首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A detailed model acetate-utilizing methanogenic biofilms accounting for the diffusion of neutral and ionic species, chemical equilibrium, electroneutrality, gas production within the biofilm, pH-dependent Monod kinetics, and the presence of a concentration boundary layer is presented. The model qualitatively fits the pH profiles that are reported for acetate-utilizing methanogenic aggregates. A sensitivity analysis on the biological parameters showed that the flux of acetate is sensitive to the maximum utilization rate, half-saturation constant, and biofilm density for the bulk conditions investigated. Criteria when traditional biofilm models can be used to predict the flux of acetate into the biofilm are established. If the maximum pH change predicted using a hypothetical system is within +/-0.05, the traditional model predicts the flux to within +/-5% of the value calculated with the model developed in this study. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited.  相似文献   

4.
A rigorous steady-state model of anaerobic biofilm reactors taking into account acid-base and gas-phase equilibria in the reactor in conjunction with detailed chemical equilibria and mass transfer in acetate-utilizing methanogenic biofilms is presented. The performances of ideal completely stirred tank reactors (CSTRs) and plug-flow reactors, as well as reactors with nonideal hydraulic conditions, are simulated. Decreasing the surface loading rate increases the acetate removal efficiency, while decreasing the influent pH and increasing the buffering capacity improves the removal efficiency only if the bulk pH of the reactor shifts toward more optimal values between 6.8 to 7.0. The reactor can have negative or positive removal efficiencies depending on the start-up conditions. The respiration coefficient plays a critical role in determining the minimum influent pH required for reactor recovery after failure. Having multiple CSTRs-in-series generally increases the overall removal efficiency for the influent conditions investigated. Monitoring of the influent feed quality is critical for plug-flow reactors, becasue failure of the initial sections of the reactor may cause a cascading effect that may lead to a rapid reactor failure. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
Bioprocesses using filamentous fungi immobilized in inert supports present many advantages when compared to conventional free cell processes. However, assessment of the real advantages of the unconventional process demands a rigorous study of the limitations to diffusional mass transfer of the reagents, especially concerning oxygen. In this work, a comparative study was carried out on the cephalosporin C production process in defined medium containing glucose and sucrose as main carbon and energy sources, by free and immobilized cells of Cephalosporium acremonium ATCC 48272 in calcium alginate gel beads containing alumina. The effective diffusivity of oxygen through the gel beads and the effectiveness factors related to the respiration rate of the microorganism were determined experimentally. By applying Monod kinetics, the respiration kinetics parameters were experimentally determined in independent experiments in a complete production medium. The effectiveness factor experimental values presented good agreement with the theoretical values of the approximated zero‐order effectiveness factor, considering the dead core model. Furthermore, experimental results obtained with immobilized cells in a 1.7‐L tower bioreactor were compared with those obtained in 5‐L conventional fermentor with free cells. It could be concluded that it is possible to attain rather high production rates working with relatively large diameter gel beads (ca. 2.5 mm) and sucrose consumption‐based productivity was remarkably higher with immobilized cells, i.e., 0.33 gCPC/kg sucrose/h against 0.24 gCPC/kg sucrose/h in the aerated stirred tank bioreactor process. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 63: 593–600, 1999.  相似文献   

6.
The effect of various operating variables such as initial inoculum circulation, dilution rate, chemical oxygen demand (COD) loading rate, and quantity and quality of inoculum on the process of film formation on sand surface and reactor performance were studied using synthetic glucose based wastewater. It was found that the film formation process is favored by a high dilution rate, a large quantity of inoculum, and an inoculum having high methane producing capacity. Experimental observations indicate that the biofilm formation process is initiated by methanogenic bacteria.  相似文献   

7.
A simple correlation method has been developed to predict effective diffusivities of small molecules in heterogeneous materials such as immobilized cell systems. This correlation uses a single diffusivity measurement at one cell volume fraction to predict diffusivities for any other volume fraction of cell. The method has been applied to 20 sets of published diffusivity measurements in immobilized cell systems and accurately predicts affective diffusivities of molecules for the full range of cell fractions. It may also be used to predict effective diffusivities in heterogeneous materials in which the diffusivity of a molecule in each phase and the volume fraction of each phase are known. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
Here we examine the efficiency of different immobilized cell gradients applied to immobilized Saccharomyces cerevisiae fermenting glucose to ethanol. We developed a simulation model to fully study the competing effects of mass transfer hindrance and kinetics. It is based on a diffusion-reaction model and can be used to analyze the different cell concentration profiles inside an immobilized gel bead, in terms of effectiveness factors, productivity, and mass flux. The internal diffusion coefficient, which varies with the local cell concentration, as well as the external mass transfer, is taken into account when describing the efficiency. Although the diffusion hindrance is greater at higher cell concentrations, high cell concentration is still advantageous in the present case because the increase in reaction rate outweighs the diffusion hindrance. Thus, high cell concentrations contribute to increased productivity. The influence of the cell concentration gradient on the efficiency of the beads is negligible. Within the range of cell profiles studied it has been established that the location of the cells within the bead is of lesser importance. However, a steep cell gradient increases the importance of the external mass transfer.  相似文献   

