首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was conducted evaluating the response of serum parathyroid hormone to acute hypercalcaemia and long term administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in patients receiving maintenance haemodialysis. During infusion of elemental calcium 4 mg/kg/h over four hours in 12 patients not receiving vitamin D the concentration of serum amino terminal parathyroid hormone fell by 31-96% (mean 74.8 (SD 17.6)%) while that of carboxy terminal parathyroid hormone changed little. There was a strong inverse correlation between baseline serum calcium concentration and percentage fall in amino terminal parathyroid hormone during infusion (r = 0.88; p less than 0.001). In seven patients who received prolonged treatment with 1,25(OH)2D3 after calcium infusion there was a positive correlation between maximum percentage fall in amino terminal parathyroid hormone during infusion and the percentage fall in amino terminal parathyroid hormone after 1,25(OH)2D3 treatment (r = 0.79; p less than 0.05). The responsiveness of the parathyroid glands to changes in calcium in acute studies may be used to predict the efficacy of long term treatment with 1,25(OH)2D3. Patients in whom calcium infusion does not suppress parathyroid hormone may have true parathyroid autonomy and require early parathyroidectomy.  相似文献   

2.
Studies in animals and tissue culture have shown the importance of prolactin and growth hormone in regulating renal 1 alpha-hydroxylase activity and plasma concentrations of 1,25-dihydroxycholecalciferol (1,25(OH)2D3). Evidence for a similar role for these hormones in man was sought by using a radioreceptor assay to measure plasma 1,25(OH)2D3 concentrations in 20 normal subjects, 12 patients receiving dialysis, 11 patients with primary hyperparathyroidism, 10 pregnant women, seven women with prolactinoma, and 14 patients with acromegaly. Circulating 1,25(OH)2D3 concentrations were appreciably raised in the patients with primary hyperparathyroidism and the pregnant women (P less than 0.001), slightly but significantly increased in the patients with prolactinoma (P less than 0.05), and greatly raised in those with acromegaly (P less than 0.001). These results suggest that prolactin and growth hormone are important regulators of renal vitamin D metabolism in the physiological conditions of pregnancy, lactation, and growth in man.  相似文献   

3.
4.
Elevated serum levels of parathyroid hormone (PTH) contribute to the increased morbidity and mortality in renal failure patients. Parathyroid gland hyperplasia is a major cause of high serum PTH. The present studies used the rat model of renal failure to address the mechanisms underlying uremia-induced parathyroid hyperplasia and the antiproliferative properties of vitamin D therapy (1,25-dihydroxyvitamin D (1,25(OH)(2)D(3)) or its less calcemic analogs). Enhanced TGFalpha/EGFR co-expression is the major mitogenic signal in uremic parathyroid glands. At early stages of renal failure, vitamin D therapy efficiently counteracts uremia- and high phosphorus-induced hyperplasia by inhibiting the increases in parathyroid-TGFalpha/EGFR co-expression. In established hyperparathyroidism, characterized by highly enhanced-TGFalpha/EGFR co-expression, vitamin D therapy arrests growth by suppressing EGFR-growth signals from the plasma membrane and nuclear EGFR actions as a transactivator of the cyclin D1 gene, an important contributor to parathyroid hyperplasia in humans. In advanced renal failure, reduced-parathyroid vitamin D receptor levels limits the antiproliferative efficacy of vitamin D therapy. However, non-antiproliferative doses of 1,25-dihydroxyvitamin D enhance the anti-EGFR actions of EGFR-tyrosine kinase inhibitors (TKI). In fact, combined 1,25-dihydroxyvitamin D/TKI therapy inhibits parathyroid hyperplasia more efficiently than phosphorus restriction, the most powerful promoter of parathyroid growth arrest available at present.  相似文献   

