首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Effects of the reagents suppressing or supporting axoplasmic microtubule assembly were studied on the Na ionic current of squid giant axons by perfusing the axon internally with the solution containing the reagent. Among the reagents suppressing the assembly, colchicine, vinblastine, podophyllotoxin, sulfhydryl reagents such as DTNB and NEM, and chaotropic anions such as iodide and bromide, were examined. These reagents reduced maximum Na conductance and shifted the voltage dependence of steady-state Na activation in a depolarizing direction along the voltage axis. They also made the voltage dependence less steep, but did not affect sodium inactivation appreciably. Effects on Na ionic current of reagents which support microtubule assembly (Taxol, DMSO, D2O and temperature) were opposite the effects of those agents suppressing assembly. At the same time, we demonstrated that after Na currents were partially reduced, they could be restored by internally perfusing the axon with a solution containing microtubule proteins, 260K proteins and cAMP under conditions favorable for microtubule assembly. For full restoration, it was found that the following conditions were necessary: (1) The microenvironment within the axon is suitable for microtubule assembly. (2) Tubulins incorporated into microtubules are fully tyrosinated at their C-termini. (3) A peripheral protein having a molecular weight of 260,000 daltons (260K protein) is indispensable. These results suggest that axoplasmic microtubules and 260K proteins in the structure underlying the axolemma play a role in generating Na currents in squid giant axons.  相似文献   

2.
Effect of internal colchicine on asymmetrical displacement currents was studied by internally perfusing squid giant axons with a solution containing colchicine. It was found that (1) asymmetrical displacement currents were composed of two parts; colchicine-sensitive and colchicine-resistant; that (2) the colchicine-sensitive part had a definite rising phase while the colchicine-resistant one showed an instantaneous jump, followed by exponential decay; and that (3) the colchicine-sensitive part related to normal Na channels.  相似文献   

3.
Summary The effects of application of the microtubule-disassembling reagents to squid giant axons upon resting potential, the height of the propagated action potential, and the threshold to evoke action potential were studied using colchicine, podophyllotoxin, vinblastine, griseofulvin, sulfhydryl reagents including NEM, diamide, DTNB and PCMB, and Ca2+ ions. At the same time, the effects of concentrations of K halides and K glutamate on the above physiological properties were studied in comparison within vitro characteristics of microtubule assembly from purified axoplasmic tubulin.It was found that there was good correlation between conditions supporting maintenance of membrane excitability and microtubule assembly. The experiments suggest that associated with the internal surface of the plasma membrane there are microtubules which regulate in part both resting and action potentials.  相似文献   

4.
A high molecular weight protein has been partially purified from sheaths of squid giant axons. This protein fraction was capable of restoring the membrane excitability of the squid axon which had been destroyed by internal perfusion of microtubule poison, when perfused along with microtubule proteins (Matsumoto et al. (1979) J. Biochem. 86, 1155-1158). This protein, designated as 260 K protein, was purified by gel filtration and Con A-Sepharose affinity chromatography. The apparent molecular weight of the axonal protein was estimated to be 260,000 by electrophoresis in the presence of sodium dodecylsulfate. This protein was revealed to be a glycoprotein. When phosphocellulose-purified tubulin was incubated with 260 K protein at 36 degrees C in the presence of dimethylsulfoxide, turbidity of the solution was much increased. 260 K protein co-sedimented with microtubles assembled from purified tubulin. Light microscopic and electron microscopic observations revealed that the high turbidity was due to bundling of microtubules which was caused by 260 K protein. On the other hand, the effect of this protein on the turbidity increase was not so prominent when microtubules were assembled from microtubule proteins consisting of tubulin and microtubule-associated proteins. High shear and low shear viscometry and co-sedimentation experiments revealed that 260 K protein had little effect on actin polymerization under the same medium conditions as used in tubulin polymerization.  相似文献   

5.
A method is described for the simultaneous measurement of changes in membrane current and unidirectional radiotracer flux in internally dialyzed voltage-clamped squid giant axons. The small currents that are produced by electrogenic transport processes or steady-state ionic currents can be resolved using this method. Because the use of grounded guard electrodes in the end pools is not, by itself, an adequate means of eliminating end-effects, two ancillary end pool clamp circuits are described to eliminate extraneous current flow from the ends of the axon. The end pool voltage-clamp circuits serve to minimize net current flow between the end pools and center pool, and employ stable, low-impedance calomel electrodes to monitor the potentials of the end and center pools. The adequacy of the method is demonstrated by experiments in which unidirectional 22Na efflux and current, flowing through tetrodotoxin (TTX)-sensitive Na channels into Na-free seawater, under K-free conditions, are shown to be equal. The equality of unidirectional TTX-sensitive flux and current is maintained over the entire range of membrane potentials examined (-60 to +20 mV). The method has been applied to a series of experiments in which the voltage dependence and stoichiometry of the Na/K pump have been measured (Rakowski et al., 1989), and can be applied in general to the simultaneous measurement of changes in current and flux of other electrogenic transport processes, and of currents through ionic channels that open under steady-state conditions.  相似文献   

