首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Candida dubliniensis is an emerging pathogenic yeast species closely related to Candida albicans and frequently found colonizing or infecting the oral cavities of HIV/AIDS patients. Drug resistance during C. dubliniensis infection is common and constitutes a significant therapeutic challenge. The calcineurin inhibitor FK506 exhibits synergistic fungicidal activity with azoles or echinocandins in the fungal pathogens C. albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In this study, we show that calcineurin is required for cell wall integrity and wild-type tolerance of C. dubliniensis to azoles and echinocandins; hence, these drugs are candidates for combination therapy with calcineurin inhibitors. In contrast to C. albicans, in which the roles of calcineurin and Crz1 in hyphal growth are unclear, here we show that calcineurin and Crz1 play a clearly demonstrable role in hyphal growth in response to nutrient limitation in C. dubliniensis. We further demonstrate that thigmotropism is controlled by Crz1, but not calcineurin, in C. dubliniensis. Similar to C. albicans, C. dubliniensis calcineurin enhances survival in serum. C. dubliniensis calcineurin and crz1/crz1 mutants exhibit attenuated virulence in a murine systemic infection model, likely attributable to defects in cell wall integrity, hyphal growth, and serum survival. Furthermore, we show that C. dubliniensis calcineurin mutants are unable to establish murine ocular infection or form biofilms in a rat denture model. That calcineurin is required for drug tolerance and virulence makes fungus-specific calcineurin inhibitors attractive candidates for combination therapy with azoles or echinocandins against emerging C. dubliniensis infections.  相似文献   

3.
Candida albicans and C. dubliniensis are very closely related yeast species. In this study, we have conducted a thorough comparison of the ability of the two species to produce hyphae and their virulence in two infection models. Under all induction conditions tested C. albicans consistently produced hyphae more efficiently than C. dubliniensis. In the oral reconstituted human epithelial model, C. dubliniensis isolates grew exclusively in the yeast form, while the C. albicans strains produced abundant hyphae that invaded and caused significant damage to the epithelial tissue. In the oral-intragastric infant mouse infection model, C. dubliniensis strains were more rapidly cleared from the gastrointestinal tract than C. albicans. Immunosuppression of Candida-infected mice caused dissemination to internal organs by both species, but C. albicans was found to be far more effective at dissemination than C. dubliniensis. These data suggest that a major reason for the comparatively low virulence of C. dubliniensis is its lower capacity to produce hyphae.  相似文献   

4.
Candida dubliniensis is a pathogenic yeast species that was first identified as a distinct taxon in 1995. Epidemiological studies have shown that C. dubliniensis is prevalent throughout the world and that it is primarily associated with oral carriage and oropharyngeal infections in human immunodeficiency virus (HIV)-infected and acquired immune deficiency syndrome (AIDS) patients. However, unlike Candida albicans, C. dubliniensis is rarely found in the oral microflora of normal healthy individuals and is responsible for as few as 2% of cases of candidemia (compared to approximately 65% for C. albicans). The vast majority of C. dubliniensis isolates identified to date are susceptible to all of the commonly used antifungal agents, however, reduced susceptibility to azole drugs has been observed in clinical isolates and can be readily induced in vitro. The primary mechanism of fluconazole resistance in C. dubliniensis has been shown to be overexpression of the major facilitator efflux pump Mdr1p. It has also been observed that a large number of C. dubliniensis strains express a non-functional truncated form of Cdr1p, and it has been demonstrated that this protein does not play a significant role in fluconazole resistance in the majority of strains examined to date. Data from a limited number of infection models reflect findings from epidemiological studies and suggest that C. dubliniensis is less pathogenic than C. albicans. The reasons for the reduced virulence of C. dubliniensis are not clear as it has been shown that the two species express a similar range of virulence factors. However, although C. dubliniensis produces hyphae, it appears that the conditions and dynamics of induction may differ from those in C. albicans. In addition, C. dubliniensis is less tolerant of environmental stresses such as elevated temperature and NaCl and H(2)O(2) concentration, suggesting that C. albicans may have a competitive advantage when colonising and causing infection in the human body. It is our hypothesis that a genomic comparison between these two closely-related species will help to identify virulence factors responsible for the far greater virulence of C. albicans and possibly identify factors that are specifically implicated in either superficial or systemic candidal infections.  相似文献   

