共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of hybrid zones resulting from Pleistocene vicariance is central in examining the potential of genetically diverged evolutionary units either to introgress and merge or to proceed with further isolation. The hybrid zone between two mitochondrial lineages of Chioglossa lusitanica is located near the Mondego River in Central Portugal. We used mitochondrial and nuclear diagnostic markers to conduct a formal statistical analysis of the Chioglossa hybrid zone in the context of tension zone theory. Key results are: (i) cline centres are not coincident for all markers, with average widths of ca. 2-15 km; (ii) heterozygote deficit was not observed across loci near the transect centre; (iii) associations of parental allele combinations ('linkage disequilibrium'R) were not detected either across loci or across the transect. These observations suggest that the Chioglossa hybrid zone is not a tension zone with strong selection against hybrids but instead one shaped mostly by neutral mixing. The patterns uncovered suggest a complex history of populations over a small scale that may be common in southern Pleistocene refugia. 相似文献
2.
We used the widely distributed freshwater fish, perch (Perca fluviatilis), to investigate the postglacial colonization routes of freshwater fishes in Europe. Genetic variability within and among drainages was assessed using mitochondrial DNA (mtDNA) D-loop sequencing and RAPD markers from 55 populations all over Europe as well as one Siberian population. High level of structuring for both markers was observed among drainages and regions, while little differentiation was seen within drainages and regions. Phylogeographic relationships among European perch were determined from the distribution of 35 mtDNA haplotypes detected in the samples. In addition to a distinct southern European group, which includes a Greek and a southern Danubian population, three major groups of perch are observed: the western European drainages, the eastern European drainages including the Siberian population, and Norwegian populations from northern Norway, and western side of Oslofjord. Our data suggest that present perch populations in western and northern Europe were colonized from three main refugia, located in southeastern, northeastern and western Europe. In support of this, nested cladistic analysis of mtDNA clade and nested clade distances suggested historical range expansion as the main factor determining geographical distribution of haplotypes. The Baltic Sea has been colonized from all three refugia, and northeastern Europe harbours descendants from both eastern European refugia. In the upper part of the Danube lineages from the western European and the southern European refugia meet. The southern European refugium probably did not contribute to the recolonization of other western and northern European drainages after the last glaciation. However, phylogenetic analyses suggest that the southern European mtDNA lineage is the most ancient, and therefore likely to be the founder of all present perch lineages. The colonization routes used by perch probably also apply to other freshwater species with similar distribution patterns. 相似文献
3.
Seven polymorphic microsatellite markers were isolated and characterized for golden‐striped salamander, Chioglossa lusitanica (Bocage 1864), a salamandrid endemic to the northwestern part of the Iberian Peninsula, from genomic libraries enriched for (GATA)8 (GACA)8 (ATG)9 and (CA)16. These loci were screened in 37–51 individuals from two populations. The number of alleles per locus ranged from five to 19. Heterozygosity ranged from 0.241 to 1.0. The high level of polymorphism revealed by these loci will be extremely useful for the study of population structure and evolutionary history of this species. 相似文献
4.
MARI METTE TOLLEFSRUD ROY KISSLING FELIX GUGERLI ØYSTEIN JOHNSEN TORE SKRØPPA RACHID CHEDDADI W. O. VAN DER KNAAP MAŁGORZATA LATAŁOWA RUTH TERHÜRNE‐BERSON THOMAS LITT THOMAS GEBUREK CHRISTIAN BROCHMANN CHRISTOPH SPERISEN 《Molecular ecology》2008,17(18):4134-4150
Norway spruce (Picea abies [L.] Karst.) is a broadly distributed European conifer tree whose history has been intensively studied by means of fossil records to infer the location of full‐glacial refugia and the main routes of postglacial colonization. Here we use recently compiled fossil pollen data as a template to examine how past demographic events have influenced the species’ modern genetic diversity. Variation was assessed in the mitochondrial nad1 gene containing two minisatellite regions. Among the 369 populations (4876 trees) assayed, 28 mitochondrial variants were identified. The patterns of population subdivision superimposed on interpolated fossil pollen distributions indicate that survival in separate refugia and postglacial colonization has led to significant structuring of genetic variation in the southern range of the species. The populations in the northern range, on the other hand, showed a shallow genetic structure consistent with the fossil pollen data, suggesting that the vast northern range was colonized from a single refugium. Although the genetic diversity decreased away from the putative refugia, there were large differences between different colonization routes. In the Alps, the diversity decreased over short distances, probably as a result of population bottlenecks caused by the presence of competing tree species. In northern Europe, the diversity was maintained across large areas, corroborating fossil pollen data in suggesting that colonization took place at high population densities. The genetic diversity increased north of the Carpathians, probably as a result of admixture of expanding populations from two separate refugia. 相似文献
5.
