首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen-oxidizing Methane Bacteria I. Cultivation and Methanogenesis   总被引:15,自引:9,他引:15       下载免费PDF全文
A method for the mass culture of hydrogen-oxidizing methane bacteria has been developed; yields of 50 to 60 g (wet weight) of cells per 12 to 14 liters of culture medium were obtained. The methanogenic organism from the culture of Methanobacillus omelianskii was grown in a complex medium which was aerated with a gas mixture of hydrogen and carbon dioxide. Extracts prepared from hydrogen-grown cells formed methane from methyl cobalamin, 5-methyl tetrahydrofolate, serine, pyruvate, and carbon dioxide; these substrates have been shown to be precursors of methane in extracts of the ethyl alcohol-grown culture of M. omelianskii.  相似文献   

2.
—Folic acid coenzymes were found to be distributed equally between post-nuclear particulate and soluble fractions from whole Swiss mouse brain. Mitochondria isolated from the particulate fraction contained essentially only the N5-methyl derivative of folate, virtually all of which was in a polyglutamate form. Isolated synaptosomes contained significantly more folate than did mitochondria, with the greater proportion being non-N5-methyl derivatives. Osmotic lysis of synaptosomes released only a small portion of the folate; approximately 80 per cent remained with the particulate components of the synaptosome. The enzymes serine transhydroxymethylase and N5, N10-methylenetetrahydrofolate dehydrogenase were found in both the soluble and particulate fractions while formiminoglutamic acid:tetrahydrofolate formiminotransferase activity could not be detected. These findings may be of importance with respect to the synaptic functions of folate coenzymes, including the methylation of biogenic amines.  相似文献   

3.
IT IS becoming increasingly clear that folates play a vital, yet until recently an unrecognized, role in the development and function of the brain. Thus several groups of patients have been found with severe maldevelopment of the brain and mental retardation associated with inborn errors of folate metabolism resulting from congenital deficiency in one or more enzymes involved in folate metabolism (ARAKAWA et al., 1965; 1966; 1967; MUDD, LEVY and ABELES, 1969; ARAKAWA, 1970). The presence of folate coenzymes in brain tissue has been reported by several investigators (ALLEN and KLIPSTEIN, 1970; MCCLAIN and BRIDGERS, 1969). MCCLAIN and BRIDGERS (1969) showed that much less of the folates in brain are in the form of the N5-methyl derivatives than is the case for folates in plasma, red blood cells and liver. Appreciable activity of several folate interconverting enzymes have been demonstrated in brain tissue; for example, N5-methyl tetrahydrofolate homocysteine methyl transferase has been found to exist in higher levels in brain than in liver or kidney (MANGUM, 1972); N5-methyl FH,N-dimethyl-dopamine methyl transferase (LADURON, 1972) and serine transhydroxymethylase (EC 2.1.1; L-Serine: tetrahydrofolate 5, 10-hydroxymethyl transferase) (BRIDGERS, 1968) have recently been detected in brain. The last enzyme is known to catalyse a reaction responsible for the generation of a major portion of one-carbon units. In mouse brain, the activity of this enzyme declines during the first 2 weeks of extra-uterine life (BRIDGERS, 1968). The aim of the present study was to determine the levels of dihydrofolate reductase(5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase; EC 1.5.1.3) in mammalian brain tissues in comparison to the levels in other tissues. This enzyme occupies the first and key position in folate metabolism, reducing the metabolically inert vitamin, folic acid, to tetrahydrofolate. This enzyme also functions in thymidylate synthesis to regenerate tetrahydrofolate from dihydrofolate, a product of the reaction (HWHREYS and GREENBERG, 1958). In this reduced state the molecule can accept one-carbon units from various sources to give rise to metabolically active coenzyme forms of folate. This communication reports the complete absence of dihydrofolate reductase in brain tissue of several mammalian species.  相似文献   