6.
Interaction of nonylguanidine with the sodium channel.   总被引:1,自引:1,他引:0       下载免费PDF全文
Alkyl and aromatic guanidines interact strongly with the tetrodotoxin (TTX)- receptor site in eel electroplaque membranes, showing competition with TTX. That these guanidines could be useful as highly reversible small molecular weight blockers of Na+ currents is therefore suggested. We have investigated the mechanisms of interaction of one of these derivatives, nonylguanidine, by studying its effects on Na+ currents in squid giant axons using voltage clamp techniques. Although nonylguanidine competed with TTX for binding to eel electroplaque membrane fragments (Ki = 1.8 X 10(-5) M), it reversibly blocked both inward and outward Na+ currents in intact axons only if applied to the interior. In axons with the Na+ inactivation removed by papain nonylguanidine produced a time-dependent block very similar to that reported for strychnine and pancuronium. The reduction of steady-state currents in these axons was also voltage-dependent, with increasing block observed with increasing step depolarization. These results suggest that nonylguanidine binds to a site accessible from the axoplasmic side of the channel, simulating Na+ inactivation in papain-treated axons and competing with the normal inactivation process in untreated axons. The competition between internal nonylguanidine and external TTX may result from perturbation by the positively charged nonylguanidine of the TTX-binding site from within the channel itself.  相似文献   

7.
Membrane excitability of the squid giant axon was destroyed by perfusing with a medium containing 0.2 mM Ca ions that depolymerize microtubules. Restoration of the membrane excitability was achieved by perfusing the axon with a medium that contained purified tubulin-tyrosine ligase, tubulin, ATP, Mg2+, K+, cyclic AMP, and 300 K Protein.  相似文献   

8.
The subcellular localization of microtubule proteins in the neurons of squid (Doryteuthis bleekeri) was immunologically studied using monoclonal antibodies against the microtubule proteins. We found that (1) the squid neurons contained three kinds of high-molecular-weight microtubule-associated proteins [MAP A of approximately 300 kilodaltons (kD), MAP B of 260 kD, and axolinin of 260 kD] and two kinds of beta-tubulin isotypes (beta 1 and beta 2); (2) the cell body of the squid giant neuron contained MAP A, MAP B, and the two beta-tubulin isotypes (beta 1 and beta 2); (3) axolinin and the beta 1 isotype were present exclusively in the peripheral axoplasm of the giant axon; and (4) a small amount of axolinin, MAP A, and the beta 1 isotype was found in the insoluble aspect of the central axoplasm, whereas the soluble aspect of the central axoplasm contained an abundant amount of MAP A along with the modified form of the beta 1 isotype. The regional difference of the distribution of the microtubule protein components may explain the differences in stability among axonal microtubules. Microtubules in the soluble aspect of the central axoplasm are sensitive to any treatment with colchicine, cold temperature, and high ionic strength but those both in the insoluble aspect of the central axoplasm and in the peripheral axoplasm are highly insensitive to the treatment.  相似文献   

9.
R D Vale  B J Schnapp  T S Reese  M P Sheetz 《Cell》1985,40(3):559-569
A reconstituted system for examining directed organelle movements along purified microtubules has been developed. Axoplasm from the squid giant axon was separated into soluble supernatant and organelle-enriched fractions. Movement of axoplasmic organelles along MAP-free microtubules occurred consistently only after addition of axoplasmic supernatant and ATP. The velocity of such organelle movement (1.6 micron/sec) was the same as in dissociated axoplasm. The axoplasmic supernatant also supported movement of microtubules along a glass surface and movement of carboxylated latex beads along microtubules at 0.5 micron/sec. The direction of microtubule movement on glass was opposite to that of organelle and bead movement on microtubules. The factors supporting movements of microtubules, beads, and organelles were sensitive to heat, trypsin, AMP-PNP and 100 microM vanadate. All of these movements may be driven by a single, soluble ATPase that binds reversibly to organelles, beads, or glass and generates a translocating force on a microtubule.  相似文献   

