首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase transition in force during ramp stretches of skeletal muscle.   总被引:13,自引:0,他引:13       下载免费PDF全文
E B Getz  R Cooke    S L Lehman 《Biophysical journal》1998,75(6):2971-2983
Active glycerinated rabbit psoas fibers were stretched at constant velocity (0.1-3.0 lengths/s) under sarcomere length control. As observed by previous investigators, force rose in two phases: an initial rapid increase over a small stretch (phase I), and a slower, more modest rise over the remainder of the stretch (phase II). The transition between the two phases occurred at a critical stretch (LC) of 7.7 +/- 0.1 nm/half-sarcomere that is independent of velocity. The force at critical stretch (PC) increased with velocity up to 1 length/s, then was constant at 3.26 +/- 0.06 times isometric force. The decay of the force response to a small step stretch was much faster during stretch than in isometric fibers. The addition of 3 mM vanadate reduced isometric tension to 0.08 +/- 0.01 times control isometric tension (P0), but only reduced PC to 0.82 +/- 0.06 times P0, demonstrating that prepowerstroke states contribute to force rise during stretch. The data can be explained by a model in which actin-attached cross-bridges in a prepowerstroke state are stretched into regions of high force and detach very rapidly when stretched beyond this region. The prepowerstroke state acts as a mechanical rectifier, producing large forces during stretch but small forces during shortening.  相似文献   

2.
Slow stretch ramps (velocity: 0.17 fiber lengths s-1) were imposed during fused tetanic contractions of intact muscle fibers of the frog (1.4-3.0 degrees C; sarcomere length: 2.12-2.21 microns). Instantaneous force-extension relations were derived both under isometric conditions and during slow stretch by applying fast (0.2 ms) length steps to the fiber. An increase in tonicity (98 mM sucrose added to control Ringer solution) led to significant reduction of the maximum isometric tension but at the same time to marked increase in the force enhancement during slow stretch. The maximum force level reached during the stretch was affected very little. Experiments on relaxed fibers showed that recruitment of passive parallel elastic components were of no relevance for these effects. Hypertonicity slightly increased the instantaneous stiffness of the active fiber both in the presence and in the absence of stretch. The total extension of the undamped fiber elasticity was considerably reduced by increased tonicity under isometric conditions but was only slightly affected during slow stretch. The change in length of the undamped cross-bride elasticity upon stretch was thus greater in the hypertonic than in the normotonic solution suggesting a greater increase in force per cross-bridge in the hypertonic medium. The contractile effects are consistent with the assumptions that hypertonicity reduces the capability of the individual cross-bridge to produce active force and, furthermore, that hypertonicity has only minor effects on the number of attached cross-bridges and the maximum load-bearing capacity of the individual bridge.  相似文献   

3.
Step changes in length (between -3 and +5 nm per half-sarcomere) were imposed on isolated muscle fibers at the plateau of an isometric tetanus (tension T0) and on the same fibers in rigor after permeabilization of the sarcolemma, to determine stiffness of the half-sarcomere in the two conditions. To identify the contribution of actin filaments to the total half-sarcomere compliance (C), measurements were made at sarcomere lengths between 2.00 and 2.15 microm, where the number of myosin cross-bridges in the region of overlap between the myosin filament and the actin filament remains constant, and only the length of the nonoverlapped region of the actin filament changes with sarcomere length. At 2.1 microm sarcomere length, C was 3.9 nm T0(-1) in active isometric contraction and 2.6 nm T0(-1) in rigor. The actin filament compliance, estimated from the slope of the relation between C and sarcomere length, was 2.3 nm microm(-1) T0(-1). Recent x-ray diffraction experiments suggest that the myosin filament compliance is 1.3 nm microm(-1) T0(-1). With these values for filament compliance, the difference in half-sarcomere compliance between isometric contraction and rigor indicates that the fraction of myosin cross-bridges attached to actin in isometric contraction is not larger than 0.43, assuming that cross-bridge elasticity is the same in isometric contraction and rigor.  相似文献   