4.
Cell extracts of Peptostreptococcus productus (strain Marburg) obtained from CO grown cells mediated the synthesis of acetate from CO plus CO2 at rates of 50 nmol/min × mg of cell protein. 14CO was specifically incorporated into C1 of acetate. No label exchange occurred between 14C1 of acetyl-CoA and CO, indicating that 14CO incorporation into acetate was by net synthesis rather than by an exchange reaction. In acetate synthesis from CO plus CO2 the latter substrate could be replaced to some extent by formate or methyl tetrahydrofolate as the methyl donor. The methyl group of methyl cobalamin was incorporated into acetate ony at very low activities. The cell extracts contained high levels of enzyme activities involved in acetate or cell carbon synthesis from CO2. The following enzymic activities were detected: CO: methyl viologen oxidoreductase, formate dehydrogenase, formyl tetrahydrofolate synthetase, methenyl tetrahydrofolate cyclohydrolase, methylene tetrahydrofolate dehydrogenase, methylene tetrahydrofolate reductase, phosphate acetyltransferase, acetate kinase, hydrogenase, NADPH: benzyl viologen oxidoreductase, and pyruvate synthase. Some kinetic and other properties were studied.  相似文献   

5.
Tetrahydrobiopterin and the folate coenzymes can reciprocally interact in ways that would be useful to the metabolic pathways subserved by both of these coenzymes. Thus, through one of the reactions catalyzed by methylene tetrahydrofolate reductase, 5-CH3-H4-folate can regenerate BH4 from q-BH2 and q-BH2 can provide an escape from the methyl trap.Special issue dedicated to Dr. Louis Sokoloff  相似文献   

6.
Radiocarbon incorporation from pyruvate and serine into monomethylmercury by Desulfovibrio desulfuricans was consistent with the proposal that the methyl group originates from C-3 of serine. Immunodiagnostic assays measured 4 to 35 μg of tetrahydrofolate and 58 to 161 ng of cobalamin or a closely related cobalt porphyrin per g of cell protein in D. desulfuricans. The light-reversible inhibition of mercury methylation by propyl iodide in D. desulfuricans indicates methyl transfer by a cobalt porphyrin.  相似文献   

7.
《The Journal of cell biology》1996,134(5):1169-1177
Previously, a high affinity, glycosylphosphatidylinositol-anchored receptor for folate and a caveolae internalization cycle have been found necessary for potocytosis of 5-methyltetrahydrofolate in MA104. We now show by cell fractionation that folate receptors also must be clustered in caveolae for potocytosis. An enriched fraction of caveolae from control cells retained 65-70% of the [3H]folic acid bound to cells in culture. Exposure of cells to the cholesterol-binding drug, filipin, which is known to uncluster receptors, shifted approximately 50% of the bound [3H]folic acid from the caveolae fraction to the noncaveolae membrane fraction and markedly inhibited internalization of [3H]folic acid. An mAb directed against the folate receptor also shifted approximately 50% of the caveolae-associated [3H]folic acid to noncaveolae membrane, indicating the antibody perturbs the normal receptor distribution. Concordantly, the mAb inhibited the delivery of 5-methyl[3H]tetrahydrofolate to the cytoplasm. Receptor bound 5- methyl[3H]tetrahydrofolate moved directly from caveolae to the cytoplasm and was not blocked by phenylarsine oxide, an inhibitor of receptor-mediated endocytosis. These results suggest cell fractionation can be used to study the uptake of molecules by caveolae.  相似文献   

