首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orexin-A is an important neuropeptide involved in the regulation of feeding, arousal, energy consuming, and reward seeking in the body. The effects of orexin-A have widely studied in neurons but not in astrocytes. Here, we report that OX1R and OX2R are expressed in cultured rat astrocytes. Orexin-A stimulated the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and then induced the migration of astrocytes via its receptor OX1R but not OX2R. Orexin-A-induced ERK1/2 phosphorylation and astrocytes migration are Ca2+-dependent, since they could be inhibited by either chelating the extracellular Ca2+ or blocking the pathway of store-operated calcium entry (SOCE). Furthermore, both non-selective protein kinase C (PKC) inhibitor and PKCα selective inhibitor, but not PKCδ inhibitor, prevented the increase in ERK1/2 phosphorylation and the migration of astrocytes, indicating that the Ca2+-dependent PKCα acts as the downstream of the OX1R activation and mediates the orexin-A-induced increase in ERK1/2 phosphorylation and cell migration. In conclusion, these results suggest that orexin-A can stimulate ERK1/2 phosphorylation and then facilitate the migration of astrocytes via PLC-PKCα signal pathway, providing new knowledge about the functions of the OX1R in astrocytes.  相似文献   

2.
Matrix metalloproteinase-9 (MMP-9) plays a crucial role in pathological processes of brain inflammation, injury, and neurodegeneration. Thrombin has been known as a regulator of MMP-9 expression and cells migration. However, the mechanisms underlying thrombin-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) remain unclear. Here, we demonstrated that thrombin induced the expression of pro-form MMP-9 and migration of RBA-1 cells, which were inhibited by pretreatment with the inhibitor of Gq-coupled receptor (GPAnt2A), Gi/o-coupled receptor (GPAnt2), PC-PLC (D609), PI-PLC (U73122), Ca2+-ATPase (thapsigargin, TG), calmodulin (CaMI), CaMKII (KN62), PKC (Gö6976 or GF109203X), MEK1/2 (PD98059), p38 MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) or the intracellular calcium chelator (BAPTA/AM) and transfection with siRNA of PKCα, Erk2, JNK1, p38 MAPK, c-Jun, or c-Fos. In addition, thrombin-induced elevation of intracellular Ca2+ concentration was attenuated by PPACK (a thrombin inhibitor). Thrombin further induced CaMKII phosphorylation and PKCα translocation, which were inhibited by U73122, D609, KN62, TG, or BAPTA/AM. Thrombin also induced PKCα-dependent p42/p44 MAPK and JNK1/2, but not p38 MAPK activation. Finally, we showed that thrombin enhanced c-Fos expression and c-Jun phosphorylation. c-Fos mRNA levels induced by thrombin were reduced by PD98059, SP600125, and Gö6976, but not SB202190. Thrombin stimulated in vivo binding of c-Fos to the MMP-9 promoter, which was reduced by pretreatment with SP600125 or PD98059, but not SB202190. These results concluded that thrombin activated a PLC/Ca2+/CaMKII/PKCα/p42/p44 MAPK and JNK1/2 pathway, which in turn triggered AP-1 activation and ultimately induced MMP-9 expression in RBA-1 cells.  相似文献   

3.
4.

Background

Host defense against invading pathogens is triggered by various receptors including toll-like receptors (TLRs). Activation of TLRs is a pivotal step in the initiation of innate, inflammatory, and antimicrobial defense mechanisms. Human β-defensin 2 (HBD-2) is a cationic antimicrobial peptide secreted upon Gram-negative bacterial perturbation in many cells. Stimulation of various TLRs has been shown to induce HBD-2 in oral keratinocytes, yet the underlying cellular mechanisms of this induction are poorly understood.

Principal Findings

Here we demonstrate that HBD-2 induction is mediated by the Sphingosine kinase-1 (Sphk-1) and augmented by the inhibition of Glycogen Synthase Kinase-3β (GSK-3β) via the Phosphoinositide 3-kinase (PI3K) dependent pathway. HBD-2 secretion was dose dependently inhibited by a pharmacological inhibitor of Sphk-1. Interestingly, inhibition of GSK-3β by SB 216763 or by RNA interference, augmented HBD-2 induction. Overexpression of Sphk-1 with concomitant inhibition of GSK-3β enhanced the induction of β-defensin-2 in oral keratinocytes. Ectopic expression of constitutively active GSK-3β (S9A) abrogated HBD-2 whereas kinase inactive GSK-3β (R85A) induced higher amounts of HBD-2.