4.
The force-velocity relation of single frog fibers was measured at sarcomere lengths of 2.15, 2.65, and 3.15 microns. Sarcomere length was obtained on-line with a system that measures the distance between two markers attached to the surface of the fiber, approximately 800 microns apart. Maximal shortening velocity, determined by extrapolating the Hill equation, was similar at the three sarcomere lengths: 6.5, 6.0, and 5.7 microns/s at sarcomere lengths of 2.15, 2.65, and 3.15 microns, respectively. For loads not close to zero the shortening velocity decreased with increasing sarcomere length. This was the case when force was expressed as a percentage of the maximal force at optimal fiber length or as a percentage of the sarcomere-isometric force at the respective sarcomere lengths. The force-velocity relation was discontinuous around zero velocity: load clamps above the level that kept sarcomeres isometric resulted in stretch that was much slower than when the load was decreased below isometric by a similar amount. We fitted the force-velocity relation for slow shortening (less than 600 nm/s) and for slow stretch (less than 200 nm/s) with linear regression lines. At a sarcomere length of 2.15 microns the slopes of these lines was 8.6 times higher for shortening than for stretch. At 2.65 and 3.15 microns the values were 21.8 and 14.1, respectively. At a sarcomere length of 2.15 microm, the velocity of stretch abruptly increased at loads that were 160-170% of the sarcomere isometric load, i.e., the muscle yielded. However, at a sarcomere length of 2.65 and 3.15 microm yield was absent at such loads. Even the highest loads tested (260%) resulted in only slow stretch.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
29 single frog skeletal muscle fibers were stretched during fused tetanic contractions. The force increase during stretch exhibited a breakpoint at a critical length change (average: 16.6 nm per one-half sarcomere) that was independent of velocity of stretch and of sarcomere length between 1.8 and 2.8 microns. After stretch there was an early decaying force component with a force-extension curve similar to that during stretch, which disappeared over approximately 2 s. This component was removed by a small, quick release, leaving a longer- lasting component. The critical amplitude of release required to produce this result was found by clamping the fiber to a load at which there was zero velocity of shortening. This amplitude increased with time up to the angle in the force record during stretch, was constant for the remainder of the stretch, and decreased with time after the end of stretch; it was consistently less than the critical amplitude of stretch required to reach the breakpoint of force enhancement during stretch but was also independent of sarcomere length. The force drop accompanying the critical release showed a small increase up to an optimum magnitude at 2.4--2.7 microns sarcomere length, with a decrease at longer lengths.  相似文献   

6.
Non-cross-bridge calcium-dependent stiffness in frog muscle fibers   总被引:2,自引:0,他引:2  
At the end of the force transient elicited by a fast stretch applied to an activated frog muscle fiber, the force settles to a steady level exceeding the isometric level preceding the stretch. We showed previously that this excess of tension, referred to as "static tension," is due to the elongation of some elastic sarcomere structure, outside the cross bridges. The stiffness of this structure, "static stiffness," increased upon stimulation following a time course well distinct from tension and roughly similar to intracellular Ca2+ concentration. In the experiments reported here, we investigated the possible role of Ca2+ in static stiffness by comparing static stiffness measurements in the presence of Ca2+ release inhibitors (D600, Dantrolene, 2H2O) and cross-bridge formation inhibitors [2,3-butanedione monoxime (BDM), hypertonicity]. Both series of agents inhibited tension; however, only D600, Dantrolene, and 2H2O decreased at the same time static stiffness, whereas BDM and hypertonicity left static stiffness unaltered. These results indicate that Ca2+, in addition to promoting cross-bridge formation, increases the stiffness of an (unidentified) elastic structure of the sarcomere. This stiffness increase may help in maintaining the sarcomere length uniformity under conditions of instability. intact muscle fiber; static stiffness; tension inhibitors; titin  相似文献   