Spatial genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa reveals the effect of contrasting mating system,influence of marine currents,and footprints of postglacial recolonization routes 总被引:1,自引:0,他引:1 下载免费PDF全文
Marie Leys Eric J. Petit Yasmina El‐Bahloul Camille Liso Sylvain Fournet Jean‐François Arnaud 《Ecology and evolution》2014,4(10):1828-1852
Understanding the factors that contribute to population genetic divergence across a species' range is a long‐standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present‐day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco – the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic‐Mediterranean refugia after the last glacial period, with leading‐edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long‐distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life‐history and major geographic features interact to shape the distribution of genetic diversity. 相似文献
6.
7.
European black pine (Pinus nigra Arn.) is a widely distributed Mediterranean conifer. To test the hypothesis that fragmented populations in western Europe survived in situ during the last glacial rather than having been re-colonized in the postglacial period, genetic variation was assessed using a suite of 10 chloroplast DNA microsatellites. Among 311 individuals analysed, 235 haplotypes were detected revealing high levels of chloroplast haplotype diversity in most populations. Bayesian analysis using a model of linked loci, with no prior assumption of population structure, assigned individuals to 10 clusters that corresponded well with the six predefined sampling regions, while an analysis carried out at the population level and assuming unlinked loci, recovered the original six sampling regions. This regional structure was supported by a biogeographical analysis that detected five barriers, with the two most significant separating Alps from Corsica and southern Italy, and southern Spain from the Pyrenees. No signals of demographic expansion were detected, and comparisons of R(ST) with pR(ST) suggested that a stepwise mutational model was important in regional differentiation, but not in population-within-region differentiation. These tests support long-term persistence of the species within the six regions. The temporal depth estimate, assuming a high mutation rate in coalescent modelling, placed the deepest split between the Alps and the other regions at about 150 000 years ago, and the most recent split of Pyrenees from southern France at about 30 000 years ago. Taken together, the data suggest that chloroplast DNA is structured in black pine and disjunct populations in western Europe are likely to have been present during the Last Glacial Maximum. 相似文献
8.
EMILY K. LATCH JAMES R. HEFFELFINGER† JENNIFER A. FIKE‡ OLIN E. RHODES Jr‡ 《Molecular ecology》2009,18(8):1730-1745
Quaternary climatic oscillations greatly influenced the present-day population genetic structure of animals and plants. For species with high dispersal and reproductive potential, phylogeographic patterns resulting from historical processes can be cryptic, overshadowed by contemporary processes. Here we report a study of the phylogeography of Odocoileus hemionus , a large, vagile ungulate common throughout western North America. We examined sequence variation of mitochondrial DNA (control region and cytochrome b ) within and among 70 natural populations across the entire range of the species. Among the 1766 individual animals surveyed, we recovered 496 haplotypes. Although fine-scale phylogenetic structure was weakly resolved using phylogenetic methods, network analysis clearly revealed the presence of 12 distinct haplogroups. The spatial distribution of haplogroups showed a strong genetic discontinuity between the two morphological types of O. hemionus , mule deer and black-tailed deer, east and west of the Cascade Mountains in the Pacific Northwest. Within the mule deer lineage, we identified several haplogroups that expanded before or during the Last Glacial Maximum, suggesting that mule deer persisted in multiple refugia south of the ice sheets. Patterns of genetic diversity within the black-tailed deer lineage suggest a single refugium along the Pacific Northwest coast, and refute the hypothesis that black-tailed deer persisted in one or more northern refugia. Our data suggest that black-tailed deer recolonized areas in accordance with the pattern of glacial retreat, with initial recolonization northward along a coastal route and secondary recolonization inland. 相似文献
9.