10.
Squid giant axons were injected with aequorin and tetraethylammonium and were impaled with hydrogen ion sensitive, current and voltage electrodes. A newly designed horizontal microinjector was used to introduce the aequorin. It also served, simultaneously, as the current and voltage electrode for voltage clamping and as the reference for ion-sensitive microelectrode measurements. The axons were usually bathed in a solution containing 150 mM each of Na+, K+, and some inert cation, at either physiological or zero bath Ca2+ concentration [( Ca2+]o), and had ionic currents pharmacologically blocked. Voltage clamp pulses were repeatedly delivered to the extent necessary to induce a change in the aequorin light emission, a measure of axoplasmic ionized Ca2+ level, [( Ca2+]i). Alternatively, membrane potential was steadily held at values that represented deviations from the resting membrane potential observed at 150 mM [K+]o (i.e. approximately -15 mV). In the absence of [Ca2+]o a significant steady depolarization brought about by current flow increased [Ca2+]i (and acidified the axoplasm). Changes in internal hydrogen activity, [H+]i, induced by current flow from the internal Pt wire limited the extent to which valid measurements of [Ca2+]i could be made. However, there are effects on [Ca2+]i that can be ascribed to membrane potential. Thus, in the absence of [Ca2+]o, hyperpolarization can reduce [Ca2+]i, implying that a Ca2+ efflux mechanism is enhanced. It is also observed that [Ca2+]i is increased by depolarization. These results are consistent with the operation of an electrogenic mechanism that exchanges Na+ for Ca2+ in squid giant axon.  相似文献   

11.
J M Huang  J Tanguy    J Z Yeh 《Biophysical journal》1987,52(2):155-163
Modification of sodium channels by chloramine-T was examined in voltage clamped internally perfused crayfish and squid giant axons using the double sucrose gap and axial wire technique, respectively. Freshly prepared chloramine-T solution exerted two major actions on sodium channels: (a) an irreversible removal of the fast Na inactivation, and (b) a reversible block of the Na current. Both effects were observed when chloramine-T was applied internally or externally (5-10 mM) to axons. The first effect was studied in crayfish axons. We found that the removal of the fast Na inactivation did not depend on the states of the channel since the channel could be modified by chloramine-T at holding potential (from -80 to -100 mV) or at depolarized potential of -30 mV. After removal of fast Na inactivation, the slow inactivation mechanism was still present, and more channels could undergo slow inactivation. This result indicates that in crayfish axons the transition through the fast inactivated state is not a prerequisite for the slow inactivation to occur. During chloramine-T treatment, a distinct blocking phase occurred, which recovered upon washing out the drug. This second effect of chloramine-T was studied in detail in squid axons. After 24 h, chloramine-T solution lost its ability to remove fast inactivation but retained its blocking action. After removal of the fast Na inactivation, both fresh and aged chloramine-T solutions blocked the Na currents with a similar potency and in a voltage-dependent manner, being more pronounced at lower depolarizing potentials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Dynamics of 9-aminoacridine block of sodium channels in squid axons   总被引:5,自引:3,他引:2       下载免费PDF全文
The interactions of 9-aminoacridine with ionic channels were studied in internally perfused squid axons. The kinetics of block of Na channels with 9-aminoacridine varies depending on the voltage-clamp pulses and the state of gating machinery of Na channels. In an axon with intact h gate, the block exhibits frequency- and voltage-dependent characteristics. However, in the pronase-perfused axon, the frequency- dependent block disappears, whereas the voltage-dependent block remains unchanged. A time-dependent decrease in Na currents indicative of direct block of Na channel by drug molecule follows a single exponential function with a time constant of 2.0 +/- 0.18 and 1.0 +/- 0.19 ms (at 10 degrees C and 80 m V) for 30 and 100 microM 9- aminoacridine, respectively. A steady-state block can be achieved during a single 8-ms depolarizing pulse when the h gate has been removed. The block in the h-gate intact axon can be achieved only with multiple conditioning pulses. The voltage-dependent block suggests that 9-aminoacridine binds to a site located halfway across the membrane with a dissociation constant of 62 microM at 0 m V. 9-Aminoacridine also blocks K channels, and the block is time- and voltage-dependent.  相似文献   

