首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of three increasing doses of platelet-activating factor (PAF) on airway caliber and methacholine bronchial responsiveness were studied. On separate occasions nine normal subjects inhaled a single cumulative provocation concentration of methacholine (control) causing a 40% fall (PC40 Vp30) in maximum expiratory flow rate at 70% of base-line vital capacity below total lung capacity during a partial forced expiratory maneuver or 100 or 200 micrograms PAF, and seven subjects inhaled a further dose of 400 micrograms PAF. Methacholine responsiveness was measured before, at 3 and 7 h, then on days 1, 2, 3, 4, 7, 10, and 14 after each challenge. The maximum falls in Vp30 appeared dose dependent, but a significant difference between the magnitude of the responses was only observed between the 400- and 100-micrograms PAF dose (P less than 0.05). During the control period repeated methacholine challenges resulted in a progressive increase in cumulative provocation concentration of an agonist causing a 20% fall in forced expiratory volume in 1 s from base line, reaching significance on days 1 and 2 (2.44- and 2.4-fold of base line, respectively, P less than 0.01) before returning to base line on day 7. No difference was seen in methacholine responsiveness after any of the three doses of PAF compared with that after the control. We conclude that PAF causes dose-dependent bronchoconstriction but does not change airways responsiveness to methacholine and that repeated high-dose methacholine challenge leads to loss of responsiveness to this agonist.  相似文献   

2.
To determine the characteristics and reproducibility of circadian rhythms of airway responsiveness to histamine and methacholine and their relationship to airway tone in patients with mild asthma, we studied nine subjects with complaints of nighttime awakening due to dyspnea and/or cough at least once a week. Their mean age was 31.4 yr (range 17-65) and their mean daytime FEV1 was 99 +/- 14 (SD) % predicted. Forced expiratory volume in 1 s (FEV1) and the provocative concentrations of histamine and methacholine necessary to decrease FEV1 by 20% (PC20FEV1) were determined every 4 h for 13 consecutive measurements. Three subjects were measured with histamine, three with methacholine, and three with both histamine and methacholine. Data were evaluated on an individual basis. PC20FEV1 to histamine and methacholine showed significant and reproducible circadian variations in all cases (P less than 0.01 each) with a mean amplitude of 1.00 +/- 0.17 (SD) doubling concentrations for histamine and 1.35 +/- 0.29 doubling concentrations for methacholine. The amplitude of PC20FEV1 was significantly larger (P less than 0.05) and the time of maximum responsiveness was significantly earlier (P less than 0.05) with methacholine compared with histamine. FEV1 showed significant (P less than 0.05) circadian variations in three of nine subjects, and peak expiratory flow rate showed variations in two subjects. Correlation between the variations of FEV1 and PC20FEV1 was significant (P less than 0.05) in 5 of 12 cases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In healthy human subjects, the simultaneous aerosol administration of histamine and methacholine results in a pronounced decrease in maximum flow rates on partial expiratory flow-volume (PEFV) curves. When given alone in the same concentrations, these drugs produced no or minimal decreases in flow rates. The results suggest an interaction of histamine and cholinergic stimuli on airway smooth muscle (ASM). This mechanism might explain many experiments where vagal blockade diminished or abolished ASM response to histamine and other stimuli, simply by interfering with histamine-cholinergic interaction at the ASM level. These findings confirm similar findings of animal in vitro experiments. The experiments clearly confirm the sensitivity and value of assessing drug effects prior to a deep breath. Flow-rate changes after a full inspiration, taken from the maximum expiratory flow-volume (MEFV) curve, show either no relationship to the concentration of inhaled methacholine or significantly less effect than that seen on the PEFV curve.  相似文献   

4.
Mice have been widely used in immunologic and other research to study the influence of different diseases on the lungs. However, the respiratory mechanical properties of the mouse are not clear. This study extended the methodology of measuring respiratory mechanics of anesthetized rats and guinea pigs and applied it to the mouse. First, we performed static pressure-volume and maximal expiratory flow-volume curves in 10 anesthetized paralyzed C57BL/6 mice. Second, in 10 mice, we measured dynamic respiratory compliance, forced expiratory volume in 0.1 s, and maximal expiratory flow before and after methacholine challenge. Averaged total lung capacity and functional residual capacity were 1.05 +/- 0.04 and 0.25 +/- 0.01 ml, respectively, in 20 mice weighing 22.2 +/- 0.4 g. The chest wall was very compliant. In terms of vital capacity (VC) per second, maximal expiratory flow values were 13.5, 8.0, and 2.8 VC/s at 75, 50, and 25% VC, respectively. Maximal flow-static pressure curves were relatively linear up to pressure equal to 9 cm H(2)O. In addition, methacholine challenge caused significant decreases in respiratory compliance, forced expiratory volume in 0.1 s, and maximal expiratory flow, indicating marked airway constriction. We conclude that respiratory mechanical parameters of mice (after normalization with body weight) are similar to those of guinea pigs and rats and that forced expiratory maneuver is a useful technique to detect airway constriction in this species.  相似文献   