Axel Hochkirch Thomas Schmitt 《Journal of Zoological Systematics and Evolutionary Research》2011,49(4):292-297
The phylogeographic structures of taiga species often support the hypothesis of East Palaearctic refugia for these taxa, but the phylogeographic structures of northern temperate and southern boreal bog species are still poorly understood. Therefore, we analysed the genetic diversity and differentiation of a stenotopic damselfly, Nehalennia speciosa, across its trans‐Palaearctic range by means of sequencing two mitochondrial gene fragments, 16S rRNA‐ND1 and cytochrome c oxidase II. Only four single nucleotide polymorphisms were detected over the 1130 sequenced nucleotides. This low genetic diversity and differentiation and thus the lack of phylogeographic structure imply postglacial expansion from a single Würm Ice Age refugium, most likely located in the Far East of Asia, i.e. Manchurian refugium. From here, the species could have colonized large parts of the Palaearctics, including Europe, during the postglacial. 相似文献
10.
Phylogeography of postglacial range expansion in Nigronia serricornis Say (Megaloptera: Corydalidae)
We have examined the effects of post-Wisconsinan glacial range expansion on the phylogeography of the saw-combed fishfly, Nigronia serricornis Say (Megaloptera: Corydalidae) because aquatic insects are under-represented in postglacial studies (and in phylogeography in general), and because the effects of ecological degradation on the population genetics of environmental indicator species like N. serricornis cannot be measured unless the underlying phylogeography is understood. Sequence data from a 630-base fragment of the mitochondrial cytochrome oxidase I (COI) gene were subjected to amova and nested clade analysis for 30 populations (n = 344) of N. serricornis. Both the amova and nested clade analysis revealed substantial population structure; 44.4% of the variance occured among populations. Three northward migrations are apparent: one from Tennessee into Illinois, Indiana, Wisconsin, Michigan and Ontario, a second that radiated eastward from Pennsylvania, and a third that moved along the coast from North Carolina into Connecticut, Massachusetts, Maine and then into New York. The latter two of these migrations were the result of contiguous range expansions, while the former expansion, out of Tennessee, appears to have been rapid with little gene flow from the source population. Additional clades included a group of haplotypes in central Kentucky that appear to have expanded along preglacial drainages, and clades in North Carolina and Georgia that have remained centrally located. Haplotype diversity decreased from south to north, a pattern that has been widely reported for animal and plant populations that expanded with the retreat of the Wisconsinan glaciation. 相似文献
11.
MARCO MATTOCCIA SILVIO MARTA ANTONIO ROMANO VALERIO SBORDONI 《Biological journal of the Linnean Society. Linnean Society of London》2011,104(4):903-992
The Italian endemic genus Salamandrina has been historically regarded as monotypic but, recently, studies based on both mitochondrial and nuclear markers have indicated the existence of two distinct species of spectacled salamanders: Salamandrina perspicillata, in central and northern Italy, and Salamandrina terdigitata, in southern Italy. We analyzed nucleotide variation at mitochondrial and nuclear genes [cytochrome b, 12S and 16S rRNA, recombination activating gene (RAG 1)] in 223 individuals from 56 locations, aiming to investigate their genetic structure and recent evolutionary histories. Phylogenetic and phylogeographical analyses revealed the existence of three and two genetically distinct groups of populations in northern and southern salamander, respectively. Historical demographic analyses led to the inference of range expansion for both species in the late Pleistocene. During the last glacial stage, each salamander survived in a single refugium, namely the southern in Calabria and the northern in central Italy. At the end of this period, both lineages expanded northward and established secondary contact. Spatial distribution of RAG 1 haplotype variation revealed two differentiated population groups corresponding to the major mitochondrial (mt)DNA clades. Nuclear pattern of introgressive hybridization was more extensive than the highly limited introgression of mtDNA markers. From a conservation standpoint, southern Latium and Calabria proved to be the major genetic diversity reservoirs, thus deserving particular conservation efforts. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 903–922. 相似文献
12.
