report (S. A. Stewart, B. Poon, J. B. M. Jowett, and I. S. Chen, J. Virol. 71:5579–5592, 1997), we show that events characteristic of apoptotic cell death are involved in the Vpr-mediated cytopathic effects. Our results also show that infection with viruses expressing the wild-type vpr gene results in an increase in viral gene expression and production. Interestingly, the effects of Vpr on cell viability and on viral gene expression both correlate with the ability of the protein to induce a cell cycle arrest in the G2/M phase. Mutagenesis analyses show that the C terminus of Vpr is essential for these biological activities. Although the role of Vpr is currently associated with the infection of nondividing cells, our results suggest that Vpr can also directly increase viral replication in vivo in infected dividing T cells. Furthermore, these in vitro observations suggest that Vpr-mediated cytotoxic effects could contribute to the CD4+ depletion associated with AIDS progression.  相似文献   

13.

Background

The HIV-1 genome encodes a well-conserved accessory gene product, Vpr, that serves multiple functions in the retroviral life cycle, including the enhancement of viral replication in nondividing macrophages, the induction of G2 cell-cycle arrest, and the modulation of HIV-1-induced apoptosis. We previously reported the genetic selection of a panel of di-tryptophan (W)-containing peptides capable of interacting with HIV-1 Vpr and inhibiting its cytostatic activity in Saccharomyces cerevisiae (Yao, X.-J., J. Lemay, N. Rougeau, M. Clément, S. Kurtz, P. Belhumeur, and E. A. Cohen, J. Biol. Chem. v. 277, p. 48816–48826, 2002). In this study, we performed a mutagenic analysis of Vpr to identify sequence and/or structural determinants implicated in the interaction with di-W-containing peptides and assessed the effect of mutations on Vpr-induced cytostatic activity in S. cerevisiae.

Results

Our data clearly shows that integrity of N-terminal α-helix I (17–33) and α-helix III (53–83) is crucial for Vpr interaction with di-W-containing peptides as well as for the protein-induced cytostatic effect in budding yeast. Interestingly, several Vpr mutants, mainly in the N- and C-terminal domains, which were previously reported to be defective for cell-cycle arrest or apoptosis in human cells, still displayed a cytostatic activity in S. cerevisiae and remained sensitive to the inhibitory effect of di-W-containing peptides.

Conclusions

Vpr-induced growth arrest in budding yeast can be effectively inhibited by GST-fused di-W peptide through a specific interaction of di-W peptide with Vpr functional domain, which includes α-helix I (17–33) and α-helix III (53–83). Furthermore, the mechanism(s) underlying Vpr-induced cytostatic effect in budding yeast are likely to be distinct from those implicated in cell-cycle alteration and apoptosis in human cells.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) causes AIDS dementia complex (ADC) in certain infected individuals. Recent studies have suggested that patients with ADC have an increased incidence of neuronal apoptosis leading to neuronal dropout. Of note, a higher level of the HIV-1 accessory protein Vpr has been detected in the cerebrospinal fluid of AIDS patients with neurological disorders. Moreover, extracellular Vpr has been shown to form ion channels, leading to cell death of cultured rat hippocampal neurons. Based on these previous findings, we first investigated the apoptotic effects of the HIV-1 Vpr protein on the human neuronal precursor NT2 cell line at a range of concentrations. These studies demonstrated that apoptosis induced by both Vpr and the envelope glycoprotein, gp120, occurred in a dose-dependent manner compared to protein treatment with HIV-1 integrase, maltose binding protein (MBP), and MBP-Vpr in the undifferentiated NT2 cells. For mature, differentiated neurons, apoptosis was also induced in a dose-dependent manner by both Vpr and gp120 at concentrations ranging from 1 to 100 ng/ml, as demonstrated by both the terminal deoxynucleotidyltransferase (Tdt)-mediated dUTP-biotin nick end labeling and Annexin V assays for apoptotic cell death. In order to clarify the intracellular pathways and molecular mechanisms involved in Vpr- and gp120-induced apoptosis in the NT2 cell line and differentiated mature human neurons, we then examined the cellular lysates for caspase-8 activity in these studies. Vpr and gp120 treatments exhibited a potent increase in activation of caspase-8 in both mature neurons and undifferentiated NT2 cells. This suggests that Vpr may be exerting selective cytotoxicity in a neuronal precursor cell line and in mature human neurons through the activation of caspase-8. These data represent a characterization of Vpr-induced apoptosis in human neuronal cells, and suggest that extracellular Vpr, along with other lentiviral proteins, may increase neuronal apoptosis in the CNS. Also, identification of the intracellular activation of caspase-8 in Vpr-induced apoptosis of human neuronal cells may lead to therapeutic approaches which can be used to combat HIV-1-induced neuronal apoptosis in AIDS patients with ADC.  相似文献   

15.

