首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Tsetse control has long been an important option for reducing the impact of African trypanosomiasis but, although many effective methods have been used, the results have seldom proved sustainable. Developments to reduce cost and environmental impact increasingly limit the choices available for control and the scale of operations has declined. Conversely, human trypanosomiasis has reached epidemic proportions in some countries. Here, Reg Allsopp argues that those tasked with managing trypanosomiasis or committed to poverty alleviation in Africa should consider large-scale, area-wide tsetse control involving all proven methods, including aerial spraying and the sterile insect technique.  相似文献   

9.
10.
Trypanosoma cruzi, the causative agent of American trypanosomiasis (Chagas disease) is a parasite of wild mammals of Americas. It has been further transmitted to man through an insect vector belonging to the Reduviidae family. In the context of an ecoepidemiological study of this vector borne anthropozoonosis, a medical anthropological overview tries, by using data from literature, to clarify the different ways human activities play on the disease epidemiological cycle. The everyday human activities support domiciliation of triatomine bugs. But, the human intervention in the natural environment disturbs strongly the ecology of the vectors or hosts and leads to a new structuring of the natural foci of the disease with its displacement toward the human environment. The way society or individuals manage the disease plays also an important role. Some human activities, as building dwelling structures, have been well studied, but some others, such as the real impact of the human modes of production, are less known. A medical anthropology study of the role of human activities on the foci of Chagas disease is still needed.  相似文献   

11.
BackgroundIn the 20th century, epidemics of human African trypanosomiasis (HAT) ravaged communities in a number of African countries. The latest surge in disease transmission was recorded in the late 1990s, with more than 35,000 cases reported annually in 1997 and 1998. In 2013, after more than a decade of sustained control efforts and steady progress, the World Health Assembly resolved to target the elimination of HAT as a public health problem by 2020. We report here on recent progress towards this goal.Methodology/principal findingsWith 992 and 663 cases reported in 2019 and 2020 respectively, the first global target was amply achieved (i.e. fewer than 2,000 HAT cases/year). Areas at moderate or higher risk of HAT, where more than 1 case/10,000 people/year are reported, shrunk to 120,000 km2 for the five-year period 2016–2020. This reduction of 83% from the 2000–2004 baseline (i.e. 709,000 km2) is slightly below the target (i.e. 90% reduction). As a result, the second global target for HAT elimination as a public health problem cannot be considered fully achieved yet. The number of health facilities able to diagnose and treat HAT expanded (+9.6% compared to a 2019 survey), thus reinforcing the capacity for passive detection and improving epidemiological knowledge of the disease. Active surveillance for gambiense HAT was sustained. In particular, 2.8 million people were actively screened in 2019 and 1.6 million in 2020, the decrease in 2020 being mainly caused by COVID-19-related restrictions. Togo and Côte d’Ivoire were the first countries to be validated for achieving elimination of HAT as a public health problem at the national level; applications from three additional countries are under review by the World Health Organization (WHO).Conclusions/significanceThe steady progress towards the elimination of HAT is a testament to the power of multi-stakeholder commitment and coordination. At the end of 2020, the World Health Assembly endorsed a new road map for 2021–2030 that set new bold targets for neglected tropical diseases. While rhodesiense HAT remains among the diseases targeted for elimination as a public health problem, gambiense HAT is targeted for elimination of transmission. The goal for gambiense HAT is expected to be particularly arduous, as it might be hindered by cryptic reservoirs and a number of other challenges (e.g. further integration of HAT surveillance and control into national health systems, availability of skilled health care workers, development of more effective and adapted tools, and funding for and coordination of elimination efforts).  相似文献   

12.
13.
14.
15.
16.
17.
18.
In West and Central Africa, the protozoan parasite Trypanosoma brucei (T. b.) gambiense causes a chronic form of Human African trypanosomiasis (HAT) that might last several years, whereas T. b. rhodesiense refers to an acute form in East Africa that lasts weeks to months. Without treatment, both forms can cause death. Diagnosis relies on detecting parasites in blood, lymph or cerebrospinal fluid. HAT was no longer considered a public health problem in the 1960s, but it returned to alarming levels in the 1990s. After intensifying case detection and treatment, WHO recently declared the situation is under control. However, research based on host and trypanosome interactions should be encouraged to help develop innovative tools for HAT diagnosis and treatment to prevent re-emergence.  相似文献   

19.
The emergence of more refined chronologies for climate change and archaeology in prehistoric Africa, and for the evolution of human mitochondrial DNA (mtDNA), now make it feasible to test more sophisticated models of early modern human dispersals suggested by mtDNA distributions. Here we have generated 42 novel whole-mtDNA genomes belonging to haplogroup L0, the most divergent clade in the maternal line of descent, and analysed them alongside the growing database of African lineages belonging to L0’s sister clade, L1’6. We propose that the last common ancestor of modern human mtDNAs (carried by “mitochondrial Eve”) possibly arose in central Africa ~180 ka, at a time of low population size. By ~130 ka two distinct groups of anatomically modern humans co-existed in Africa: broadly, the ancestors of many modern-day Khoe and San populations in the south and a second central/eastern African group that includes the ancestors of most extant worldwide populations. Early modern human dispersals correlate with climate changes, particularly the tropical African “megadroughts” of MIS 5 (marine isotope stage 5, 135–75 ka) which paradoxically may have facilitated expansions in central and eastern Africa, ultimately triggering the dispersal out of Africa of people carrying haplogroup L3 ~60 ka. Two south to east migrations are discernible within haplogroup LO. One, between 120 and 75 ka, represents the first unambiguous long-range modern human dispersal detected by mtDNA and might have allowed the dispersal of several markers of modernity. A second one, within the last 20 ka signalled by L0d, may have been responsible for the spread of southern click-consonant languages to eastern Africa, contrary to the view that these eastern examples constitute relicts of an ancient, much wider distribution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号