5.
W Wang  E Lewin  K Olgaard 《Steroids》1999,64(10):726-734
Results from our lab have shown previously that parathyroid hormone (PTH) is not the key factor in the rapid regulation of plasma Ca2+. The possible role of 1,25(OH)2D3 in the rapid minute-to-minute regulation of plasma Ca2+, as addressed by a possible rapid non-genomic action of 1,25(OH)2D3, was therefore studied in vivo in rats. The rapid calcemic recovery from induction of hypocalcemia by a brief EGTA infusion was examined in vitamin D-depleted rats with intact parathyroid glands and in vitamin D depleted rats 1 h after parathyroidectomy (PTX). The influence of different levels of plasma 1,25(OH)2D3 on the rapid calcemic recovery from hypocalcemia was examined in PTX rats treated with 1,25(OH)2D3 for two days at two different doses of 0.2 microg/day, 0.05 microg/day or vehicle, and in PTX rats being BNX for two days, as well. Additionally, the long-term effect of 1,25(OH)2D3 on plasma Ca2+ homeostasis was examined. Plasma Ca2+ recovered significantly (P<0.05) 10 min after discontinuing EGTA in vitamin D-depleted rats with or without parathyroid glands. Plasma Ca2+ increased significantly (P<0.05) and at the same rate after induction of hypocalcemia in PTX rats with different levels of plasma 1,25(OH)2D3. The final levels of plasma Ca2+ obtained were set by 1,25(OH)2D3 in a dose-related manner. 1,25(OH)2D3 did not affect the rapid calcemic recovery from EGTA induced hypocalcemia, but only had an effect on the long-term plasma Ca2+ homeostasis in the rat.  相似文献   

6.
Plasma 1,25-dihydroxyvitamin D (1,25-(OH)2D) level, which is considered to be an indicator of parathyroid function, is possibly modified by the level of vitamin D. In the present study, we have investigated parathyroid function in terms of enhancement of the plasma levels of 1,25-(OH)2D after oral administration of 100 micrograms of 25-hydroxyvitamin D3 (25OHD3) in 9 cases of primary hyperparathyroidism (1 degree HPT), 7 cases of hypoparathyroidism (HP), 2 cases of pseudohypoparathyroidism (PHP) and 6 normal subjects. The plasma levels of 25-hydroxyvitamin D (25OHD) increased and reached a peak at 6-12 hours after the administration of 25OHD3. The plasma levels of 1,25-(OH)2D slightly increased but remained within the normal range after 25OHD3 administration in 3 of the normal subjects whose basal levels were rather low, but the increase in plasma 1,25-(OH)2D in control subjects was not statistically significant. In cases of 1 degrees HPT, the plasma 1,25-(OH)2D level rose significantly in all cases (P less than 0.05), although the pattern of the increase was not uniform. These increases were remarkable in the patients whose basal levels were low. On the other hand, an increase in the level was rarely observed in any of the cases of HP and in one of the cases of PHP. In another case, normocalcemic PHP, the plasma 1,25-(OH)2D level rose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The synthesis of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) is most strongly regulated by dietary calcium and the action of parathyroid hormone to increase 1alpha-hydroxylase (1alpha-OHase) and decrease 24-hydroxylase (24-OHase) in kidney proximal tubules. This study examines the hypothesis that 1,25-(OH)(2)D(3) synthesis, induced by dietary calcium restriction, is also the result of negative feedback regulation blockade. Rats fed a low calcium (0.02%, -Ca) diet and given daily oral doses of vitamin D (0, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 microg) remained hypocalcemic despite increasing levels of serum calcium in relation to the vitamin D dose. Plasma levels of 1,25-(OH)(2)D(3) rose to high levels (1200 pg/ml) at the high vitamin D dose levels. As expected, thyroparathyroidectomy caused a rapid fall in serum 1,25-(OH)(2)D(3). In rats fed a 0.47% calcium diet (+Ca) supplemented with vitamin D (4 microg/day), exogenous 1,25-(OH)(2)D(3) suppressed renal 1alpha-OHase and stimulated the 24-OHase. In rats fed the -Ca diet, vitamin D was unable to suppress the renal 1alpha-OHase or stimulate the renal 24-OHase. In contrast, vitamin D was fully able to stimulate intestinal 24-OHase. Intestinal vitamin D receptor (VDR) was present under all circumstances, while kidney VDR was absent under hypocalcemic conditions and present under normocalcemic conditions. It appears that tissue-specific down-regulation of VDR by hypocalcemia blocks the 1,25-(OH)(2)D(3) suppression of the 1alpha-OHase and upregulation of the 24-OHase in the kidney, causing a marked accumulation of 1,25-(OH)(2)D(3) in the plasma.  相似文献   