5.
In a sample of 77 men and 53 women aged 17–25 years, it has been shown that the duration of tracheal forced expiratory noises is significantly shorter in women. However, normalizing the duration of tracheal forced expiratory noises to height, body mass, and chest circumference eliminates this difference.  相似文献   

6.
The effect of training on VO2 max, endurance capacity (EC) and ventilation during maximal exercise (VE max) were studied in 17 normal subjects aged 21--51 years. At the beginning of the study 11 of the subjects (eight women and three men) were untrained (U) and six others (three women and three men) trained regulatory (T). A maximal intensity exercise (on a cycle ergometer) which could be sustained for 45 min (MIE45) was performed three times per week for 6 weeks; the total mechanical work (TMW) corresponding to the MIE45 per session varied between 3.14 and 9.24 kJ . kg-1. Before training, VO2 max (a), VEmax (b), and TMW (c) were higher in T than in U subjects. Training increased these variables in most of the subjects; the increase being significantly higher (mean +/- SEM) in U (a = +29.9 +/- 3.8%; b = 49.6 +/- 6.5%; c = 47 +/- 6.9%) than in T subjects (a = 6.6 +/- 3.8%; b = 17.5 +/- 3.6+; c = 19.1 +/- 2.8%). In all but three cases the % increase of TMW was higher than that of VO2 max, suggesting a higher sensitivity of TMW in measuring EC. The significant increase in VE max, maximal voluntary ventilation, peak flows (inspiratory and expiratory) and static maximum voluntary ventilation, peak flows (inspiratory and expiratory) and static maximum pressures indicate that this training protocol improves in healthy subjects the performance of respiratory muscles as well.  相似文献   

7.
An earlier study of peak expiratory flow (PEF) in normal adults contained too few men aged over 55 and women aged over 65 for the regression equations to be used for prediction in older people. A subsequent study was therefore carried out on an additional 23 men and 29 women aged 55 or over who were lifelong non-smokers and satisfied the same strict criteria of normality that had been used in the original study. The data from both studies were combined and a new model used to calculate equations for the regression of PEF on age and height in the two sexes. With this model predicted values could be derived for men and women aged between 15 and 85. These new equations gave predicted values in men and women aged less than 55 and 65, respectively, which were almost identical with those reported previously. The new regression equations for PEF enable values to be predicted for people aged 15-85 and so enhance the accuracy of testing in the elderly.  相似文献   

8.
Prostacyclin (PGI2) is generated in appreciable amounts during allergic reactions in human lung tissue. To define its activity on human airways we have studied the effects of doubling concentrations of inhaled PGI2 and its hydrolysis product 6-oxoprostaglandin F1 alpha (6-oxo-PGF1 alpha) on specific airway conductance (sGaw), maximum expiratory flow at 30% vital capacity (Vmax30), forced expiratory volume in 1 s (FEV1), and static lung volumes in subjects with mild allergic asthma. In a second study the effect of inhaled PGI2 on bronchoconstriction provoked by increasing concentrations of inhaled prostaglandin (PG) D2 and methacholine was observed. Inhalation of PGI2 up to a concentration of 500 micrograms/ml had no significant effect on sGaw but produced a concentration-related decrease in FEV1 and Vmax30 in all subjects. In two of four subjects inhalation of PGI2 also increased residual volume and decreased vital capacity but had no effect on total lung capacity. PGI2, but not 6-oxo-PGF1 alpha, protected against bronchoconstriction provoked by either PGD2 or methacholine whether airway caliber was measured as sGaw, FEV1, or Vmax30. The apparent disparity between the bronchoconstrictor and antibronchoconstrictor effects of PGI2 might be explained by its potent vasodilator effect in causing airway narrowing through mucosal engorgement and reducing the spasmogenic effects of other inhaled mediators by increasing their clearance from the airways.  相似文献   