5.
Candida albicans, a human fungal pathogen, undergoes morphogenetic changes that are associated with virulence. We report here that GAL102 in C. albicans encodes a homolog of dTDP-glucose 4,6-dehydratase, an enzyme that affects cell wall properties as well as virulence of many pathogenic bacteria. We found that GAL102 deletion leads to greater sensitivity to antifungal drugs and cell wall destabilizing agents like Calcofluor white and Congo red. The mutant also formed biofilms consisting mainly of hyphal cells that show less turgor. The NMR analysis of cell wall mannans of gal102 deletion strain revealed that a major constituent of mannan is missing and the phosphomannan component known to affect virulence is greatly reduced. We also observed that there was a substantial reduction in the expression of genes involved in biofilm formation but increase in the expression of genes encoding glycosylphosphatidylinositol-anchored proteins in the mutant. These, along with altered mannosylation of cell wall proteins together might be responsible for multiple phenotypes displayed by the mutant. Finally, the mutant was unable to grow in the presence of resident peritoneal macrophages and elicited a weak pro-inflammatory cytokine response in vitro. Similarly, this mutant elicited a poor serum pro-inflammatory cytokine response as judged by IFNγ and TNFα levels and showed reduced virulence in a mouse model of systemic candidiasis. Importantly, an Ala substitution for a conserved Lys residue in the active site motif YXXXK, that abrogates the enzyme activity also showed reduced virulence and increased filamentation similar to the gal102 deletion strain. Since inactivating the enzyme encoded by GAL102 makes the cells sensitive to antifungal drugs and reduces its virulence, it can serve as a potential drug target in combination therapies for C. albicans and related pathogens.  相似文献   

6.
Candida albicans, the most common facultative human pathogenic fungus is of major medical importance, whereas the closely related species Candida dubliniensis is less virulent and rarely causes life-threatening, systemic infections. Little is known, however, about the reasons for this difference in pathogenicity, and especially on the interactions of C. dubliniensis with the human immune system. Because innate immunity and, in particular, neutrophil granulocytes play a major role in host antifungal defense, we studied the responses of human neutrophils to clinical isolates of both C. albicans and C. dubliniensis. C. dubliniensis was found to support neutrophil migration and fungal cell uptake to a greater extent in comparison with C. albicans, whereas inducing less neutrophil damage and extracellular trap formation. The production of antimicrobial reactive oxygen species, myeloperoxidase, and lactoferrin, as well as the inflammatory chemokine IL-8 by neutrophils was increased when stimulated with C. dubliniensis as compared with C. albicans. However, most of the analyzed macrophage-derived inflammatory and regulatory cytokines and chemokines, such as IL-1α, IL-1β, IL-1ra, TNF-α, IL-10, G-CSF, and GM-CSF, were less induced by C. dubliniensis. Similarly, the amounts of the antifungal immunity-related IL-17A produced by PBMCs was significantly lower when challenged with C. dubliniensis than with C. albicans. These data indicate that C. dubliniensis triggers stronger early neutrophil responses than C. albicans, thus providing insight into the differential virulence of these two closely related fungal species, and suggest that this is, in part, due to their differential capacity to form hyphae.  相似文献   

7.
Candida infections are frequently associated with formation of biofilms on artificial medical devices. This work studied variation of cell surface hydrophobicity (CSH) and formation of biofilm in relation to Candida albicans and Candida dubliniensis genotypes and an effect of some conventional antifungal agents on both CSH and biofilm. The 50 isolates of C. albicans and C. dubliniensis were classified into genotypes A, B, C, and D, genotype D being exclusively represented by C. dubliniensis. No significant differences between CSH of genotypes A and B and B and C were observed with respect to cultivation temperature 25 or 37 degrees C. Candida dubliniensis showed increased CSH in comparison with other C. albicans genotypes (p < 0.001) regardless of temperature used. Using XTT reduction assay and dry masses, genotypes B and C showed reduced ability to form biofilm in comparison with genotype A (p < 0.05) and C. dubliniensis (p < 0.001). Fluconazole reduced biofilm in C. albicans genotypes A, B, and C (p < 0.05) but not CSH. The opposite effect was observed in C. dubliniensis. Voriconazole effectively reduced both biofilm formation and CSH in all tested genotypes of C. albicans and C. dubliniensis (p < 0.05).  相似文献   