13.
Pharmacological and kinetic analysis of K channel gating currents   总被引:3,自引:2,他引:1       下载免费PDF全文
We have measured gating currents from the squid giant axon using solutions that preserve functional K channels and with experimental conditions that minimize Na channel contributions to these currents. Two pharmacological agents were used to identify a component of gating current that is associated with K channels. Low concentrations of internal Zn2+ that considerably slow K channel ionic currents with no effect on Na channel currents altered the component of gating current associated with K channels. At low concentrations (10-50 microM) the small, organic, dipolar molecule phloretin has several reported specific effects on K channels: it reduces K channel conductance, shifts the relationship between channel conductance and membrane voltage (Vm) to more positive potentials, and reduces the voltage dependence of the conductance-Vm relation. The K channel gating charge movements were altered in an analogous manner by 10 microM phloretin. We also measured the dominant time constants of the K channel ionic and gating currents. These time constants were similar over part of the accessible voltage range, but at potentials between -40 and 0 mV the gating current time constants were two to three times faster than the corresponding ionic current values. These features of K channel function can be reproduced by a simple kinetic model in which the channel is considered to consist of two, two-state, nonidentical subunits.  相似文献   

14.
Effects of Internal Divalent Cations on Voltage-Clamped Squid Axons   总被引:10,自引:5,他引:5       下载免费PDF全文
We have studied the effects of internally applied divalent cations on the ionic currents of voltage-clamped squid giant axons. Internal concentrations of calcium up to 10 mM have little, if any, effect on the time-course, voltage dependence, or magnitude of the ionic currents. This is inconsistent with the notion that an increase in the internal calcium concentration produced by an inward calcium movement with the action potential triggers sodium inactivation or potassium activation. Low internal zinc concentrations (~1 mM) selectively and reversibly slow the kinetics of the potassium current and reduce peak sodium current by about 40% with little effect on the voltage dependence of the ionic currents. Higher concentrations (~10 mM) produce a considerable (ca. 90%) nonspecific reversible reduction of the ionic currents. Large hyperpolarizing conditioning pulses reduce the zinc effect. Internal zinc also reversibly depolarizes the axon by 20–30 mV. The effects of internal cobalt, cadmium, and nickel are qualitatively similar to those of zinc: only calcium among the cations tested is without effect.  相似文献   

15.
Fast transport of axonal vesicles and organelles is a microtubule-associated movement (Griffin, J. W., K. E. Fahnestock, L. Price, and P. N. Hoffman, 1983, J. Neuroscience, 3:557-566; Schnapp, B. J., R. D. Vale, M. P. Sheetz, and T. S. Reese, 1984, Cell, 40:455-462; Allen, R. D., D. G. Weiss, J. H. Hayden, D. T. Brown, H. Fujiwake, and M. Simpson, 1985, J. Cell Biol., 100:1736-1752). Proteins that mediate the interactions of axoplasmic vesicles and microtubules were studied using stable complexes of microtubules and vesicles (MtVC). These complexes formed spontaneously in vitro when taxol-stabilized microtubules were mixed with sonically disrupted axoplasm from the giant axon of the squid Loligo pealei. The isolated MtVCs contain a distinct subset of axoplasmic proteins, and are composed primarily of microtubules and attached membranous vesicles. The MtVC also contains nonmitochondrial ATPase activity. The binding of one high molecular mass polypeptide to the complex is significantly enhanced by ATP or adenyl imidodiphosphate. All of the axoplasmic proteins and ATPase activity that bind to microtubules are found in macromolecular complexes and appear to be vesicle-associated. These data allow the identification of several vesicle-associated proteins of the squid giant axon and suggest that one or more of these polypeptides mediates vesicle binding to microtubules.  相似文献   

16.
Ionic conductances of squid giant fiber lobe neurons   总被引:6,自引:3,他引:3       下载免费PDF全文
The cell bodies of the neurons in the giant fiber lobe (GFL) of the squid stellate ganglion give rise to axons that fuse and thereby form the third-order giant axon, whose initial portion functions as the postsynaptic element of the squid giant synapse. We have developed a preparation of dissociated, cultured cells from this lobe and have studied the voltage-dependent conductances using patch-clamp techniques. This system offers a unique opportunity for comparing the properties and regional differentiation of ionic channels in somatic and axonal membranes within the same cell. Some of these cells contain a small inward Na current which resembles that found in axon with respect to tetrodotoxin sensitivity, voltage dependence, and inactivation. More prominent is a macroscopic inward current, carried by Ca2+, which is likely to be the result of at least two kinetically distinct types of channels. These Ca channels differ in their closing kinetics, voltage range and time course of activation, and the extent to which their conductance inactivates. The dominant current in these GFL neurons is outward and is carried by K+. It can be accounted for by a single type of voltage-dependent channel. This conductance resembles the K conductance of the axon, except that it partially inactivates during relatively short depolarizations. Ensemble fluctuation analysis of K currents obtained from excised outside-out patches is consistent with a single type of K channel and yields estimates for the single channel conductance of approximately 13 pS, independently of membrane potential. A preliminary analysis of single channel data supports the conclusion that there is a single type of voltage-dependent, inactivating K channel in the GFL neurons.  相似文献   