Conclusions/Significance

These data implicate Sphk-1 in HBD-2 regulation in oral keratinocytes which also involves the activation of PI3K, AKT, GSK-3β and ERK 1/2. Thus we reveal the intricate relationship and pathways of toll-signaling molecules regulating HBD-2 which may have therapeutic potential.  相似文献   

5.
The kinase mTOR (mammalian target of rapamycin) promotes translation as well as cell survival and proliferation under nutrient-rich conditions. Whereas mTOR activates translation through ribosomal protein S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4E-BP), how it facilitates cell proliferation has remained unclear. We have now identified p19Arf, an inhibitor of cell cycle progression, as a novel substrate of S6K that is targeted to promote cell proliferation. Serum stimulation induced activation of the mTOR-S6K axis and consequent phosphorylation of p19Arf at Ser75. Phosphorylated p19Arf was then recognized by the F-box protein β-TrCP2 and degraded by the proteasome. Ablation of β-TrCP2 thus led to the arrest of cell proliferation as a result of the stabilization and accumulation of p19Arf. The β-TrCP2 paralog β-TrCP1 had no effect on p19Arf stability, suggesting that phosphorylated p19Arf is a specific substrate of β-TrCP2. Mice deficient in β-TrCP2 manifested accumulation of p19Arf in the yolk sac and died in utero. Our results suggest that the mTOR pathway promotes cell proliferation via β-TrCP2-dependent p19Arf degradation under nutrient-rich conditions.  相似文献   

6.
To assess the effects of the orphan nuclear Estrogen receptor-related receptor gamma (ERRγ) deficiency on skeletal development and bone turnover, we utilized an ERRγ global knockout mouse line. While we observed no gross morphological anomalies or difference in skeletal length in newborn mice, by 8 weeks of age ERRγ +/− males but not females exhibited increased trabecular bone, which was further increased by 14 weeks. The increase in trabecular bone was due to an increase in active osteoblasts on the bone surface, without detectable alterations in osteoclast number or activity. Consistent with the histomorphometric results, we observed an increase in gene expression of the bone formation markers alkaline phosphatase (Alp) and bone sialoprotein (Bsp) in bone and increase in serum ALP, but no change in the osteoclast regulators receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) or the resorption marker carboxy-terminal collagen crosslinks (CTX). More colony forming units-alkaline phosphatase and -osteoblast (CFU-ALP, CFU-O respectively) but not CFU-fibroblast (CFU-F) formed in ERRγ +/− versus ERRγ +/+ stromal cell cultures, suggesting that ERRγ negatively regulates osteoblast differentiation and matrix mineralization but not mesenchymal precursor number. By co-immunoprecipitation experiments, we found that ERRγ and RUNX2 interact in an ERRγ DNA binding domain (DBD)-dependent manner. Treatment of post-confluent differentiating bone marrow stromal cell cultures with Runx2 antisense oligonucleotides resulted in a reduction of CFU-ALP/CFU-O in ERRγ +/− but not ERRγ +/+ mice compared to their corresponding sense controls. Our data indicate that ERRγ is not required for skeletal development but is a sex-dependent negative regulator of postnatal bone formation, acting in a RUNX2- and apparently differentiation stage-dependent manner.  相似文献   

7.
α-Tomatine, isolated from Lycopersicon esculentum Linn., is a naturally occurring glycoalkaloids in immature green tomatoes. Some reports demonstrated that α-tomatine had various anti-carcinogenic properties. First, the result demonstrated α-tomatine could inhibit TPA-induced the abilities of the adhesion, morphology/actin cytoskeleton arrangement, invasion, and migration by cell–matrix adhesion assay, immunofluorescence stain assay, Boyden chamber invasion assay, and wound-healing assay. Data also showed α-tomatine could inhibit the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and protein kinase C-α (PKCα) involved in the downregulation of the enzyme activities and messenger RNA levels of matrix metalloproteinase-2/9 (MMP-2/MMP-9) induced by TPA. Next, α-tomatine also strongly inhibited TPA-induced the activation of nuclear factor kappa B (NF-κB) and phospho-inhibitor of kappa Bα (phospho-IκBα). In addition, TPA-induced translocation of PKC-α from cytosol to membranes, and suppression of TPA elicited the expression of PKC-α by adding the PKC-α inhibitors, GF-109203X and Gö-6983. The treatment of specific inhibitor for ERK (U0126) to MCF-7 cells could inhibit TPA-induced MMP-2/MMP-9 and phospho-ERK along with an inhibition on cell invasion and migration. Application of α-tomatine to prevent the invasion/migration of MCF-7 cells through blocking PKCα/ERK/NF-κB activation is first demonstrated herein.  相似文献   