8.
Serum concentrations of the hormonal form of vitamin D3—1,25-dihydroxy-vitamin D3 [1,25-(OH)2-D3]—are elevated in many genera of platyrrhines when compared to catarrhines; this elevation is presumed to result from a decrease in the ability of the target cell receptor effectively to recognize 1,25-(OH)2-D3. The activity of the renal 25-hydroxyvitumin D3-1α-hydroxylase, the mammalian enzyme which synthesizes the majority of the circulating 1,25-(OH)2-D3, is accelerated by parathyroid hormone (PTH). In order to determine whether the elevated serum concentrations of 1,25-(OH)2-D3 in platyrrhines were the result of relative hyperparathyroidism, we measured serum levels of immunoreactive parathyroid hormone (iPTH) in normocalcemic platyrrhines, catarrhines, and human subjects with assays that recognize different domains of the human PTH molecule. Antisera directed against the biologically active, aminoterminus of PTH yielded comparable mean values for iPTH among three test groups. The mean concentration of iPTH as assessed by a “proximal” midregion assay was significantly reduced in platyrrhine serum when compared to either human or catarrhine serum. A “distal” midregion assay yielded a reduced mean value for iPTH in both platyrrhine and catarrhine serum when compared to human serum. These data suggest that 1) high circulating levels of 1,25-(OH)2-D3 in New World primates are not the result of hyperparathyroidism; and 2) structural homology between human and primate PTH diminishes progressively as one moves toward the carboxyterminus of the molecule and is lost more rapidly in the platyrrhine than in the catarrhine hormone.  相似文献   

9.
Parathyroid hypertensive factor (PHF) is a novel substance secreted by the parathyroid gland (PTG), which is elevated in 30-40% of all hypertensive patients; specifically, the low-renin subset. However, very little is known about the regulation of PHF secretion. Since the classical parathyroid regulator, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), may be elevated concurrent with or preceding the development of low-renin hypertension and elevated plasma PHF, we hypothesized that 1,25-(OH)2D3 would stimulate PHF release. To test this hypothesis, PTG organ and cell cultures, derived from spontaneously hypertensive rats (SHR) and the normotensive genetic control Wistar Kyoto (WKY) rats, were exposed to various vitamin D3 metabolites and PHF release measured by ELISA. 1,25-(OH)2D3 rapidly stimulated PHF release with enhanced sensitivity in SHR versus WKY cultures indicated by a leftward shift in the dose-response curve, whereas 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3) had the converse effect. Vitamin D3 analog "BT," an agonist for the classical nuclear vitamin D receptor (1,25VDR(nuc)), was without effect suggesting a 1,25VDR(nuc)-independent mechanism and potential involvement of the plasma membrane-bound vitamin D receptor (1,25 D3-MARRS). Interestingly, protein expression of the 1,25 D3-MARRS was increased in SHR versus WKY parathyroid cells. In conclusion, these results support the idea that 1,25-(OH)2D3 may contribute to elevated plasma PHF in the SHR.  相似文献   