8.
A new mechanism for the aerobic catabolism of dimethyl sulfide.   总被引:13,自引:6,他引:7       下载免费PDF全文
Aerobic degradation of dimethyl sulfide (DMS), previously described for thiobacilli and hyphomicrobia, involves catabolism to sulfide via methanethiol (CH3SH). Methyl groups are sequentially eliminated as HCHO by incorporation of O2 catalyzed by DMS monooxygenase and methanethiol oxidase. H2O2 formed during CH3SH oxidation is destroyed by catalase. We recently isolated Thiobacillus strain ASN-1, which grows either aerobically or anaerobically with denitrification on DMS. Comparative experiments with Thiobacillus thioparus T5, which grows only aerobically on DMS, indicate a novel mechanism for aerobic DMS catabolism by Thiobacillus strain ASN-1. Evidence that both organisms initially attacked the methyl group, rather than the sulfur atom, in DMS was their conversion of ethyl methyl sulfide to ethanethiol. HCHO transiently accumulated during the aerobic use of DMS by T. thioparus but not with Thiobacillus strain ASN-1. Catalase levels in cells grown aerobically on DMS were about 100-fold lower in Thiobacillus strain ASN-1 than in T. thioparus T5, suggesting the absence of H2O2 formation during DMS catabolism. Also, aerobic growth of T. thioparus T5 on DMS was blocked by the catalase inhibitor 3-amino-1,2,4-triazole whereas that of Thiobacillus strain ASN-1 was not. Methyl butyl ether, but not CHCl3, blocked DMS catabolism by T. thioparus T5, presumably by inhibiting DMS monooxygenase and perhaps methanethiol oxidase. In contrast, DMS metabolism by Thiobacillus strain ASN-1 was unaffected by methyl butyl ether but inhibited by CHCl3. DMS catabolism by Thiobacillus strain ASN-1 probably involves methyl transfer to a cobalamin carrier and subsequent oxidation as folate-bound intermediates.  相似文献   

9.
The methyl chloride metabolism of the homoacetogenic, methyl chloride-utilizing strain MC was investigated with cell extracts and cell suspensions of the organism. Cell extracts were found to contain all enzyme activities required for the conversion of methyl chloride or of H2 plus CO2 to acetate. They catalyzed the dechlorination of methyl chloride with tetrahydrofolate as the methyl acceptor at a rate of 20 nmol/min × mg of cell protein. Also, the O-demethylation of vanillate with tetrahydrofolate could be measured at a rate of 40 nmol/min × mg. Different enzyme systems appeared to be responsible for the dehalogenation of CH3Cl and for the O-demethylation of methoxylated aromatic compounds, since cells grown with methoxylated aromatic compounds exhibited a significantly lower activity of CH3Cl conversion than methyl chloride grown cells and vice versa. In addition, ammonium thiocyanate (5 mM) completely inhibited CH3Cl dechlorination, whereas the consumption of vanillate was not affected significantly. The data were taken to indicate, that the methyl chloride dehalogenation is catalyzed by a specific, inducible enzyme present in strain MC, and that tetrahydrofolate rather than the corrinoid-protein involved in acetate formation is the primary acceptor of the methyl group in the dechlorination reaction.  相似文献   

10.
Cobalamin-dependent methionine synthase   总被引:9,自引:0,他引:9  
Cobalamin-dependent methionine synthase catalyzes the transfer of a methyl group from N5-methyltetrahydrofolate to homocysteine, producing tetrahydrofolate and methionine. Insufficient availability of cobalamin, or inhibition of methionine synthase by exposure to nitrous oxide, leads to diminished activity of this enzyme. In humans, severe inhibition of methionine synthase results in the development of megaloblastic anemia, and eventually in subacute combined degeneration of the spinal cord. It also results in diminished intracellular folate levels and a redistribution of folate derivatives. In this review, we summarize recent progress in understanding the catalysis and regulation of this important enzyme from both bacterial and mammalian sources. Because inhibition of mammalian methionine synthase can restrict the incorporation of methyltetrahydrofolate from the blood into cellular folate pools that can be used for nucleotide biosynthesis, it is a potential chemotherapeutic target. The review emphasizes the mechanistic information that will be needed in order to design rational inhibitors of the enzyme.  相似文献   