Genetic variation was investigated in 17 populations of the Italian endemic Apennine yellow-bellied toad using both mitochondrial (598 bp of the cytochrome b gene) and nuclear (21 allozyme loci) markers. Populations from central Calabria (southern Italy) showed the highest levels of intrapopulation genetic variation, whereas samples located north of this region were nearly lacking in variation. This appears to be a typical pattern of 'southern richness and northern purity', usually attributed to the prolonged population stability within southern refugia coupled with the loss of variation during postglacial northward expansion. However, the overall pattern of genetic variation observed has a strong geographical component, suggesting two Calabrian plains, Catanzaro and Crati-Sibari, as historical barriers to dispersal separating three population groups. These findings cannot be explained by the prolonged stability of southern populations alone, and suggest that the southern richness has been at least in part shaped by allopatric differentiation within the refugial range, followed by intermixing of previously differentiated lineages. From a conservation standpoint, Calabria is the major genetic diversity reservoir for this species, thus deserving particular conservation efforts. Furthermore, although the low intrapopulation genetic variation outside Calabria appears to be of clear historical origin, evidence of a current reduction of gene flow suggests that human disturbance has also played a part, particularly in the anthropogenic impacted Volturno river drainage basin. 相似文献
13.
Intraspecific phylogeographical patterns largely depend on the life history traits of a species. Especially species with a high degree of cold tolerance, limited requirements towards habitat preferences, and relatively low active dispersal capacities may have responded in a different way to the Pleistocene climatological fluctuations than the majority of taxa studied so far. To evaluate this possibility, we studied Arion fuscus (Muller, 1774), a common and widespread European terrestrial slug, from 88 locations (N = 964). Sequence variation was assessed for fragments of the mitochondrial 16S rDNA and COI genes by means of single-strand conformation polymorphisms (SSCP) and subsequent DNA sequencing. Additionally, eight allozyme loci were scored in 843 individuals. Phylogenetic analysis revealed the presence of two major evolutionary lineages, one in the Balkan region and another in the Alps and the rest of Europe. The sequence divergence between the two lineages was limited (3.3%), but gene flow between the regions was absent, suggesting that the two regions have been isolated since the late Pliocene or early Pleistocene. Allozyme differentiation among geographical regions and mitochondrial DNA (mtDNA) lineages was low. The geographical patterns observed in our data showed that (i) haplotype and nucleotide diversities are very low in northern Europe, suggesting that single haplotypes rapidly colonized large areas; (ii) recently expanded haplotype clades have restricted distribution ranges, suggesting that current gene flow is low; and (iii) genetic diversity in the Alps is much higher than in other regions and estimated past gene flow from the Eastern Alps to other regions was high, suggesting that this was a refugial zone during the Pleistocene. This full-range phylogeography suggests the existence of an alternative refugial zone, situated north of the refugial areas currently recognized in most other taxa. 相似文献
14.
H. GONÇALVES I. MARTÍNEZ‐SOLANO R. J. PEREIRA B. CARVALHO M. GARCÍA‐PARÍS N. FERRAND 《Molecular ecology》2009,18(24):5143-5160
Pleistocene glaciations often resulted in differentiation of taxa in southern European peninsulas, producing the high levels of endemism characteristic of these regions (e.g. the Iberian Peninsula). Despite their small ranges, endemic species often exhibit high levels of intraspecific differentiation as a result of a complex evolutionary history dominated by successive cycles of fragmentation, expansion and subsequent admixture of populations. Most evidence so far has come from the study of species with an Atlantic distribution in northwestern Iberia, and taxa restricted to Mediterranean‐type habitats remain poorly studied. The Iberian Midwife toad (Alytes cisternasii) is a morphologically conserved species endemic to southwestern and central Iberia and a typical inhabitant of Mediterranean habitats. Applying highly variable genetic markers from both mitochondrial and nuclear genomes to samples collected across the species’ range, we found evidence of high population subdivision within A. cisternasii. Mitochondrial haplotypes and microsatellites show geographically concordant patterns of genetic diversity, suggesting population fragmentation into several refugia during Pleistocene glaciations followed by subsequent events of geographical and demographic expansions with secondary contact. In addition, the absence of variation at the nuclear β‐fibint7 and Ppp3caint4 gene fragments suggests that populations of A. cisternasii have been recurrently affected by episodes of extinction and recolonization, and that documented patterns of population subdivision are the outcome of recent and multiple refugia. We discuss the evolutionary history of the species with particular interest in the increasing relevance of Mediterranean refugia for the survival of genetically differentiated populations during the Pleistocene glaciations as revealed by studies in co‐distributed taxa. 相似文献
15.