7.
Passive stretch, isometric contraction, and shortening were studied in electron micrographs of striated, non-glycerinated frog muscle fibers. The artifacts due to the different steps of preparation were evaluated by comparing sarcomere length and fiber diameter before, during, and after fixation and after sectioning. Tension and length were recorded in the resting and contracted fiber before and during fixation. The I filaments could be traced to enter the A band between the A filaments on both sides of the I band, creating a zone of overlap which decreased linearly with stretch and increased with shortening. This is consistent with a sliding filament model. The decrease in the length of the A and I filaments during isometric contraction and the finding that fibers stretched to a sarcomere length of 3.7 µ still developed 30 per cent of the maximum tetanic tension could not be explained in terms of the sliding filament model. Shortening of the sarcomeres near the myotendinous junctions which still have overlap could account for only one-sixth of this tension, indicating that even those sarcomeres stretched to such a degree that there is a gap between A and I filaments are activated during isometric contraction (increase in stiffness). Shortening, too, was associated with changes in filament length. The diameter of A filaments remained unaltered with stretch and with isometric contraction. Shortening of 50 per cent was associated with a 13 per cent increase in A filament diameter. The area occupied by the fibrils and by the interfibrillar space increased with shortening, indicating a 20 per cent reduction in the volume of the fibrils when shortening amounted to 40 per cent.  相似文献   

8.
H Iwamoto 《Biophysical journal》1995,69(3):1022-1035
The dynamic characteristics of the low force myosin cross-bridges were determined in fully calcium-activated skinned rabbit psoas muscle fibers shortening under constant loads (0.04-0.7 x full isometric tension Po). The shortening was interrupted at various times by a ramp stretch (duration, 10 ms; amplitude, up to 1.8% fiber length) and the resulting tension response was recorded. Except for the earlier period of velocity transients, the tension response showed nonlinear dependence on stretch amplitude; i.e., the magnitude of the tension response started to rise disproportionately as the stretch exceeded a critical amplitude, as in the presence of inorganic phosphate (Pi). This result, as well as the result of stiffness measurement, suggests that the low force cross-bridges similar to those observed in the presence of Pi (presumably A.M.ADP.Pi) are significantly populated during shortening. The critical amplitude of the shortening fibers was greater than that of isometrically contracting fibers, suggesting that the low force cross-bridges are more negatively strained during shortening. As the load was reduced from 0.3 to 0.04 P0, the shortening velocity increased more than twofold, but the amount of the negative strain stayed remarkably constant (approximately 3 nm). This This insensitiveness of the negative strain to velocity is best explained if the dissociation of the low force cross-bridges is accelerated approximately in proportion to velocity. Along with previous reports, the results suggest that the actomyosin ATPase cycle in muscle fibers has at least two key reaction steps in which rate constants are sensitively regulated by shortening velocity and that one of them is the dissociation of the low force A.M.ADP.Pi cross-bridges. This step may virtually limit the rate of actomyosin ATPase turnover and help increase efficiency in fibers shortening at high velocities.  相似文献   

9.
Single fibers from the tibialis anterior muscle of Rana temporaria at 0.8-3.8 degrees C were subjected to long tetani lasting up to 8 s. Stretch of the fiber early in the tetanus caused an enhancement of force above the isometric control level which decayed only slowly and stayed higher throughout the contraction. This residual enhancement was uninfluenced by velocity of stretch and occurred only on the descending limb of the length-tension curve. The absolute magnitude of the effect increased with sarcomere length to a maximum at approximately 2.9 micrometers and then declined. The phenomenon was further characterized by its dependence on the amplitude of stretch. The final force level reached after stretch was usually higher than the isometric force level corresponding to the starting length of the stretch. The possibility that the phenomenon was caused by nonuniformity of sarcomere length along the fiber was examined by (a) laser diffraction studies that showed sarcomere stretch at all locations and (b) studies of 9-10 segments of approximately 0.6-0.7 mm along the entire fiber, which all elongated during stretch. Length-clamped segments showed residual force enhancement after stretch when compared with the tetanus produced by the same segment held at the short length as well as at the long length. It is concluded that residual force enhancement after stretch is a property shown by all individual segments along the fiber.  相似文献   