Background  

Despite continuing advances in our understanding of AIDS pathogenesis, the mechanism of CD4+ T cell depletion in HIV-1-infected individuals remains unclear. The HIV-1 Vpr accessory protein causes cell death, likely through a mechanism related to its ability to arrest cells in the G2,M phase. Recent evidence implicated the scaffold protein, 14-3-3, in Vpr cell cycle blockade.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) exerts multiple effects on viral and host cellular activities during infection, including induction of the cell cycle G2 arrest, and cell death in both human cells and the fission yeast Schizosaccharomyces pombe. We show that treament of exponential-phase wild-type Vpr-expressing S. pombe cells with a low, subinhibitory concentration (0.15 mmol/L) of hydrogen peroxide and 0.1 mmol/L thiamine significantly increased both cell proliferation and survival rates and decreased the number of elongated G2-arrested cells. Short-term, H2O2-induced adaptive stress increased the survival of the cells while acute stress conditions interrupted the Vpr-mediated death of the cells; however, no changes in cell length or cell phase were detected. The results suggest the importance of the oxidative status of the cells in Vpr-mediated processes. Our findings contribute to the development of a new approach via which to investigate the contribution of Vpr to HIV pathogenesis and to reduce the Vpr-mediated effects in HIV-infected patients.  相似文献   

17.
HIV-1 viral protein R (Vpr) is one of the human immunodeficiency virus type 1 encoded proteins that have important roles in viral pathogenesis. However, no clinical drug for AIDS therapy that targets Vpr has been developed. Here, we have established a screening system to isolate Vpr inhibitors using budding yeast cells. We purified a Vpr inhibitory compound from fungal metabolites and identified it as fumagillin, a chemical already known to be a potent inhibitor of angiogenesis. Fumagillin not only reversed the growth inhibitory activity of Vpr in yeast and human cells, but also inhibited Vpr-dependent viral gene expression upon the infection of human macrophages.  相似文献   

18.
Human immunodeficiency virus 1 (HIV-1) encodes a gene product, Vpr, that facilitates the nuclear uptake of the viral pre-integration complex in non-dividing cells and causes infected cells to arrest in the G(2) phase of the cell cycle. Vpr was also shown to cause mitochondrial dysfunction in human cells and budding yeasts, an effect that was proposed to lead to growth arrest and cell killing in budding yeasts and apoptosis in human cells. In this study, we used a genetic selection in Saccharomyces cerevisiae to identify hexameric peptides that suppress the growth arrest phenotype mediated by Vpr. Fifteen selected glutathione S-transferase (GST)-fused peptides were found to overcome to different extents Vpr-mediated growth arrest. Amino acid analysis of the inhibitory peptide sequences revealed the conservation of a di-tryptophan (diW) motif. DiW-containing GST-peptides interacted with Vpr in GST pull-down assays, and their level of interaction correlated with their ability to overcome Vpr-mediated growth arrest. Importantly, Vpr-binding GST-peptides were also found to alleviate Vpr-mediated apoptosis and G(2) arrest in HIV-1-producing CD4(+) T cell lines. Furthermore, they co-localized with Vpr and interfered with its nuclear translocation. Overall, this study defines a class of diW-containing peptides that inhibit HIV-1 Vpr biological activities most likely by interacting with Vpr and interfering with critical protein interactions.  相似文献   

19.

Background

The hallmark of HIV-1 pathogenesis is the progressive CD4+ T cell depletion and high propensity of CD4+ T cells to apoptosis. HIV-1 viral protein R (Vpr) is a major pro-apoptotic gene product. A first Vpr-mediated apoptotic mechanism that requires a physical interaction of HIV-1 Vpr71-82 mitochondriotoxic domain containing the conserved sequence 71-HFRIGCRHSRIG-82 with the Adenine Nucleotide Translocator (ANT) has been characterized. The family of Ser/Thr protein phosphatase PP2A interacts with several viral proteins to regulate cell growth and apoptotic pathways. Previous studies based on yeast two hybrid assays and mutational experiments indicated that PP2A1 is involved in the induction of G2 arrest by HIV-1 Vpr.

Principal Findings

Experiments combining pull-down, cell penetration and apoptosis analyses in distinct human cells indicate that the PP2A1 binding sequence from Vpr77–92 is a new cell penetrating apoptotic sequence. We also found that the I84P mutation or the IIQ/VTR83–85 and T89A substitutions in the Vpr77–92 sequence prevent PP2A1 binding, cell penetration and apoptosis. In addition the double R77A and R80A mutation known to inactivate the mitochondriotoxic Vpr71–82 domain, has no effect on the biological properties of the Vpr77–92 domain.

Conclusion

Together our data provide evidence for the first time that the Vpr77–92 sequence delineates a biological active domain of Vpr with PP2A1 binding and pro-apopototic capacities and, it is conceivable that this cell penetrating sequence may account for the Vpr internalization in uninfected cells. Finally, our data also implicate the existence of two partially overlapping pro-apoptotic domains in the Vpr C-terminal part, a redundancy that represents a new approach to address the question of biological relevance of HIV-1 Vpr. In this context, future studies will be required to determine the functional relevance of the Vpr77–92 domain in full length Vpr protein and also in entire HIV provirus.  相似文献   

20.
HIV-1 Vpr is an important contributor to viral pathogenesis. Vpr displays several highly conserved pathogenic activities, including induction of cell cycle G(2) arrest and cell death. The host immune system, in turn, preferentially targets Vpr in an attempt to reduce its pathogenic effects. To identify innate anti-Vpr factors, we performed a genetic search for multicopy suppressors of Vpr-induced G(2) arrest in fission yeast. Several heat-shock proteins were identified in these experiments. Analyses in mammalian cells demonstrated that heatshock proteins HSP27 and HSP70 suppress Vpr-induced G2 arrest. This effect appears to be mediated by an interaction between heat shock proteins and Vpr. These results illustrate another example of antagonistic interactions between the viral and cellular proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号