Neumann K Michaux JR Maak S Jansman HA Kayser A Mundt G Gattermann R 《Molecular ecology》2005,14(5):1473-1483
The spatial genetic structure of common hamsters (Cricetus cricetus) was investigated using three partial mitochondrial (mt) genes and 11 nuclear microsatellite loci. All marker systems revealed significant population differentiation across Europe. Hamsters in central and western Europe belong largely to two allopatric mitochondrial lineages south and northwest of the Carpathian and Sudetes. The southern group, 'Pannonia', comprises populations inside the Carpathian basin (Czech Republic, Hungary) while the second group, 'North', includes hamsters from Belgium, the Netherlands, France, and Germany. Isolation of the lineages is maintained by a combination of geographical and ecological barriers. Both main phylogeographical groups show signs of further subdivision. North is separated into highly polymorphic central German and less polymorphic western populations, which most likely split during late glacial expansion (15,000-10,000 bp). Clock estimates based on haplotype distributions predict a divergence of the two major lineages 85,000-147,000 bp. Expansion times fall during the last glaciation (115,000-10,000 bp) corroborating fossil data, which identify Cricetus cricetus as characteristic of colder climatic phases. Despite the allopatry of mt haplotypes, there is an overlap of nuclear microsatellite alleles between phylogeographical units. Although there are strong evidence that Pannonian hamsters have persisted inside the Carpathian basin over the last 50,000 years, genetic differentiation among European hamsters has mainly been caused by immigration from different eastern refugia. Possible source populations are likely to be found in the Ukrainian and the southern Russian plains--core areas of hamster distribution. From there, hamsters have repeatedly expanded during the Quaternary. 相似文献
16.
Isolation of Mediterranean species in the southern European peninsulas during the cold glacial phases often resulted in differentiation of several genetic lineages confined to the respective peninsulas. However, whilst there is good genetic evidence for multiple refugia in Iberia, there are only limited data available for the Balkans. Therefore, we wish to examine the hypothesis of a strong genetic structuring within southeastern Europe for the existence of multiple Balkan differentiation centres and/or several leading edges. As a model we use the marbled white butterfly, Melanargia galathea. We studied 18 allozyme loci of 564 individuals from 16 populations distributed over a large part of southeastern Europe. The single populations showed moderately high genetic diversity and no northward decline of genetic diversity was detected. The overall genetic differentiation between populations was considerable (F(ST) 7.0%). Cluster analysis discriminated three genetic groups: (i) a western flank in the former Yugoslavia, parts of eastern Austria and Hungary; (ii) an eastern flank with populations from Bulgaria and Romania (south of the southern Carpathians and eastern Carpathians); and (iii) the eastern Carpathian Basin. Hierarchical variance analysis distributed 53% of the variance among populations between these three groups. One sample from the Greek-Bulgarian border clustered within the eastern flank, but showed some tendency towards the eastern Carpathian Basin populations. Two populations from Carinthia clustered together with the eastern Carpathian Basin ones and a population from Styria showed an intermediate genetic composition between the three groups. Most probably, the eastern and the western flank groups are due to postglacial range expansion from the northeastern and the northwestern edges of the glacial differentiation centre (so-called leading edges). The eastern Carpathian Basin group may have resulted from postglacial expansion from northern Greece through valley systems of the central Balkan peninsula, maybe even expanding westwards north of the Balkan mountains reaching some parts of eastern Austria (e.g. Carinthia). Therefore, the Balkanic refugium of M. galathea may or may not have been continuous along the coastal areas of the Mediterranean, but must have been strongly genetically structured. 相似文献
17.