11.
The kinetic mechanism of the reaction catalyzed by cobalamin-dependent methionine synthase from Escherichia coli K12 has been investigated by both steady-state and pre-steady-state kinetic analyses. The reaction catalyzed by methionine synthase involves the transfer of a methyl group from methyltetrahydrofolate to homocysteine to generate tetrahydrofolate and methionine. The postulated reaction mechanism invokes an initial transfer of the methyl group to the enzyme to generate enzyme-bound methylcobalamin and tetrahydrofolate. Enzyme-bound methylcobalamin then donates its methyl group to homocysteine to generate methionine and cob(I)alamin. The key questions that were addressed in this study were the following: (1) Does the reaction involve a sequential or ping-pong mechanism? (2) Is enzyme-bound cob(I)alamin a kinetically competent intermediate? (3) If the reaction does involve a sequential mechanism, what is the nature of the "free" enzyme to which the substrates bind; i.e., is the prosthetic group in the cob(I)alamin or methylcobalamin state? Both the steady-state and rapid reaction studies were conducted at 25 degrees C under anaerobic conditions. Initial velocity analysis under steady-state conditions revealed a family of parallel lines suggesting either a ping-pong mechanism or an ordered sequential mechanism. Steady-state product inhibition studies provided evidence for an ordered sequential mechanism in which the first substrate to bind is methyltetrahydrofolate and the last product to be released is tetrahydrofolate. Pre-steady-state kinetic studies were then conducted to determine the rate constants for the various reactions. Enzyme-bound cob(I)alamin was shown to react very rapidly with methyltetrahydrofolate (with an observed rate constant of 250 s-1 versus a turnover number under maximal velocity conditions of 19 s-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
1. The effects of thyroidectomy and of ;acute' and ;chronic' administration of thyroxine on the synthesis of folate coenzymes were studied by determining the liver contents of folate active derivatives and the enzymic activities involved in their biosynthesis. The effect of thyroxine on the same enzymes in vitro was also studied. 2. In thyroidectomized rats the liver contents of folate coenzymes did not change except for a slight decrease in the contents of 5-formyltetrahydrofolate and tetrahydrofolate compared with those in control rats. 3. In the same animals serine hydroxymethyltransferase and formyltetrahydrofolate synthetase activities decreased markedly. 4. The ;chronic' administration of thyroxine to thyroidectomized rats caused more evident variations in the liver contents of folate coenzymes and in particular a decrease in the contents of 5-formyltetrahydrofolate, tetrahydrofolate, 5(or 10)-formyl derivatives of tetrahydropteroylpolyglutamate and of 5(or 10)-formyl derivatives of pteroylpolyglutamate. 5. The enzymic activities did not show significant variations. 6. The ;acute' administration of thyroxine caused changes in the liver contents of some folate derivatives such as 10-formyldihydrofolate, 10-formylfolate, tetrahydrofolate and the 10-formyl derivative of dihydropteroylpolyglutamate. In these animals also the enzymic activities were unchanged. 7. No effect of thyroxine on enzymic activities in vitro was observed.  相似文献   

13.
The effect of inactivation of cobalamin by N2O on the intestinal absorption of folate was studied using rat everted gut sacs. Further, in view of uncertainties about the presence of methionine synthetase in gut [1], this enzyme was measured. Everted gut sacs were incubated with [2-14C]tetrahydrofolate, and the subsequent appearance of labelled formyl- and methyl [14C] tetrahydrofolate in everted segments of small intestine of rats was studied. Considerable methionine synthetase activity was present in washed everted gut sacs but not in gut segments in the absence of such treatment. Methionine synthetase activity declined after exposure to N2O, which oxidizes and inactivates cob(I)alamin. Folate uptake by gut sacs was not affected by 24 h exposure of the animals to N2O but fell significantly after 7 days exposure. There was a significant fall in the amount of formyltetrahydrofolate formed after cobalamin inactivation and this was reversed by supplying either methionine, methylthioadenosine or sodium formate. Serine had no effect. The data support the hypothesis that methionine and methylthioadenosine act by supplying single carbon units at the formate level of oxidation.  相似文献   