10.
Experiments were undertaken to determine the contribution of passive tension to total tension during rapid shortening in a stimulated muscle fiber. Results were obtained by applying shortening movements at constant velocities slightly less than Vu (the velocity of unloaded shortening) to intact twitch fibers isolated from the frog (Rana temporaria). The tension maintained by unstimulated fibers during such shortening movements ("dynamic passive tension") from moderately long lengths was greater than zero but much less than the passive tension measured under static conditions ("static passive tension") at the same lengths. Fibers maximally activated by electrical stimulation and then shortened at the same velocity over the same range of average sarcomere lengths maintained tension that was greater than zero but less than the dynamic passive tension. For average sarcomere lengths up to approximately 3.1 microns, the dynamic passive tension appeared to be substantially abolished by activation. The onset of the apparent disappearance of dynamic passive tension was studied by initiating the stimulation and the shortening movement simultaneously. The resulting tension response exhibited a latency relaxation that was increased in amplitude compared with the isometric case, followed by a brief tension rise, giving way to a steady tension level equal to that expected if stimulation had been initiated well before the release. These changes are qualitatively explained in terms of the establishment of a steady state distribution of deformations of attached cross-bridges.  相似文献   

11.
Tension responses to ramp stretches of 1-3% Lo (fiber length) in amplitude were examined in resting muscle fibers of the rat at temperatures ranging from 10 degrees C to 36 degrees C. Experiments were done using bundles of approximately 10 intact fibers isolated from the extensor digitorum longus (a fast muscle) and the soleus (a slow muscle). At low temperatures (below approximately 20 degrees C), the tension response consisted of an initial rise to a peak during the ramp followed by a complex tension decay to a plateau level; the tension decay occurred at approximately constant sarcomere length. The tension decay after a standard stretch at approximately 3-4.Lo/s contained a fast, an intermediate, and a (small amplitude) slow component, which at 10 degrees C (sarcomere length approximately 2.5 microns) were approximately 2000.s-1, approximately 150.s-1, and approximately 25.s-1 for fast fibers and approximately 2000.s-1, approximately 70.s-1 and approximately 8.s-1 for slow fibers, respectively. The fast component may represent the decay of interfilamentary viscous resistance, and the intermediate component may be due to viscoelasticity in the gap (titin, connectin) filament. The two- to threefold fast-slow muscle difference in the rate of passive tension relaxation (in the intermediate and the slow components) compares with previously reported differences in the speed of their active contractions; this suggests that "passive viscoelasticity" is appropriately matched to contraction speed in different muscle fiber types. At approximately 35 degrees C, the fast and intermediate components of tension relaxation were followed by a delayed tension rise at approximately 10.s-1 (fast fibers) and 2.5.s-1 (slow fibers); the delayed tension rise was accompanied by sarcomere shortening. BDM (5-10 mM) reduced the active twitch and tetanic tension responses and the delayed tension rise at 35 degrees C; the results indicate stretch sensitive activation in mammalian sarcomeres at physiological temperatures.  相似文献   

12.
Permeabilized rat soleus muscle fibers were subjected to repeated triangular length changes (paired ramp stretches/releases, 0.03 l(0), +/- 0.1 l(0) s(-1) imposed under sarcomere length control) to investigate whether the rate of stiffness recovery after movement increased with the level of Ca(2+) activation. Actively contracting fibers exhibited a characteristic tension response to stretch: tension rose sharply during the initial phase of the movement before dropping slightly to a plateau, which was maintained during the remainder of the stretch. When the fibers were stretched twice, the initial phase of the response was reduced by an amount that depended on both the level of Ca(2+) activation and the elapsed time since the first movement. Detailed analysis revealed three new and important findings. 1) The rates of stiffness and tension recovery and 2) the relative height of the tension plateau each increased with the level of Ca(2+) activation. 3) The tension plateau developed more quickly during the second stretch at high free Ca(2+) concentrations than at low. These findings are consistent with a cross-bridge mechanism but suggest that the rate of the force-generating power-stroke increases with the intracellular Ca(2+) concentration and cross-bridge strain.  相似文献   