9.
Anaerobic oxidation of methane coupled to denitrification (AOM-D) in a membrane biofilm reactor (MBfR), a platform used for efficiently coupling gas delivery and biofilm development, has attracted attention in recent years due to the low cost and high availability of methane. However, experimental studies have shown that the nitrate-removal flux in the CH4-based MBfR (<1.0 g N/m2-day) is about one order of magnitude smaller than that in the H2-based MBfR (1.1–6.7 g N/m2-day). A one-dimensional multispecies biofilm model predicts that the nitrate-removal flux in the CH4-based MBfR is limited to <1.7 g N/m2-day, consistent with the experimental studies reported in the literature. The model also determines the two major limiting factors for the nitrate-removal flux: The methane half-maximum-rate concentration (K2) and the specific maximum methane utilization rate of the AOM-D syntrophic consortium (kmax2), with kmax2 being more important. Model simulations show that increasing kmax2 to >3 g chemical oxygen demand (COD)/g cell-day (from its current 1.8 g COD/g cell-day) and developing a new membrane with doubled methane-delivery capacity (Dm) could bring the nitrate-removal flux to ≥4.0 g N/m2-day, which is close to the nitrate-removal flux for the H2-based MBfR. Further increase of the maximum nitrate-removal flux can be achieved when Dm and kmax2 increase together.  相似文献   

10.
Mixed culture of microorganisms immobilized onto Celite diatomaceous earth particles were used to degrade 3,4-dichloroaniline (34DCA) in a three-phase draft tube fluidized bed bioreactor. Biodegradation was confirmed as the dominant removal mechanism by measurements of the concomitant chloride ion evolution. Degradation efficiencies of 95% were obtained at a reactor retention time of 1.25 h. A mathematical model was used to describe the simultaneous diffusion and reaction of 34DCA and oxygen in the biofilms on the particles in the reactor. The parameters describing freely suspended cell growth on 34DCA were obtained in batch experiments. The model was found to describe the system well for three out of four steady states and to predict qualitatively the experimentally observed transition in the biofilm kinetics from 34DCA to oxygen limitation.  相似文献   

11.
This work describes an alternative method for estimation of reaction rate of a biofilm process without using a model equation. A first principles model of the biofilm process is integrated with artificial neural networks to derive a hybrid mechanistic-neural network rate function model (HMNNRFM), and this combined model structure is used to estimate the complex kinetics of the biofilm process as a consequence of the validation of its steady state solution. The performance of the proposed methodology is studied with the aid of the experimental data of an anaerobic fixed bed biofilm reactor. The statistical significance of the method is also analyzed by means of the coefficient of determination (R2) and model efficiency (ME). The results demonstrate the effectiveness of HMNNRFM for estimating the complex kinetics of the biofilm process involved in the treatment of industry wastewater.  相似文献   

12.
Diffusion limitation of phosphate possibly constitutes a serious problem regarding the use of a biofilm reactor for enhanced biological phosphorus removal. A lab-scale reactor for simultaneous removal of phosphorus and nitrate was operated in a continuous alternating mode of operation. For a steady-state operation with excess amounts of carbon source (acetate) during the anaerobic phase, the same amount of phosphate was released during the anaerobic phase as was taken up during the anoxic phase. The measured phosphorus content of the biomass that detached during backwash after an anoxic phase was low, 2.4 +/- 0.4% (equal to 24 +/- 4 mg P/g TS). A simplified computer model indicated the reason to be phosphate diffusion limitation and the model revealed a delicate balance between the obtainable phosphorus contents of the biomass and operating parameters, such as backwash interval, biofilm thickness after backwash, and phase lengths. The aspect of diffusion is considered of crucial importance when evaluating the performance of a biofilter for phosphate removal.  相似文献   

13.
14.
An electrogenic biofilm was developed on a macroporous chitosan-carbon nanotube (CHIT-CNT) electrode under constant poised potential (?0.25 V versus Ag/AgCl reference electrode) and flow through conditions utilizing the effluent of an anaerobic digester as both the inoculant and substrate for the electrogenic biofilm. After 125 days of inoculation the bioelectrode demonstrated an open circuit potential of ?0.62 V and a current density of 9.43 μA cm?3 (at ?0.25 V). Scanning electron microscopy images indicate thorough surface coverage of the biofilm with a high density of bacterial nanowires physically connecting bacteria to bacteria and bacteria to carbon nanotube (electrode surface) suggesting the nanowires are electrically conductive. DGGE was used to identify the major bacterial and archaeal populations.  相似文献   