14.
N5,N10 -methylene tetrahydrofolate reductase has been purified 100-fold from bovine brain. The initial fractionation with protamine sulfate and ammonium sulfate was followed by chromatography on DEAE-polyacrylamide gel (Bio Gel DM-30) and Sephadex G-200 as well as the selective adsorption and elution of the enzyme on calcium phosphate gel. The purified enzyme required FADH2 and catalyzed the reduction of the methylene group of N5,N10 -methylene tetrahydrofolate to the methyl group of N5 -methyl tetrahydrofolate. The pH optimum of the bovine brain reductase occurred at a pK of 6.5. The enzyme proved quite unstable. Both air oxidation and prolonged periods of storage at -20° inactivated the enzyme.  相似文献   

15.
Transport of folate compounds into Lactobacillus Casei   总被引:5,自引:0,他引:5  
Transport of folate, 5-methyl tetrahydrofolate, and amethopterin into Lactobacillus casei occurs against a concentration gradient, is pH and temperature dependent, requires glucose, exhibits saturation kinetics, is maximal when cells are harvested in late-log phase, and is repressed by excess folate in the growth medium. Km values are 0.35, 0.90, and 0.21 μm for the influx of folate, 5-methyl tetrahydrofolate, and amethopterin, respectively. Dihydrofolate, tetrahydrofolate, 5-formyl tetrahydrofolate, 5-methyl tetrahydrofolate, aminopterin, and amethopterin are inhibitors of folate influx. Countertransport of 5-methyl tetrahydrofolate is enhanced by various other folate compounds. Uptake of folate, 5-methyl tetrahydrofolate, and amethopterin is inhibited to the same degree by increasing concentrations of iodoacetate. These results indicate that a single system is responsible for transport of a variety of folate compounds into L. casei.  相似文献   

16.
A gas chromatographic-mass spectrometric method has been developed for the determination of N-7-[2H3]methyl guanine in urine in the presence of large natural levels of N-7-methyl guanine. Urine is fractionated on heptanesulfonic acid-treated C-18 Sep-pak cartridges, followed by derivatization to give a volatile N-heptafluorobutyryl-O6-2,3,4,5, 6-pentafluorobenzyl derivative which is separated on an SE52 fused silica capillary column. Using N-7-ethyl guanine as an internal standard, the total amount of N-7-methyl guanine is determined by gas chromatography-flame ionization detection. The percentage of N-7-[2H3]methyl guanine is then measured by gas chromatography-mass spectrometry, enabling the amount of deuterated base to be determined. Preliminary experiments with [2H3]methyl methanesulfonate in rats showed measurable excretion of N-7-[2H3]methyl guanine. 4-(Di[2H3]methylamino)antipyrine alone gave no detectable amount of alkylated base, but coadministration of nitrite resulted in excretion of deuterated N-7-methyl guanine.  相似文献   

17.
Dorweiler JS  Finke RG  Matthews RG 《Biochemistry》2003,42(49):14653-14662
Cobalamin-dependent methionine synthase (MetH) catalyzes the transfer of methyl groups between methyltetrahydrofolate (CH(3)-H(4)folate) and homocysteine, with the enzyme-bound cobalamin serving as an intermediary in the methyl transfers. An MetH fragment comprising residues 2-649 contains modules that bind and activate CH(3)-H(4)folate and homocysteine and catalyze methyl transfers to and from exogenous cobalamin. Comparison of the rates of reaction of cobalamin, which contains a dimethylbenzimidazole nucleotide coordinated to the cobalt in the lower axial position, and cobinamide, which lacks the dimethylbenzimidazole nucleotide, allows assessment of the degree of stabilization the dimethylbenzimidazole base provides for methyl transfer between CH(3)-H(4)folate bound to MetH(2-649) and exogenous cob(I)alamin. When the reactions of cob(I)alamin or cob(I)inamide with CH(3)-H(4)folate are compared, the observed second-order rate constants are 2.7-fold faster for cob(I)alamin; in the reverse direction, methylcobinamide reacts 35-fold faster than methylcobalamin with enzyme-bound tetrahydrofolate. These measurements can be used to estimate the influence of the dimethylbenzimidazole ligand on both the thermodynamics and kinetics of methyl transfer between methyltetrahydrofolate and cob(I)alamin or cob(I)inamide. The free energy change for methyl transfer from CH(3)-H(4)folate to cob(I)alamin is 2.8 kcal more favorable than that for methyl transfer to cob(I)inamide. Dimethylbenzimidazole contributes approximately 0.6 kcal/mol of stabilization for the forward reaction and approximately 2.2 kcal/mol of destabilization for the reverse reaction. Binding of methylcobalamin to full-length methionine synthase is accompanied by ligand substitution, and switching between "base-on" and "base-off" states of the cofactor has been demonstrated [Bandarian, V., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 8156-8163]. The present results disfavor a major role for such switching in catalysis of methyl transfer, and are consistent with the hypothesis that the primary role of the ligand triad in methionine synthase is controlling the distribution of enzyme conformations during catalysis.  相似文献   