13.
The interplay between passive and active mechanical properties of indirect flight muscle of the waterbug (Lethocerus) was investigated. A functional dissection of the relative contribution of cross-bridges, actin filaments, and C filaments to tension and stiffness of passive, activated, and rigor fibers was carried out by comparing mechanical properties at different ionic strengths of sarcomeres with and without thin filaments. Selective thin filament removal was accomplished by treatment with the actin-severving protein gelsolin. Thin filament, removal had no effect on passive tension, indicating that the C filament and the actin filament are mechanically independent and that passive tension is developed by the C filament in response to sarcomere stretch. Passive tension increased steeply with sarcomere length until an elastic limit was reached at only 6-7% sarcomere extension, which corresponds to an extension of 350% of the C filament. The passive tension-length relation of insect flight muscle was analyzed using a segmental extension model of passive tension development (Wang, K, R. McCarter, J. Wright, B. Jennate, and R Ramirez-Mitchell. 1991. Proc. Natl. Acad. Sci. USA. 88:7101-7109). Thin filament removal greatly depressed high frequency passive stiffness (2.2 kHz) and eliminated the ionic strength sensitivity of passive stiffness. It is likely that the passive stiffness component that is removed by gelsolin is derived from weak-binding cross-bridges, while the component that remains is derived from the C filament. Our results indicate that a significant number of weak-binding cross-bridges exist in passive insect muscle at room temperature and at an ionic strength of 195 mM. Analysis of rigor muscle indicated that while rigor tension is entirely actin based, rigor stiffness contains a component that resists gelsolin treatment and is therefore likely to be C filament based. Active tension and active stiffness of unextracted fibers were directly proportional to passive tension before activation. Similarly, passive stiffness due to weak bridges also increased linearly with passive tension, up to a limit. These correlations lead us to propose a stress-activation model for insect flight muscle in which passive tension is a prerequisite for the formation of both weak-binding and strong-binding cross-bridges.  相似文献   

14.
A low-cost, high-resolution (spatial and temporal) image analysis system was developed to measure sarcomere length (Sl) during fast twitch of isolated striated muscle fibers at different temperatures. Fiber images were examined during twitch with an imaging rate of 220 Hz. To increase temporal resolution beyond 220 Hz, consecutive temporally shifted image sequences (N sequences) were acquired. Individual or average Sl was directly measured from a horizontal profile without spatial-frequency assessment. Measurement precision (E) was determined and expressed as: E(%) = 100xPs/(IsxSl), where Ps is the pixel size and Is the involved sarcomere number. At 18 degrees C during isometric twitch, Sls were measured with 220 Hz temporal and 0.2% spatial resolutions. Sl shortened in the central region (0.21+/-0.12 microm) as tension developed, reaching a maximal shortening of 8.09 + 2.05% (at rest, Sl = 2.59+/-0.05 microm, n = 4) in 32.5+/-1.96 ms. At 30 degrees C, Sl variations were examined with 880 Hz temporal resolution, in which case maximal S1 shortening was reached in 15.74+/-1.99 ms, and then decreased to 5.19+/-1.97% (at rest, S1 = 2.6+/-0.06 microm). The twitch tension developed by the whole fiber was recorded and compared with sarcomere length behavior. Sarcomere length variations in the central region were representative of overall developed tensions at 18 and 30 degrees C.  相似文献   

15.
The mechanical compliance (reciprocal of stiffness) of thin filaments was estimated from the relative compliance of single, skinned muscle fibers in rigor at sarcomere lengths between 1.8 and 2.4 micron. The compliance of the fibers was calculated as the ratio of sarcomere length change to tension change during imposition of repetitive cycles of small stretches and releases. Fiber compliance decreased as the sarcomere length was decreased below 2.4 micron. The compliance of the thin filaments could be estimated from this decrement because in this range of lengths overlap between the thick and thin filaments is complete and all of the myosin heads bind to the thin filament in rigor. Thus, the compliance of the overlap region of the sarcomere is constant as length is changed and the decrease in fiber compliance is due to decrease of the nonoverlap length of the thin filaments (the I band). The compliance value obtained for the thin filaments implies that at 2.4-microns sarcomere length, the thin filaments contribute approximately 55% of the total sarcomere compliance. Considering that the sarcomeres are approximately 1.25-fold more compliant in active isometric contractions than in rigor, the thin filaments contribute approximately 44% to sarcomere compliance during isometric contraction.  相似文献   