10.
A multiple assay capable of reliably determining vitamins D(2) and D(3) (ergocalciferol and cholecalciferol), 25(OH)D(2) (25-hydroxyvitamin D(2)) and 25(OH)D(3) (25-hydroxyvitamin D(3)), 24,25(OH)(2)D (24,25-dihydroxyvitamin D), 25,26(OH)(2)D (25,26-dihydroxyvitamin D) and 1,25(OH)(2)D (1,25-dihydroxyvitamin D) in a single 3-5ml sample of human plasma was developed. The procedure involves methanol/methylene chloride extraction of plasma lipids followed by separation of the metabolites and purification from interfering contaminants by batch elution chromatography on Sephadex LH-20 and Lipidex 5000 and by h.p.l.c. (high-pressure liquid chromatography). Vitamins D(2) and D(3) and 25(OH)D(2) and 25(OH)D(3) are quantified by h.p.l.c. by using u.v. detection, comparing their peak heights with those of standards. 24,25(OH)(2)D and 25,26(OH)(2)D are measured by competitive protein-binding assay with diluted plasma from vitamin D-deficient rats. 1,25(OH)(2)D is measured by competitive protein-binding assay with diluted cytosol from vitamin D-deficient chick intestine. Values in normal human plasma samples taken in February are: vitamin D 3.5+/-2.5ng/ml; 25(OH)D 31.6+/-9.3ng/ml; 24,25(OH)(2)D 3.5+/-1.4ng/ml; 25,26(OH)(2)D 0.7+/-0.5ng/ml; 1,25(OH)(2)D 31+/-9pg/ml (means+/-s.d.). Values in two normal human plasma samples taken in February after 1 week of high sun exposure are: vitamin D 27.1+/-7.9ng/ml; 25(OH)D 56.8+/-4.2ng/ml; 24,25(OH)(2)D 4.3+/-1.6ng/ml; 25,26(OH)(2)D 0.5+/-0.2ng/ml. Values in anephric-human plasma are: vitamin D 2.7+/-0.8ng/ml; 25(OH)D 36.4+/-16.5ng/ml; 24,25(OH)(2)D 1.9+/-1.3ng/ml; 25,26(OH)(2)D 0.6+/-0.3ng/ml; 1,25(OH)(2)D was undetectable.  相似文献   

11.
The vitamin D hormone 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], the biologically active form of vitamin D, is essential for an intact mineral metabolism. Using gene targeting, we sought to generate vitamin D receptor (VDR) null mutant mice carrying the reporter gene lacZ driven by the endogenous VDR promoter. Here we show that our gene-targeted mutant mice express a VDR with an intact hormone binding domain, but lacking the first zinc finger necessary for DNA binding. Expression of the lacZ reporter gene was widely distributed during embryogenesis and postnatally. Strong lacZ expression was found in bones, cartilage, intestine, kidney, skin, brain, heart, and parathyroid glands. Homozygous mice are a phenocopy of mice totally lacking the VDR protein and showed growth retardation, rickets, secondary hyperparathyroidism, and alopecia. Feeding of a diet high in calcium, phosphorus, and lactose normalized blood calcium and serum PTH levels, but revealed a profound renal calcium leak in normocalcemic homozygous mutants. When mice were treated with pharmacological doses of vitamin D metabolites, responses in skin, bone, intestine, parathyroid glands, and kidney were absent in homozygous mice, indicating that the mutant receptor is nonfunctioning and that vitamin D signaling pathways other than those mediated through the classical nuclear receptor are of minor physiological importance. Furthermore, rapid, nongenomic responses to 1,25-(OH)(2)D(3) in osteoblasts were abrogated in homozygous mice, supporting the conclusion that the classical VDR mediates the nongenomic actions of 1,25-(OH)(2)D(3).  相似文献   

12.
The vitamin D endocrine system plays a central role in mineral ion homeostasis through the actions of the vitamin D hormone, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], on the intestine, bone, parathyroid gland, and kidney. The main function of 1,25(OH)(2)D(3) is to promote the dietary absorption of calcium and phosphate, but effects on bone, kidney and the parathyroids fine-tune the mineral levels. In addition to these classical actions, 1,25(OH)(2)D(3) exerts pleiotropic effects in a wide variety of target tissues and cell types, often in an autocrine/paracrine fashion. These biological activities of 1,25(OH)(2)D(3) have suggested a multitude of potential therapeutic applications of the vitamin D hormone for the treatment of hyperproliferative disorders (e.g. cancer and psoriasis), immune dysfunction (autoimmune diseases), and endocrine disorders (e.g. hyperparathyroidism). Unfortunately, the effective therapeutic doses required to treat these disorders can produce substantial hypercalcemia. This limitation of 1,25(OH)(2)D(3) therapy has spurred the development of vitamin D analogs that retain the therapeutically important properties of 1,25(OH)(2)D(3), but with reduced calcemic activity. Analogs with improved therapeutic indices are now available for treatment of psoriasis and secondary hyperparathyroidism in chronic kidney disease, and research on newer analogs for these indications continues. Other analogs are under development and in clinical trials for treatment of various types of cancer, autoimmune disorders, and many other diseases. Although many new analogs show tremendous promise in cell-based models, this article will limit it focus on the development of analogs currently in use and those that have demonstrated efficacy in animal models or in clinical trials.  相似文献   