JACLYN T. ALDENHOVEN MATTHEW A. MILLER PATRICE SHOWERS CORNELI MICHAEL D. SHAPIRO 《Molecular ecology》2010,19(18):4061-4076
The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya–10 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia—the Mississippi, Bering, and Atlantic refugia—not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia. 相似文献
18.
Post‐glacial recolonization of the North American Arctic by Arctic char (Salvelinus alpinus): genetic evidence of multiple northern refugia and hybridization between glacial lineages 下载免费PDF全文
Jean‐Sébastien Moore Robert Bajno James D. Reist Eric B. Taylor 《Journal of Biogeography》2015,42(11):2089-2100
19.
Phylogeography is often used to investigate the effects of glacial cycles on current genetic structure of various plant and animal species. This approach can also identify the number and location of glacial refugia as well as the recolonization routes from those refugia to the current locations. To identify the location of glacial refugia of the Yellow‐spotted mountain newt, Neurergus derjugini, we employed phylogeography patterns and genetic variability of this species by analyzing partial ND4 sequences (867 bp) of 67 specimens from 15 sampling localities from the whole species range in Iran and Iraq. Phylogenetic trees concordant with haplotype networks showed a clear genetic structure among populations as three groups corresponding to the populations in the north, center, and south. Evolutionary ages of clades north and south ranging from 0.15 to 0.17 Myr, while the oldest clade is the central clade, corresponding to 0.32 Myr. Bayesian skyline plots of population size change through time show a relatively slight increase until about 25 kyr (around the last glacial maximum) and a decline of population size about 2.5 kyr. The presence of geographically structured clades in north, center, and south sections of the species range signifies the disjunct populations that have emerged in three different refugium. This study illustrates the importance of the effect of previous glacial cycles in shaping the genetic structure of mountain species in the Zagros range. These areas are important in terms of long‐term species persistence and therefore valuable areas for conservation of biodiversity. 相似文献
20.
C. A. González‐Wevar T. Saucède S. A. Morley S. L. Chown E. Poulin 《Molecular ecology》2013,22(20):5221-5236
Quaternary glaciations in Antarctica drastically modified geographical ranges and population sizes of marine benthic invertebrates and thus affected the amount and distribution of intraspecific genetic variation. Here, we present new genetic information in the Antarctic limpet Nacella concinna, a dominant Antarctic benthic species along shallow ice‐free rocky ecosystems. We examined the patterns of genetic diversity and structure in this broadcast spawner along maritime Antarctica and from the peri‐Antarctic island of South Georgia. Genetic analyses showed that N. concinna represents a single panmictic unit in maritime Antarctic. Low levels of genetic diversity characterized this population; its median‐joining haplotype network revealed a typical star‐like topology with a short genealogy and a dominant haplotype broadly distributed. As previously reported with nuclear markers, we detected significant genetic differentiation between South Georgia Island and maritime Antarctica populations. Higher levels of genetic diversity, a more expanded genealogy and the presence of more private haplotypes support the hypothesis of glacial persistence in this peri‐Antarctic island. Bayesian Skyline plot and mismatch distribution analyses recognized an older demographic history in South Georgia. Approximate Bayesian computations did not support the persistence of N. concinna along maritime Antarctica during the last glacial period, but indicated the resilience of the species in peri‐Antarctic refugia (South Georgia Island). We proposed a model of Quaternary Biogeography for Antarctic marine benthic invertebrates with shallow and narrow bathymetric ranges including (i) extinction of maritime Antarctic populations during glacial periods; (ii) persistence of populations in peri‐Antarctic refugia; and (iii) recolonization of maritime Antarctica following the deglaciation process. 相似文献