8.
Retinal inflammatory diseases induced by cytokines, such as tumor necrosis factor-α (TNF-α) are associated with an up-regulation of intercellular adhesion molecule-1 (ICAM-1) in the retinal pigment epithelial cells (RPECs). Retinal pigment epithelium (RPE) is a monolayer of epithelial cells that forms the outer blood-retinal barrier in the posterior segment of the eye, and is also implicated in the pathology of, such as neovascularization in age-related macular degeneration (AMD). However, the detailed mechanisms of TNF-α-induced ICAM-1 expression are largely unclear in human RPECs. We demonstrated that in RPECs, TNF-α could induce ICAM-1 protein and mRNA expression and promoter activity, and monocyte adhesion. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of PKCs (Ro318220), PKCδ (Rottlerin), MEK1/2 (U0126), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) and transfection with siRNA of TNFR1, TRAF2, JNK2, p42, or c-Jun. We showed that TNF-α could stimulate the TNFR1 and TRAF2 complex formation. TNF-α-stimulated JNK1/2 was also reduced by Rottlerin or SP600125. However, Rottlerin had no effect on TNF-α-induced p42/p44 MAPK phosphorylation. We observed that TNF-α induced c-Jun phosphorylation which was inhibited by Rottlerin or SP600125. On the other hand, TNF-α-stimulated ICAM-1 promoter activity was prominently lost in RPECs transfected with the point-mutated AP-1 ICAM-1 promoter plasmid. These results suggest that TNF-α-induced ICAM-1 expression and monocyte adhesion is mediated through a TNFR1/TRAF2/PKCδ/JNK1/2/c-Jun pathway in RPECs. These findings concerning TNF-α-induced ICAM-1 expression in RPECs imply that TNF-α might play an important role in ocular inflammation and diseases.  相似文献   

9.
Exercise has been shown to induce the translocation of fatty acid translocase (FAT/CD36), a fatty acid transport protein, to both plasma and mitochondrial membranes. While previous studies have examined signals involved in the induction of FAT/CD36 translocation to sarcolemmal membranes, to date the signaling events responsible for FAT/CD36 accumulation on mitochondrial membranes have not been investigated. In the current study muscle contraction rapidly increased FAT/CD36 on plasma membranes (7.5 minutes), while in contrast, FAT/CD36 only increased on mitochondrial membranes after 22.5 minutes of muscle contraction, a response that was exercise-intensity dependent. Considering that previous research has shown that AMP activated protein kinase (AMPK) α2 is not required for FAT/CD36 translocation to the plasma membrane, we investigated whether AMPK α2 signaling is necessary for mitochondrial FAT/CD36 accumulation. Administration of 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) induced AMPK phosphorylation, and resulted in FAT/CD36 accumulation on SS mitochondria, suggesting AMPK signaling may mediate this response. However, SS mitochondrial FAT/CD36 increased following acute treadmill running in both wild-type (WT) and AMPKα 2 kinase dead (KD) mice. These data suggest that AMPK signaling is not required for SS mitochondrial FAT/CD36 accumulation. The current data also implicates alternative signaling pathways that are exercise-intensity dependent, as IMF mitochondrial FAT/CD36 content only occurred at a higher power output. Taken altogether the current data suggests that activation of AMPK signaling is sufficient but not required for exercise-induced accumulation in mitochondrial FAT/CD36.  相似文献   

10.
11.
12.
Inappropriate vascular remodeling is thought to be the main cause of restenosis following angioplasty. Migration of vascular smooth muscle cells (VSMC) into lumina, which is promoted by degradation of the extracellular matrix by matrix metalloproteinases (MMPs) plays a causal role in pathological vascular remodeling. The aim of the present research is to explore the effects of a novel cytokine, IL-17, on migration of VSMC and MMP-9 secretion. Carotid artery VSMC was isolated from Sprague–Dawley rats. Expression of MMP-9 and cell migration induced by IL-17 and its related signal pathway were detected. The results showed that IL-17-induced migration of VSMC in an MMP-9-dependent manner. IL-17-induced MMP-9 expression was via p38 MAPK and ERK1/2 dependent NF-κB and AP-1 activation. The present results demonstrated that IL-17 may play a role in vascular remodeling and targeting IL-17 or its specific downstream mediators is a potentially novel therapeutic pathway for attenuating the post-angioplastic restenosis.  相似文献   