9.
First-breath ventilatory responses to graded inspiratory elastic and resistive loads were obtained from 80 women unfamiliar with respiratory experimentation. For each load 1) responses from different subjects ranged from a weak tidal volume defense coupled with an increased breathing frequency to a strong tidal volume defense coupled with a decreased frequency; 2) strong tidal volume defenders employed longer inspirations than did weak tidal volume defenders; and 3) individual respiratory frequency responses were mediated by changes in inspiratory and/or expiratory timing. Thus the group response was qualitatively the same as that reported for 80 men. Quantitatively, however, mean inspiratory airflow responses of women exceeded those of men by an amount attributable to women's higher intrinsic respiratory elastance. Tidal volume responses, on the other hand, did not differ significantly, suggesting that men and women produce different neural adjustments to loads. In support of this hypothesis, analysis of respiratory timing responses revealed that 1) men actively prolonged inspiration more than women during resistive loading; and 2) women actively shortened inspiration more than men during elastic loading. These findings indicate that the load-compensating behavior exhibited by men and women is similar but not identical.  相似文献   

10.
We prospectively performed methacholine bronchoprovocation challenges on 46 young smokers to examine the effects of cigarette smoking on airway responsiveness. The subjects, ages 18-35 yr, had no past or present history or physical examination findings of asthma or other lung diseases, rhinitis, allergic diseases, or respiratory infections; were skin test negative to 29 common aeroallergens; and had base-line pulmonary function values greater than 80% predicted. Sixteen of 46 (35%) subjects had a 20% or greater drop in forced expiratory volume in 1 s at a provocative methacholine concentration less than or equal to 25 mg/ml. The degree of methacholine responsiveness was not dependent upon base-line pulmonary function values or the amount of cigarettes consumed, and there was no association between the amount of cigarettes consumed and base-line pulmonary function values. These data suggest that many young asymptomatic nonatopic smokers have increased airway responsiveness to inhaled methacholine without clinically significant hyperreactive airway disease.  相似文献   

11.
This study investigated the relationships between pathological changes in small airways (<6 mm perimeter) and lung function in 22 nonasthmatic subjects (20 smokers) undergoing lung resection for peripheral lesions. Preoperative pulmonary function tests revealed airway obstruction [ratio of forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC) < 70%] in 12 subjects and normal lung function in 10. When all subjects were considered together, total airway wall thickness was significantly correlated with FEV1/FVC (r2 = 0.25), reactivity to methacholine (r2 = 0.26), and slope of linear regression of FVC against FEV1 values recorded during the methacholine challenge (r2 = 0.56). Loss of peribronchiolar alveolar attachments was significantly associated (r2 = 0.25) with a bronchoconstrictor effect of deep inhalation, as assessed from a maximal-to-partial expiratory flow ratio <1, but not with airway responses to methacholine. No significant correlation was found between airway smooth muscle thickness and lung function measurements. In conclusion, this study suggests that thickening of the airway wall is a major mechanism for airway closure, whereas loss of airway-to-lung interdependence may contribute to the bronchoconstrictor effect of deep inhalation in the transition from normal lung function to airway obstruction in nonasthmatic smokers.  相似文献   

12.
Airway responsiveness to inhaled cholinergic agonist during the early stage of pulmonary O2 toxicity was examined to determine whether normobaric hyperoxia alters airway function. Eight healthy nonsmoking males with moderate base-line methacholine responsiveness breathed normobaric O2 (greater than or equal to 95%) over 12 h and on another occasion breathed air in an identical protocol. Vital capacity, expiratory flow, airway responsiveness to methacholine, and respiratory symptoms were measured at 0, 4, 8, and 12 h while subjects breathed O2 and 12 h afterwards. After 12 h, forced vital capacity was significantly decreased with O2 breathing but not with air breathing. At 4, 8, or 12 h of exposure and 12 h after exposure, there was no difference in methacholine sensitivity or reactivity between O2 and air-exposure trials. The earliest manifestations of pulmonary normobaric O2 toxicity in normal adults include diminished vital capacity and the onset of respiratory symptoms, but early O2 toxicity does not produce altered responsiveness to inhaled methacholine.  相似文献   