16.
The contraction dynamics of end and center regions of single fibers have been measured during fixed-end tetani. Experimental control and data acquisition are provided by a digital system that can acquire diffraction data as fast as every 260 microseconds for 300-700 ms. Tension records are simultaneously displayed on a storage oscilloscope. Resting sarcomere length variation between the end and center regions was analogous to that of Gordon et al. (1966). During the rapid rise in force (less than 45 ms), the end regions contract almost twice as fast as the center regions. During the slow rise in force, the velocity of contraction of the end regions was 3.8 times the velocity of stretch of the center regions. In addition, factors that affected the rate and extent of the slow rise in tension also affected the rate and extent of end shortening. In 58% of the cases studied, the amount of shortening observed in the end region was enough to explain the extent of the slow rise in tension. These data support the explanation of creep first proposed by A. V. Hill (1953) and used by Gordon et al. (1966) to justify their use of the back-extrapolation technique in measuring the isometric force-generating capability of a single fiber. These data also indicate that the laser diffraction technique may provide an effective, noninvasive method for studying sarcomere dynamics during creep and related phenomena.  相似文献   

17.
Inorganic phosphate (Pi) decreases the isometric tension of skinned skeletal muscle fibers, presumably by increasing the relative fraction of a low force quaternary complex of actin, myosin, ADP, and Pi (A.M.ADP.Pi). At the same time, Pi gives rise to a fast relaxing mechanical component as detected by oscillations at 500 Hz. To characterize the dynamic properties of this A.M.ADP.Pi complex, the effect of Pi on the tension response to stretch was investigated with rabbit psoas fibers. A ramp stretch applied in the presence of 20 mM Pi increased tension more than in the control solution (0 mM Pi) but reduced the fast relaxing component to the control level. Thus, a stretch seems to convert the low force, fast relaxing A.M.ADP.Pi complex to a high force, slow relaxing form. However, the Pi-induced enhancement of the tension response was not observed until the fibers were stretched more than 0.4% of their length, suggesting that a critical cross-bridge extension of approximately 4 nm is required for this conversion. The rate constant of the attachment/detachment of this low force complex was estimated from the velocity dependence of the enhancement. It was approximately 10 s-1, in marked contrast to the A.M.ADP.Pi complex under low salt, relaxed conditions (approximately 10,000 s-1). The enhancement of the tension response was not observed when isometric tension was reduced by lowering free calcium, implying that calcium and Pi affect different steps in the actomyosin ATPase cycle during contraction.  相似文献   

18.
The sarcomere length-tension relation in skeletal muscle   总被引:5,自引:0,他引:5       下载免费PDF全文
Tension development during isometric tetani in single fibers of frog semitendinosus muscle occurs in three phases: (a) in initial fast-rise phase; (b) a slow-rise phase; and (c) a plateau, which lasts greater than 10 s. The slow-rise phase has previously been assumed to rise out of a progressive increase of sarcomere length dispersion along the fiber (Gordon et al. 1966. J. Physiol. [Lond.]. 184:143--169;184:170-- 192). Consequently, the "true" tetanic tension has been considered to be the one existing before the onset of the slow-rise phase; this is obtained by extrapolating the slowly rising tension back to the start of the tetanus. In the study by Gordon et al. (1966. J. Physiol. [Lond.] 184:170--192), as well as in the present study, the relation between this extrapolated tension and sarcomere length gave the familiar linear descending limb of the length-tension relation. We tested the assumption that the slow rise of tension was due to a progressive increase in sarcomere length dispersion. During the fast rise, the slow rise, and the plateau of tension, the sarcomere length dispersion at any area along the muscle was less than 4% of the average sarcomere length. Therefore, a progressive increase of sarcomere length dispersion during contraction appears unable to account for the slow rise of tetanic tension. A sarcomere length-tension relation was constructed from the levels of tension and sarcomere length measured during the plateau. Tension was independent of sarcomere length between 1.9 and 2.6 microgram, and declined to 50% maximal at 3.4 microgram. This result is difficult to reconcile with the cross-bridge model of force generation.  相似文献   