13.
14.
Blood–brain barrier (BBB) destruction is associated with a variety of neurological diseases. Brain microvascular endothelial cells (BMECs) are the key constituent of BBB. Both matrix metalloproteinases-2/9 (MMP-2/9) and toll-like receptor-2 (TLR2) are coexpressed in BMECs and have been shown to play important roles in BBB breakdown. It is unknown whether TLR2 can regulate MMP-2/9 in BMECs. In this study, Pam3CSK4 was used to activate TLR2, and the expression of MMP-2/9 and tight junctions (TJs) in BBB was measured by quantitative real-time PCR and western blotting. Phosphoproteins were determined by western blotting. The inhibitors of mitogen-activated protein kinases (MAPKs) and NF-κB were used to identify the signaling pathways by which TLR2 regulates the expression of MMP-2/9 in BMECs. This study showed that Pam3CSK4 upregulated the mRNA and protein expression of MMP-9 and downregulated MMP-2 and TJ expression in BMECs simultaneously. Pam3CSK4 also induced the phosphorylation of MAPKs and NF-κB signaling pathways in BMECs. MMP-9 expression was found to decrease by pretreatment with inhibitors of ERK1/2 and JNK but not p38. However, the mRNA and protein expression of MMP-2 and MMP-9 increased after addition of a NF-κB inhibitor. Our results indicated that Pam3CSK4 was able to upregulate MMP-9 expression through ERK1/2 and JNK signaling pathways, but the NF-κB signaling pathway negatively regulated the effect of TLR2 on MMP-2 and MMP-9 expression in BMECs. The finding provides novel insight into the molecular mechanism of MMP-2/9 expression in BMECs.  相似文献   

15.
16.
During breast cancer progression, transforming growth factor-β (TGF-β) switches from a tumor suppressor to a pro-metastatic molecule. Several recent studies suggest that this conversion in TGF-β function depends upon fundamental changes in the TGF-β signaling system. We show here that these changes in TGF-β signaling are concomitant with aberrant expression of the focal adhesion protein, p130Cas. Indeed, elevating expression of either the full-length (FL) or just the carboxyl terminus (CT) of p130Cas in mammary epithelial cells (MECs) diminished the ability of TGF-β1 to activate Smad2/3, but increased its coupling to p38 MAPK. This shift in TGF-β signaling evoked (i) resistance to TGF-β-induced growth arrest, and (ii) acinar filling upon three-dimensional organotypic cultures of p130Cas-FL or -CT expressing MECs. Furthermore, rendering metastatic MECs deficient in p130Cas enhanced TGF-β-stimulated Smad2/3 activity, which restored TGF-β-induced growth inhibition both in vitro and in mammary tumors produced in mice. Additionally, whereas elevating TβR-II expression in metastatic MECs had no affect on their phosphorylation of Smad2/3, this event markedly enhanced their activation of p38 MAPK, leading to increased MEC invasion and metastasis. Importantly, depleting p130Cas expression in TβR-II-expressing metastatic MECs significantly increased their activation of Smad2/3, which (i) reestablished the physiologic balance between canonical and noncanonical TGF-β signaling, and (ii) reversed cellular invasion and early mammary tumor cell dissemination stimulated by TGF-β. Collectively, our findings identify p130Cas as a molecular rheostat that regulates the delicate balance between canonical and noncanonical TGF-β signaling, a balance that is critical to maintaining the tumor suppressor function of TGF-β during breast cancer progression.  相似文献   