13.
A group of growing dogs supplemented with cholecalciferol (vitamin D(3); HVitD) was studied vs. a control group (CVitD; 54,000 vs. 470 IU vitamin D(3)/kg diet, respectively) from 3 to 21 wk of age. There were no differences in plasma levels of P(i) and growth-regulating hormones between groups and no signs of vitamin D(3) intoxication in HVitD. For the duration of the study in HVitD vs. CVitD, plasma 25-hydroxycholecalciferol levels increased 30- to 75-fold; plasma 24,25-dihydroxycholecalciferol levels increased 12- to 16-fold and were accompanied by increased renal 24-hydroxylase gene expression, indicating increased renal 24-hydroxylase activity. Although the synthesis of 1,25-dihydroxycholecalciferol [1,25(OH)(2)D(3)] was increased in HVitD vs. CVitD (demonstrated by [(3)H]1,25(OH)(2)D(3) and increased renal 1alpha-hydroxylase gene expression), plasma 1,25(OH)(2)D(3) levels decreased by 40% as a result of the even more increased metabolic clearance of 1,25(OH)(2)D(3) (demonstrated by [(3)H]1,25(OH)(2)D(3) and increased gene expression of intestinal and renal 24-hydroxylase). A shift of the Ca set point for parathyroid hormone to the left indicated increased sensitivity of the chief cells. Effective counterbalance was provided by hypoparathyroidism, hypercalcitoninism, and the key regulator 24-hydroxylase, preventing the development of vitamin D(3) toxicosis.  相似文献   

14.
15.
When 1,25(OH)2-vitamin D3 was administered to vitamin D-deficient chicks, within two hours the parathyroid glands were observed to accumulate this steroid to a concentration four times that present in the blood and equivalent to levels observed in the target intestine. Similarly, when 25-(OH)-vitamin D3 was administered, the parathyroid glands had 2.4 times the concentration of the metabolite, 1,25-(OH)2-vitamin D3 as that seen in the blood and 60% of that found in the intestine. These results are consistent with the concept that the hormonally active form of vitamin D, 1,25-(OH)2-vitamin D3, may interact with the parathyroid glands to effect changes in parathyroid hormone secretion.  相似文献   

16.
OBJECTIVES: To compare the effects of vitamin D analogs versus calcitriol on serum levels of Ca, P and parathyroid hormone (PTH). A compound better than calcitriol should increase the Ca x P product less than calcitriol for an equivalent decrease in PTH levels. METHODS: Biological activity of 4 vitamin D analogs, 1,25-(OH)(2)-16ene- D(3) (RO(1)), 1,25-(OH)(2)-16ene-23yne-D(3) (RO(2)), 1,25-(OH)(2)-26,27-hexafluoro-16ene-23yne-D(3) (RO(3)) and 1,25-(OH)(2)-16ene-23yne-26,27-hexafluoro-19nor-D(3) (RO(4)) was tested vs. calcitriol in parathyroidectomized rats. In a second set of experiments, the effects of RO(2), RO(4) and calcitriol were studied in 5/6 nephrectomized rats with secondary hyperparathyroidism. RESULTS: In parathyroidectomized rats, all analogs (250 pmol/day) led calcemia to rise after 7 days. In uremic rats, all treatments reduced PTH levels. RO(4) revealed toxicity. RO(2) was as effective as calcitriol in suppressing PTH in a dose dependent manner. Mean plasma ionized calcium did not change from baseline to day 14 and day 28 on RO(2) (250 or 500 pmol/day) whereas it increased significantly on RO(2) (1,000 pmol/day) and calcitriol (125 or 250 pmol/day). Increasing the dose of calcitriol led Ca x P to rise more dramatically than increasing the dose of RO(2), which appears to have a wider therapeutic window than calcitriol. CONCLUSION: 1,25-(OH)(2)-16ene-23yne-D(3) (RO(2)) may represent a novel candidate for the treatment of renal osteodystrophy in humans.  相似文献   