19.
Rapid length changes were applied (within 0.2 ms or 0.4 ms) to single isometrically contracted glycerol extracted muscle fibres of the dorsal longitudinal muscle ofLethocerus maximus suspended in an Ca2+ and ATP containing solution at 20–23‡ C. Force transients and the fibre stiffness were measured during and after rapid length changes. At length changesbelow 0.5% of the initial fibre length (∼ 2.4 Μm sarcomere length) the mechanical transients were characterized as follows: (1) After stretch and after release the force regains at least partly the value of tension before the length change within a quick phase of tension recovery. The quick phase induced by stretch was nearly completed within 1–2 ms. (2) A pulse in length of 1.5 ms duration, i.e., a stretch followed by a release to the initial length or a release followed by a stretch to the initial length, was applied to the fibre. The force transient induced by this procedure regains after the second length change the value of the isometric tension before the procedure. (3) The stiffness was constant during each length change of the “pulse” and was equal during the first and the second length changes. These findings are predicted by the muscle contraction model of Huxley and Simmons (1971): The identical force before and after a length pulse may indicate that the rotation of cross bridges after the first length change is followed by a rotation into the original position after the second length change. The constancy of the stiffness during the length changes may indicate a Hookean elastic element of the cross bridge. The similarity of the stiffness during the first and the second length changes, i.e., before and after the quick phase, gives evidence that the quick phases after stretch and after release are not accompanied by a change in the net number of attached cross bridges. If stretches ofmore than 0.5% of the initial length were applied, the mechanical transient of the muscle fibre changed as follows: (1) An ultra fast tension decay phase (duration < 0.4 ms) was observed in addition to the slower decay phase induced by the smaller stretches. (2) If the initial stretch was followed by a release to the initial length, no fast recovery phase was observed, which returns the force to the value before the stretch. The reduced tension value persists for a longer period in time than 10 ms. (3) If the muscle was stretched and released repetitively an ultra fast quick phase was induced only by the first stretch. (4) The stiffness increased during stretch, but was found to be the same in the isometrically contracting muscle and after the quick tension decay phase following a large stretch. These findings indicate that the contraction model of Huxley and Simmons has to be extended by a further process additional to cross bridge rotation in case of large stretches (> 0.5%L ini). The findings are taken to indicate a rapid detachment and reattachment of overstrained cross bridges, i.e., a cross bridge slippage induced by large stretches.  相似文献   

20.
The stiffness of single skinned rabbit psoas fibers was measured during rapid length changes applied to one end of the fibers. Apparent fiber stiffness was taken as the initial slope when force was plotted vs. change in sarcomere length. In the presence of MgATP, apparent fiber stiffness increased with increasing speed of stretch. With the fastest possible stretches, the stiffness of relaxed fibers at an ionic strength of 20 mM reached more than 50% of the stiffness measured in rigor. However, it was not clear whether apparent fiber stiffness had reached a maximum, speed independent value. The same behavior was seen at several ionic strengths, with increasing ionic strength leading to a decrease in the apparent fiber stiffness measured at any speed of stretch. A speed dependence of apparent fiber stiffness was demonstrated even more clearly when stiffness was measured in the presence of 4 mM MgPPi. In this case, stiffness varied with speed of stretch over about four decades. This speed dependence of apparent fiber stiffness is likely due to cross-bridges detaching and reattaching during the stiffness measurement (Schoenberg, 1985. Biophys. J. 48:467). This means that obtaining an estimate of the maximum number of cross-bridges attached to actin in relaxed fibers at various ionic strengths is not straightforward.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号