13.
Methacholine inhalation tests measure airway responsiveness in asthmatic and normal subjects. Tachyphylaxis occurs with repeated methacholine inhalations in normal subjects. The purpose of this study was to examine the time course and mechanisms of methacholine tachyphylaxis in normal subjects and to determine whether this occurs in mildly asthmatic subjects. Fifteen normal and nine asthmatic subjects were studied on 2 study days, at least 48 h apart. Each day, two inhalation tests were carried out. On one day, subjects performed two methacholine inhalation tests 3 h later by a methacholine test. Results were expressed as the provocation concentration causing a 20% fall in forced expiratory volume in 1 s (FEV1), (PC20). All normal subjects developed methacholine tachyphylaxis. The mean PC20 increased from 47.3 mg/ml (%SE 1.34) to 115.6 (%SE 1.51) (P less than 0.0001) in a 3-h interval. This increase lasted for greater than or equal to 6 h (P = 0.012). Asthmatic subjects did not develop methacholine tachyphylaxis. Their mean methacholine PC20s were 1.6 mg/ml (%SE 1.4) and 1.5 (%SE 1.4) (P = 0.75) 3 h later. In two other series of experiments, normal subjects were pretreated with the cyclooxygenase inhibitors indomethacin (100 mg/day) or flurbiprofen (150 mg/day) or a placebo for 3 days before two methacholine tests 3 h apart. Both indomethacin and flurbiprofen significantly inhibited the development of methacholine tachyphylaxis. These results confirm that methacholine tachyphylaxis occurs in normal subjects, lasts greater than or equal to 6 h, and may occur through the release of inhibitory prostaglandins. By contrast, methacholine tachyphylaxis does not occur in asthmatic subjects.  相似文献   

14.
In young men (19.0 ± 0.9 years of age), the following parameters were studied during the annual cycle: the tidal and minute lung volumes, vital and forced vital capacities of the lungs, expiratory and inspiratory reserve volumes, 0.5-and 1-s forced expiratory volumes, and Tiffenau index. Young men working under the conditions of the North (62°N) proved to have deeper breathing; the minute volume and vital capacity of their lungs were increased. Analysis of the lung volume during the annual cycle demonstrated changes in most parameters studied (except the expiratory reserve volume and Tiffenau index). The maximum values of the lung volumes were recorded in the cold time of the year (from November to April), whereas the minimum values were observed in the warm time (from May to September).  相似文献   

15.
In the absence of deep inspirations, healthy individuals develop bronchoconstriction with methacholine inhalation. One hypothesis is that deep inspiration results in bronchodilation. In this study, we tested an alternative hypothesis, that deep inspiration acts as a bronchoprotector. Single-dose methacholine bronchoprovocations were performed after 20 min of deep breath inhibition, in nine healthy subjects and in eight asthmatics, to establish the dose that reduces forced expiratory volume in 1 s by >15%. The provocation was repeated with two and five deep inspirations preceding methacholine. Additional studies were carried out to assess optimization and reproducibility of the protocol and to rule out the possibility that bronchoprotection may result from changes in airway geometry or from differential spasmogen deposition. In healthy subjects, five deep inspirations conferred 85% bronchoprotection. The bronchoprotective effect was reproducible and was not attributable to increased airway caliber or to differential deposition of methacholine. Deep inspirations did not protect the bronchi of asthmatics. We demonstrated that bronchoprotection is a potent physiologic function of lung inflation and established its absence, even in mild asthma. This observation deepens our understanding of airway dysfunction in asthma.  相似文献   

16.
Deep breaths taken before inhalation of methacholine attenuate the decrease in forced expiratory volume in 1 s and forced vital capacity in healthy but not in asthmatic subjects. We investigated whether this difference also exists by using measurements not preceded by full inflation, i.e., airway conductance, functional residual capacity, as well as flow and residual volume from partial forced expiration. We found that five deep breaths preceding a single dose of methacholine 1) transiently attenuated the decrements in forced expiratory volume in 1 s and forced vital capacity in healthy (n = 8) but not in mild asthmatic (n = 10) subjects and 2) increased the areas under the curve of changes in parameters not preceded by a full inflation over 40 min, during which further deep breaths were prohibited, without significant difference between healthy (n = 6) and mild asthmatic (n = 16) subjects. In conclusion, a series of deep breaths preceding methacholine inhalation significantly enhances bronchoconstrictor response similarly in mild asthmatic and healthy subjects but facilitates bronchodilatation on further full inflation in the latter.  相似文献   

17.
We studied lung mechanics and regional lung function in five young men during restrictive chest strapping. The effects on lung mechanics were similar to those noted by others in that lung elastic recoil increased as did maximum expiratory flow at low lung volumes. Chest strapping reduced the maximum expiratory flow observed at a given elastic recoil pressure. Breathing helium increased maximum expiratory flow less when subjects were strapped than when they were not. These findings indicated that strapping decreased the caliber of airways upstream from the equal pressure point. Regional lung volumes from apex to base were measured with xenon 133 while subjects were seated. The distribution of regional volumes was measured at RV, and at volumes equal to strapped FRC and strapped TLC; no change due to chest strapping was observed. Similarly, the regional distribution of 133Xe boluses inhaled at RV and strapped TLC was unaffected by chest strapping. Closing capacity decreased with chest strapping. We concluded that airway closure decreased during chest strapping and that airway closure was not the cause of the observed increase in elastic recoil of the lung. The combination of decreased slope of the static pressure-volume curve and unchanged regional volumes suggested that strapping increased the apex-to-base pleural pressure gradient.  相似文献   