8.
Candidiasis now represents the fourth most frequent nosocomial infection both in the United States and worldwide. Candida albicans is an increasingly common threat to human health as a consequence of AIDS, steroid therapy, organ and tissue transplantation, cancer therapy, broad-spectrum antibiotics, and other immune defects. The pathogenic potential of C. albicans is intimately related to certain key processes, including biofilm formation and filamentation. Ddr48p is a damage response protein that is significantly upregulated during both biofilm formation and filamentation, but its actual function is unknown. Previous studies have indicated that this protein may be essential in C. albicans but not Saccharomyces cerevisiae. Here we examined the function of Ddr48p and investigated the role of this protein in biofilm formation and filamentation. We demonstrated that this protein is not essential in C. albicans and appears to be dispensable for filamentation. However, DDR48 is required for the flocculation response stimulated by 3-aminotriazole-induced amino acid starvation. Furthermore, we examined the response of this deletion strain to a wide variety of environmental stressors and antifungal compounds. We observed several mild sensitivity or resistance phenotypes and also found that Ddr48p contributes to the DNA damage response of C. albicans. The results of this study reveal that the role of this highly expressed protein goes beyond a general stress response and impinges on a key facet of pathogenesis, namely, the ability to sense and respond to changes in the host environment.  相似文献   

9.
Dimorphism and virulence in Candida albicans   总被引:8,自引:0,他引:8  
Two regulatory pathways govern filamentation in the pathogenic fungus Candida albicans. Recent virulence studies of filamentation regulatory mutants argue that both yeast and filamentous forms have roles in infection. Filamentation control pathways seem closely related in C. albicans and in Saccharomyces cerevisiae, thus permitting speculation about C. albicans filamentation genes not yet discovered.  相似文献   

10.
11.
Twenty-six Candida dubliniensis and 27 Candida albicans oral strains isolated from patients infected by the human immunodeficiency virus (HIV) were tested for germ tube production and 21 extracellular enzymatic activities. Assessment of the enzymatic profile was performed by using the API-ZYM commercial kit system (bioMerieux, France), which tests 19 different enzymes. Protease activity was expressed during the first days of incubation by 100% of the strains studied and resulted higher than phospholipase activity in the C. dubliniensis and C. albicans strains tested. The API-ZYM profile of the C. dubliniensis and C. albicans strains differs with respect to the number and percentage of the enzymes considered, as well as with the intensity of the substrate metabolized by the strains, in particular for the enzymes n 8 (cystine-arylamidase), n 12 (naphtol-AS-BI-phosphohydrolase) and n 16 (alpha-glucosidase). These enzymes may be useful to differentiate C. dubliniensis and C. albicans together with other phenotypic characteristics proposed in the literature. No relationship among protease, phospholipase and other extracellular enzymatic activities was observed in C. dubliniensis. The average percentage of strains filamentation after 4 h was between 32 and 42%.  相似文献   

12.
Effect of farnesol on Candida dubliniensis morphogenesis   总被引:1,自引:0,他引:1  
AIMS: Cell-cell signalling in Candida albicans is a known phenomenon and farnesol was identified as a quorum sensing molecule determining the yeast morphology. The aim of this work was to verify if farnesol had a similar effect on Candida dubliniensis, highlighting the effect of farnesol on Candida spp. morphogenesis. METHODS AND RESULTS: Two different strains of C. dubliniensis and one of C. albicans were grown both in RPMI 1640 and in serum in the presence of absence of farnesol. At 150 micromol l(-1) farnesol the growth rate of both Candida species was not affected. On the contrary, farnesol inhibited hyphae and pseudohyphae formation in C. dubliniensis. CONCLUSION: Farnesol seems to mediate cell morphology in both Candida species. SIGNIFICANCE AND IMPACT OF THE STUDY: The effect of farnesol on C. dubliniensis morphology was not reported previously.  相似文献   