17.
We have shown previously that the in vitro activity of the renal vitamin K-dependent gamma-glutamyl carboxylase toward synthetic oligopeptide substrates is stimulated by administration of either parathyroid hormone (PTH) or 1,25-dihydroxycholecalciferol [1,25(OH)2D3] to rats [(1983) J. Biol. Chem. 258, 12783-12786]. Here we report that administration of 1,25(OH)2D3 to rats increases their levels of endogenous carboxylase substrate as well. Rats fed a vitamin D-deficient diet had highly elevated serum PTH levels while vitamin D-replete animals had undetectable levels. Furthermore, since PTH increases 1,25(OH)2D3 levels by stimulating renal 25-hydroxyvitamin D-1 alpha-hydroxylase, it is very likely that the stimulatory effects of PTH on the renal vitamin K-dependent carboxylating system are mediated by 1,25(OH)2D3.  相似文献   

18.
Vitamin D status and its relation to age and body mass index   总被引:2,自引:0,他引:2  
BACKGROUND/AIMS: While numerous studies have examined 25(OH)-vitamin D(3) (25-D) concentrations and their relation to parathyroid hormone (PTH) levels there is only limited information on the interrelation between 25-D, 1,25(OH)(2)-vitamin D(3) (1,25-D) and PTH. It was the aim of this study to assess the vitamin D endocrine system and its relation to age and body mass index (BMI). METHODS: This cross-sectional study comprised a convenience sample of 483 adults which attended the endocrinology outpatient service of a university hospital in the years 2002-2004. RESULTS: The mean concentrations of 25-D, 1,25-D, calcium and PTH were 21.0 +/- 10.6 ng/ml, 47.9 +/- 21.7 pg/ml, 9.48 +/- 0.48 mg/dl and 51.0 +/- 27.2 pg/ml, respectively. 25-D was related (p < 0.01) to BMI, age, PTH and 1,25-D. After correction for 25-D, we found no relation between BMI and 1,25-D. PTH was related (p < 0.01) to serum calcium, BMI, age and 1,25-D (p = 0015). There was a seasonal variation in both, 25-D and 1,25-D serum concentrations: 25-D levels were lowest in January and increased until July while the nadir and zenith of 1,25-D were found in April and October, respectively. CONCLUSION: Since BMI was negatively related to 25-D the prevalence of 25-D deficiency (<8.8 ng/ml) increased from 8.8% in subjects with BMI <30 kg/m(2) to 15.0% in subjects with BMI >30 kg/m(2). BMI, age and season should be taken into account when assessing a patients vitamin D status and more aggressive vitamin D supplementation should be considered for obese subjects.  相似文献   

19.
20.
We measured the serum concentration of 25-hydroxyvitamin D3 (25-OH-D3) and 1,25-dihydroxyvitamin D3 (1,25-[OH]2-D3) in 23 different Platyrrhines from four different genera and in 21 Catarrhines from six different genera in residence at the Los Angeles Zoo. The mean (±S.E.) serum concentration of 1,25-(OH)2-D3 was significantly greater in Platyrrhines (810 ± 119 pg/ml) than in Catarrhines (61 ± 5 pg/ml), suggesting that high circulating concentrations of the active vitamin D hormone were a characteristic of New World primates in both the Cebidae and Callitrichidae family. This increase in the serum concentration of 1,25-(OH)2-D3 is probably an adaptational response on the part of Platyrrhini to offset a relative decrease in the concentration of specific receptor for 1,25-(OH)2-D3 in target tissues for the hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号