17.
We investigated the neuroprotective effects of Apocynum venetum leaf extract (AVLE) on a rat model of cerebral ischemia-reperfusion injury and explored the underlying mechanisms. Rats were randomly divided into five groups: sham, ischemia-reperfusion, AVLE125, AVLE250, and AVLE500. Cerebral ischemia was induced by 1.5 h of occlusion of the middle cerebral artery. Cerebral infarct area was measured by tetrazolium staining at 24 and 72 h after reperfusion, and neurological function was evaluated at 24, 48 and 72 h after reperfusion. Pathological changes on the ultrastructure of the blood-brain barrier (BBB) were observed by transmission electron microscopy. BBB permeability was assessed by detecting leakage of Evan's blue (EB) dye in brain tissue. The expression and activities of matrix metalloproteinase (MMP)-9/-2 were measured by western blot analyses and gelatin zymography at 24 h after reperfusion. AVLE (500 mg/kg/day) significantly reduced cerebral infarct area, improved recovery of neurological function, relieved morphological damage to the BBB, reduced water content and EB leakage in the brain, and downregulated the expression and activities of MMP-9/-2. These findings suggest that AVLE protects against cerebral ischemia-reperfusion-induced injury by alleviating BBB disruption. This action may be due to its inhibitory effects on the expression and activities of MMP-9/-2.  相似文献   

18.
Human Vγ9Vδ2 T cells are well known for their rapid and potent response to infection and tumorigenesis when in the presence of endogenous or exogenous phosphoisoprenoids. However, the molecular mechanisms behind the activation of this γδ T cell population remains unclear. Evidence pointing to a role for the CD277/butyrophilin-3 (BTN3A) molecules in this response led us to investigate the structures of these molecules and their modifications upon binding to an agonist antibody (20.1) that mimics phosphoisoprenoid-mediated Vγ9Vδ2 activation and an antagonist antibody (103.2) that inhibits this reactivity. We find that the three BTN3A isoforms: BTN3A1, BTN3A2, and BTN3A3, have high structural homology to the B7 superfamily of proteins and exist as V-shaped homodimers in solution, associating through the membrane proximal C-type Ig domain. The 20.1 and 103.2 antibodies bind to separate epitopes on the BTN3A Ig-V domain with high affinity but likely with different valencies based on their binding orientation. These structures directly complement functional studies of this system that demonstrate that BTN3A1 is necessary for Vγ9Vδ2 activation and begin to unravel the extracellular events that occur during stimulation through the Vγ9Vδ2 T cell receptor.  相似文献   

19.
Osteopontin (OPN) is a multifunctional protein that has been linked to various intractable inflammatory diseases. One way by which OPN induces inflammation is the production of various functional fragments by enzyme cleavage. It has been well appreciated that OPN is cleaved by thrombin, and/or matrix metalloproteinase-3 and -7 (MMP-3/7). Although the function of thrombin-cleaved OPN is well characterized, little is known about the function of MMP-3/7-cleaved OPN. In this study, we found a novel motif, LRSKSRSFQVSDEQY, in the C-terminal fragment of MMP-3/7-cleaved mouse OPN binds to α9β1 integrin. Importantly, this novel motif is involved in the development of anti-type II collagen antibody-induced arthritis (CAIA). This study provides the first in vitro and in vivo evidence that OPN cleavage by MMP-3/7 is an important regulatory mechanism for CAIA.  相似文献   

20.
Beh?et's disease is a multisystem disease in which there is evidence of immunological dysregulation. It has been proposed that γ/δ T cells are involved in its pathogenesis. The aim of the present study was to assess the capacity of γ/δ T cells with phenotype Vγ9/Vδ2, from a group of Italian patients with Beh?et's disease, to proliferate in the presence of various phosphoantigens and to express tumour necrosis factor (TNF) and IL-12 receptors. Twenty-five patients and 45 healthy individuals were studied. Vγ9/Vδ2 T cells were analyzed by fluorescence activated cell sorting, utilizing specific monoclonal antibodies. For the expansion of Vγ9/Vδ2 T cells, lymphocytes were cultured in the presence of various phosphoantigens. The expression of TNF receptor II and IL-12 receptor β1 was evaluated with the simultaneous use of anti-TNF receptor II phycoerythrin-labelled (PE) or anti-IL-12 receptor β1 PE and anti-Vδ2 T-cell receptor fluorescein isothiocyanate. There was a certain hierarchy in the response of Vγ9/Vδ2 T cells toward the different phosphoantigens, with the highest expansion factor obtained with dimethylallyl pyrophosphate and the lowest with xylose 1P. The expansion factor was fivefold greater in patients with active disease than in those with inactive disease or in control individuals. TNF receptor II and IL-12 receptor β1 expressions were increased in both patients and control individuals. The proportion of Vγ9/Vδ2 T cells bearing these receptors was raised in active disease when Vγ9/Vδ2 T cells were cultured in the presence of dimethylallyl pyrophosphate. These results indicate that Vγ9/Vδ2 T cell activation is correlated with disease progression and probably involved in the pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号