13.
The in vitro and keratinocyte (HaCAT cells) culture expression of four putative genes coding for secreted aspartyl proteases of Candida dubliniensis – CdSAP1, CdSAP2, CdSAP3 , and CdSAP4 ( CdSAP1–4 ) – is reported for the first time. In addition, CdSAP7, 8, 9 , and 10 , orthologous genes of Candida albicans , were recognized in C. dubliniensis genome. There are no orthologs of C. albicans SAP5 and 6 in C. dubliniensis . The expression of CdSAP1 and 2 was independent of the morphological stage of C. dubliniensis ; they are expressed at both pH 4 and pH 7, and were induced with albumin as nitrogen source. CdSAP3 expression was regulated by the pH, and was related to the infection process of keratinocytes. Expression of CdSAP4 predominated during the mycelial phase and the initial stage of keratinocyte infection. During infection of the HaCaT cell line, only genes CdSAP3 – 4 were expressed, and keratinocytes were affected in their number and shape by the infection with C. dubliniensis ; however, this effect decreased in the presence of pepstatin A (aspartyl protease inhibitor). Pepstatin A was not able to inhibit keratinocyte damage. Based on the aforementioned, we suggest that the Saps from C. dubliniensis could be considered a virulence factor just as those from C. albicans , and participants in the nitrogen metabolism of the yeast for nutrient acquisition.  相似文献   

14.
Staib P  Michel S  Köhler G  Morschhäuser J 《Gene》2000,242(1-2):393-398
Candida dubliniensis is a recently described pathogenic yeast of the genus Candida that is closely related to Candida albicans but differs from it in several phenotypic and genotypic characteristics, including putative virulence traits, which may explain differences in the spectrum of diseases caused by the two species. In contrast to C. albicans, a molecular genetic system to study virulence of C. dubliniensis is lacking. We have developed a system for the genetic transformation of C. dubliniensis that is based on the use of the dominant selection marker MPA(R) from C. albicans that confers resistance to mycophenolic acid (MPA). Using this transformation system, a GFP (green fluorescent protein) reporter gene that was genetically engineered for functional expression in C. albicans and placed under control of the inducible C. albicans SAP2 (secreted aspartic proteinase) promoter was integrated into the C. dubliniensis genome. MPA-resistant transformants containing the SAP2P-GFP fusion fluoresced under SAP2-inducing conditions but not under SAP2-repressing conditions. These results demonstrate that the MPA(R) selection marker is useful for transformation of C. dubliniensis wild-type strains, that the GFP reporter gene is functionally expressed in C. dubliniensis, and that the C. albicans SAP2 promoter can be used for controlled gene expression in C. dubliniensis. These genetic tools will allow the dissection of the differences in virulence characteristics between the two pathogenic yeast species at the molecular level.  相似文献   

15.
Oral candidiasis in HIV-1-infected individuals is widely believed to be triggered by the acquired T-lymphocyte immunodeficiency. Recently, binding of the HIV-1 envelope protein gp160 and its subunit gp41, and also of the whole virus itself, to Candida albicans has been shown. The present study shows that, in addition to C. albicans, HIV-1 gp41 also binds to yeast and hyphal forms of Candida dubliniensis, a species which is closely related to C. albicans, and to Candida tropicalis but not to Candida krusei, Candida glabrata or Saccharomyces cerevisiae. The previous finding that gp41 binding to C. albicans augments fungal virulence in vitro is supported by the observation that the yeast showed an enhanced adhesion to HIV-infected H9 cells in comparison to uninfected cells. In line with these results soluble gp41 itself reduced binding of C. albicans to both endothelial and epithelial cell lines, confirming a dominant role of the gp41 binding moiety on the surface of Candida for adhesion. Surface-associated secreted aspartic proteinases (Saps) play an important role in candidial adhesion, but are not likely to be involved in the interaction as gp41 binding to the C. albicans parental wild-type strain was comparable to that of three different isogenic Sap deletion mutants. Furthermore, gp41 binding to the yeast killer toxin-susceptible C. albicans strain 10S was not inhibitable by an anti-YKT receptor antibody. In conclusion, HIV-1 interacts with different clinically important Candida spp., and may thereby affect the outcome of the respective fungal infection.  相似文献   