17.
Inactivation of Na channels has been studied in voltage-clamped, internally perfused squid giant axons during changes in the ionic composition of the intracellular solution. Peak Na currents are reduced when tetramethylammonium ions (TMA+) are substituted for Cs ions internally. The reduction reflects a rapid, voltage-dependent block of a site in the channel by TMA+. The estimated fractional electrical distance for the site is 10% of the channel length from the internal surface. Na tail currents are slowed by TMA+ and exhibit kinetics similar to those seen during certain drug treatments. Steady state INa is simultaneously increased by TMA+, resulting in a "cross-over" of current traces with those in Cs+ and in greatly diminished inactivation at positive membrane potentials. Despite the effect on steady state inactivation, the time constants for entry into and exit from the inactivated state are not significantly different in TMA+ and Cs+. Increasing intracellular Na also reduces steady state inactivation in a dose-dependent manner. Ratios of steady state INa to peak INa vary from approximately 0.14 in Cs+- or K+-perfused axons to approximately 0.4 in TMA+- or Na+-perfused axons. These results are consistent with a scheme in which TMA+ or Na+ can interact with a binding site near the inner channel surface that may also be a binding or coordinating site for a natural inactivation particle. A simple competition between the ions and an inactivation particle is, however, not sufficient to account for the increase in steady state INa, and changes in the inactivation process itself must accompany the interaction of TMA+ and Na+ with the channel.  相似文献   

18.
Summary The permeability of the Na channel of squid giant axon to organic cations and small nonelectrolytes was studied. The compounds tested were guanidinium, formamidinium, and14C-labeled urea, formamide, thiourea, and acetone. Permeability was calculated from measurements of reversal potential and influx on internally perfused, voltage clamped squid axons. The project had two objectives: (1) to determine whether different methods of measuring the permeability of organic cations yield similar values and (2) to see whether neutral analogs of the organic cations can permeate the Na channel. Our results show that the permeability ratio of sodium to a test ion depends upon the ionic composition of the solution used. This finding is consistent with the view put forward previously that the Na channel can contain more than one ion at a time. In addition, we found that the uncharged analogs of permeant cations are not measurably permeant through the Na channel, but instead probably pass through the lipid bilayer.  相似文献   

19.
Na+ channels are present at high density in squid giant axon but are absent from its somata in the giant fiber lobe (GFL) of the stellate ganglion. GFL cells dispersed in vitro maintain growing axons and develop a Na+ channel distribution similar to that in vivo. Tunicamycin, a glycosylation inhibitor, selectively disrupts the spatially appropriate, high level expression of Na+ channels in axonal membrane but has no effect on expression in cell bodies, which show low level, inappropriate expression in vitro. This effect does not appear to involve alteration in Na+ channel turnover or axon viability. K+ channel distribution is unaffected. Thus, glycosylation appears to be involved in controlling Na+ channel localization in squid neurons.  相似文献   

20.
R D Vale  T S Reese  M P Sheetz 《Cell》1985,42(1):39-50
Axoplasm from the squid giant axon contains a soluble protein translocator that induces movement of microtubules on glass, latex beads on microtubules, and axoplasmic organelles on microtubules. We now report the partial purification of a protein from squid giant axons and optic lobes that induces these microtubule-based movements and show that there is a homologous protein in bovine brain. The purification of the translocator protein depended primarily on its unusual property of forming a high affinity complex with microtubules in the presence of a nonhydrolyzable ATP analog, adenylyl imidodiphosphate. The protein, once released from microtubules with ATP, migrates on gel filtration columns with an apparent molecular weight of 600 kilodaltons and contains 110-120 and 60-70 kilodalton polypeptides. This protein is distinct in molecular weight and enzymatic behavior from myosin or dynein, which suggests that it belongs to a novel class of force-generating molecules, for which we propose the name kinesin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号