18.
BACKGROUND: Estimating the duration of forced exhalation tracheal noises shows promise for recognizing bronchial obstruction. OBJECTIVE: Experimental simulation of an influence of biomechanical parameters on the duration of normal forced exhalation tracheal noises. METHOD AND MATERIALS: Thirty-two healthy non-smoking men aged 16-22 years were examined. The duration of noises, the parameters of computer spirometry, and the maximum static expiratory pressure are recorded. These data were analyzed by means of multiple linear regression simulation for logarithms of the elements of the proportionality relation obtained with the use of a one-component biomechanical model of forced exhalation and a linearized approximation of flow-volume curve. RESULTS: Dependence between duration of the forced expiratory noises recorded on human trachea and the product of forced volume capacity (in power of 1.05 +/- 0.27), maximum static expiratory pressure (in power of 0.46 +/- 0.23), equivalent expiratory resistance in the stage of functional expiratory stenosis (in power of 0.72 +/- 0.15 in healthy is an estimate of the equivalent expiratory resistance of human bronchial tree in the functional expiratory stenosis phase, whereas in patients with bronchial obstruction it is supposed to take into account an excess of noise generation time compared with the time predicted from normal individual value of this resistance.  相似文献   

19.
Regional expiratory flow limitation studied with Technegas in asthma.   总被引:1,自引:0,他引:1  
Regional expiratory flow limitation (EFL) may occur during tidal breathing without being detected by measurements of flow at the mouth. We tested this hypothesis by using Technegas to reveal sites of EFL. A first study (study 1) was undertaken to determine whether deposition of Technegas during tidal breathing reveals the occurrence of regional EFL in induced bronchoconstriction. Time-activity curves of Technegas inhaled during 12 tidal breaths were measured in four asthmatic subjects at control conditions and after exposure to inhaled methacholine at a dose sufficient to abolish expiratory flow reserve near functional residual capacity. A second study (study 2) was conducted in seven asthmatic subjects at control and after three increasing doses of methacholine to compare the pattern of Technegas deposition in the lung with the occurrence of EFL. The latter was assessed at the mouth by comparing tidal with forced expiratory flow or with the flow generated on application of a negative pressure. Study 1 documented enhanced and spotty deposition of Technegas in the central lung regions with increasing radioactivity during tidal expiration. This is consistent with increased impaction of Technegas on the airway wall downstream from the flow-limiting segment. Study 2 showed that both methods based on analysis of flow at the mouth failed to detect EFL at the time spotty deposition of Technegas occurred. We conclude that regional EFL occurs asynchronously across the lung and that methods based on mouth flow measurements are insensitive to it.  相似文献   

20.
Adenosine, AMP, and ADP all caused similar concentration-related bronchoconstriction when inhaled by patients with asthma, whereas the adenosine hydrolysis product inosine had no effect. Geometric mean provocation concentrations of adenosine AMP and ADP causing a 20% fall in forced expiratory volume in 1 s (PCf20) were 2.34, 4.27, and 2.19 mumol/ml and 40% fall in specific airway conductance (PCs40) 3.16, 5.01, and 2.0 mumol/ml. Bronchoconstriction was rapid in onset, reaching a maximum 2-5 min after a single inhalation of AMP. In 31 asthmatic subjects a positive correlation was established between airway responsiveness to histamine, as an index of non-specific responsiveness, and airway reactivity to adenosine (PCf20, r = 0.60; PCs40, r = 0.64; P less than 0.01). Following bronchial provocation with allergen in nine subjects, plasma levels of adenosine increased from a mean base line of 5.4 +/- 0.9 to 9.6 +/- 2.0 ng/ml at 15 min (P less than 0.01) in parallel with a fall in forced expiratory volume in 1 s. With methacholine provocation bronchoconstriction reached maximum 2-5 min postchallenge being followed by, but not accompanied by, significant increases in plasma levels of adenosine. These data suggest that adenosine is a specific bronchoconstrictor that may contribute to airflow obstruction in asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号