15.
Activation energies of suspended and immobilized nitrifying bacteria were determined and compared to determine if diffusion limitation results in decreased sensitivity for temperature. The activation energy for the respiration activity of suspended Nitrosomonas europaea and Nitrobacter agilis was found to be 86.4 and 58.4 kJ mol(-1), respectively. The activation energy for oxygen diffusion in the support material, kappa-carrageenan, determined from the effect of temperature on the effective diffusion coefficient (D), was 17.2 kJ mol(-1). Consequently, the apparent actvation energy of diffusion limited cells should be lower. It was indeed shown that due to the effect of diffusion limitation and to temperature effects on the Monod constant K(s), the immobilized-cell activity was less sensitive to temperature. The apparent activation energy for immobilized Ns. europaea was between 28.6 and 94.2 kJ mol(-1) and for immobilized Nb. agilis between 1.4 and 72.9 kJ mol(-1), depending on the oxygen concentration and temperature. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
Bed segregation in a fluidized bed bioreactor profoundly influenced biofilm thickness and microbial activities of the biofilm along the bed height. Bioparticles coated with a thin biofilm, observed at the bottom of the reactor, had a higher specific activity in propylene glycol and n-propanol degradation than in thick biofilms developed at the top of the reactor. Although no significant difference was observed in specific activity for propionate and acetate along the reactor flow axis, more total propionate and acetate conversion occurred in regions of thicker biofilm accumulation.  相似文献   

17.
Abstract

Staphylococcus lugdunensis is an emerging high-virulent pathogen causative of hospital-acquired infections. Biofilm formation is a complex pathogenic process that leads to well-established bacterial communities. There is a paucity of data on the composition of the biofilm matrix among S. lugdunensis strains. Here, twenty-two S. lugdunensis clinical isolates, mainly from orthopaedic infections but also from other clinical sources, were sub-grouped by ribotyping and dendrogram analysis. Biofilms were analysed by fluorimetric methods based on FITC-Wheat Germ Agglutinin, SYPRO Ruby and TOTO-1 dyes to detect exopolysaccharides, proteins and extracellular DNA (eDNA), respectively. Biofilm morphology was investigated under confocal laser scanning microscopy (CLSM). Isolates displayed intriguing diversities in biofilm mass and matrix composition. The content of exopolysaccharides was found to be to be strongly associated with the biofilm mass (R2 = 0.882), while the content of proteins turned out to be weakly (R2 = 0.465) and that of eDNA very weakly associated (R2 = 0.202) to the biofilm mass.  相似文献   

18.
The ability to simultaneously measure both biofilm thickness and the mass transfer coefficient of an inert tracer through it provides a powerful method to study biofilm development. In this communication previously published data has been collated to interpret global trends in biofilm structure during the transition towards steady-state. It appears that sudden changes in biofilm structure (directly related to the rate of change of biofilm mass transfer resistance) may occur following transitions in rate of biomass production. These observations are consistent with the concept of consolidation, recently introduced into spatially structured biofilm mathematical models to account for structural realignment of the biofilm under dynamic conditions.  相似文献   

19.
ABSTRACT:?

There is great commercial interest in using immobilized cells for fermented beverage processes. The process advantages offered by immobilized cells are numerous, but an understanding of the mass transfer characteristics of a given system is needed in order to achieve efficient processes and high quality products. This is especially important in the food and beverage industry where fermentation products contribute to the flavor and aroma of the final product. The fundamental principles of mass transfer in immobilized cell systems are covered in this review. An overview of the current research efforts focused on external and internal mass transfer characteristics of immobilized cells used in fermentation processes is presented. Methods for measuring substrate diffusivities within immobilization matrices and areas requiring further research are discussed.  相似文献   

20.
The ability of hydrogen diffusion to account for the rates of methane production in microbial aggregates was studied in a defined coculture consisting of a sulfate reducer grown as a syntrophic hydrogen producer in the absence of sulfate and a methanogen. The hydrogen uptake kinetics of the methanogen were determined using the infinite dilution technique. The maximum hydrogen uptake velocity was 7.1 nmol/min/μg protein and the half saturation constant for hydrogen uptake was 386 nmol/liter. A threshold of 28 nmol/liter below which no further hydrogen consumption occurred was observed. The reconstituted co-culture was shown to produce methane at rates similar to mixed culture enrichments grown on lactate. The diffusion model demonstrated that for the particular system studied, the rates of hydrogen diffusion could account for the overall rate of methane production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号