16.
Few human pathogens possess the ability exhibited by Candida albicans to colonize and cause symptomatic infections at different body sites. The host immune system is the major factor determining whether this opportunistic yeast behaves as a commensal or as a pathogen, since C. albicans strains appear capable of expressing similar virulence factors in response to specific body-district cues. This report provides evidence showing that C. albicans isolates with diverse genomic backgrounds (b and c karyotypes) differently modulate their pathogenic potential when assayed in cocultures with human monocytic derived macrophages (THP-1 cells). Striking differences were observed in the ability to undergo bud-hypha transition, a relevant C. albicans virulence factor, between b and c karyotypes (P<0.0001) upon their internalization by macrophages. All c types were able to develop hyphal forms, resist intracellular killing, replicate, and escape from macrophages. The b type isolates, which were shown to be more efficiently ingested by THP-1 cells than the c type strains (P=0.013), were susceptible to intracellular killing and predominantly found as blastoconidia inside macrophages. Despite their different intracellular disposition, both b and c type isolates were equally able to undergo morphogenesis and to express NRG1 and HWP1 genes, markers of the bud-hypha transition program, during in vitro propagation. Since macrophages play a critical role in the host resistance to C. albicans, the different response of b and c isolates to macrophage infection suggests that the c type strains are better suited to behave as a more virulent strain cluster.  相似文献   

17.
This study investigated whether the interaction between isolates of Candida albicans (n=7), Candida parapsilosis (n=3), Candida krusei (n=2), Candida dubliniensis (n=1) and sertraline, a typical selective serotonin reuptake inhibitor, alters candidal virulence. Sertraline treatment of Candida spp. significantly (P<0.05) affected hyphal elongation, phospholipase activity, production of secreted aspartyl proteinases and fungal viability. In addition, monocyte-derived macrophages (MDMs) treated with sertraline reduced inhibition of blastoconidia germination in comparison to MDMs alone. In conclusion, our findings suggest that the interaction between sertraline and Candida spp. may also diminish the virulence properties of this fungal pathogen in vivo.  相似文献   

18.
This study evaluated the phenotypic tests used to differentiate Candida albicans from Candida dubliniensis. A total of 55 isolates from vaginal secretions, oral cavity and hemoculture were studied. They were originally identified as C. albicans, based on their morphological and physiological characteristics. These isolates were tested for colony color development on CHROMagar Candida medium, growth at 45 degrees C on Sabouraud Dextrose agar, lipolytic activity on Tween 80 Agar medium and colony morphology and chlamydoconidia formation on Staib agar medium. Of the 55 isolates studied, seven yielded one or more phenotypic characteristics suggestive of Candida dubliniensis. These isolates were tested by PCR with specific primers for Candida dubliniensis and API ID 32. The seven isolates were confirmed as Candida albicans. All of these finding indicate that DNA based tests should be used for definitive identification of Candida dubliniensis.  相似文献   

19.
Candida dubliniensis is a recently described opportunistic fungal pathogen that is closely related to Candida albicans but differs from it with respect to epidemiology, certain virulence characteristics, and the ability to develop fluconazole resistance in vitro. A comparison of C. albicans and C. dubliniensis at the molecular level should therefore provide clues about the mechanisms used by these two species to adapt to their human host. In contrast to C. albicans, no auxotrophic C. dubliniensis strains are available for genetic manipulations. Therefore, we constructed homozygous ura3 mutants from a C. dubliniensis wild-type isolate by targeted gene deletion. The two URA3 alleles were sequentially inactivated using the MPA(R)-flipping strategy, which is based on the selection of integrative transformants carrying a mycophenolic acid resistance marker that is subsequently deleted again by site-specific, FLP-mediated recombination. The URA3 gene from C. albicans (CaURA3) was then used as a selection marker for targeted integration of a fusion between the C. dubliniensis MDR1 (CdMDR1) promoter and a C. albicans-adapted GFP reporter gene. Uridine-prototrophic transformants were obtained with high frequency, and all transformants of two independent ura3-negative parent strains had correctly integrated the reporter gene fusion into the CdMDR1 locus, demonstrating that the CaURA3 gene can be used for efficient and specific targeting of recombinant DNA into the C. dubliniensis genome. Transformants carrying the reporter gene fusion did not exhibit detectable fluorescence during growth in yeast extract-peptone-dextrose medium in vitro, suggesting that CdMDR1 is not significantly expressed under these conditions. Fluconazole had no effect on MDR1 expression, but the addition of the drug benomyl strongly activated the reporter gene fusion in a dose-dependent fashion, demonstrating that the CdMDR1 gene, which encodes an efflux pump mediating resistance to toxic compounds, is induced by the presence of certain drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号