18.
We tested the hypothesis that the mechanism of action of the antifolate drug trimethoprim is through accumulation of bacterial dihydrofolate resulting in depletion of tetrahydrofolate coenzymes required for purine and pyrimidine biosynthesis. The folate pool of a strain of Escherichia coli (NCIMB 8879) was prelabeled with the folate biosynthetic precursor [(3)H]-p-aminobenzoic acid before treatment with trimethoprim. Folates in untreated E. coli were present as tetrahydrofolate coenzymes. In trimethoprim-treated cells, however, a rapid transient accumulation of dihydrofolate occurred, followed by complete conversion of all forms of folate to cleaved catabolites (pteridines and para-aminobenzoylglutamate) and the stable nonreduced form of the vitamin, folic acid. Both para-aminobenzoylglutamate and folic acid were present in the cell in the form of polyglutamates. Removal of trimethoprim resulted in the reconversion of the accumulated folic acid to tetrahydrofolate cofactors for subsequent participation in the one-carbon cycle. Whereas irreversible catabolism is probably bactericidal, conversion to folic acid may constitute a bacteriostatic mechanism since, as we show, folic acid can be used by the bacteria and proliferation is resumed once trimethoprim is removed. Thus, the clinical effectiveness of this important drug may depend on the extent to which the processes of either catabolism or folic acid production occur in different bacteria or during different therapeutic regimes.  相似文献   

19.
The effect of inactivation of cobalamin by N2O in the intestinal absorption of folate was studied using rat everted gut sacs. Further, in view of uncertainties about the presence of methionine synthetase in gut [1], this enzyme was measured. Everted gut sacs were incubated with [2-14C]tetrahydrofolate, and the subsequent appearance of labelled formyl- and methyl[14C]tetrahydrofolate in everted segments of small intestine of rats was studied. Considerable methionine synthetase activity was present in washed everted gut sacs but not in gut segments in the absence of such treatment. Methionine synthetase activity declined after exposure to N2O, which oxidizes and inactivates cob(I)alamin. Folate uptake by gut sacs was not affected by 24 h exposure of the animals to N2O but fell significantly after 7 days exposure. There was a significant fall in the amount of formlytetrahydrofolate formed after cobalamin inactivation and this was reversed by supplying either methionine, methylthioadenosine or sodium formate. Serine had no effect. The data support the hypothesis that methionine and methylthioadenosine act by supplying single carbon units at the formate level of oxidation.  相似文献   

20.
Novel vitamin B12 analogues in which the D-ribose moiety of the nucleotide loop was replaced by an oligomethylene group and a trimethylene analogue containing imidazole instead of 5,6-dimethylbenzimidazole as well as cobinamide methyl phosphate were tested for biological activities with Escherichia coli 215, a B12- or methionine-auxotroph, and Lactobacillus leichmannii ATCC 7830 as test organisms. A cyano form of 5,6-dimethylbenzimidazolyl tetramethylene, trimethylene and hexamethylene analogues supported the growth of L. leichmannii in this order. 5.6-Dimethylbenzimidazolyl dimethylene and imidazolyl trimethylene analogues did not show B12 activity and behaved as weak B12 antagonists when added together with cyanocobalamin. An adenosyl form of the biologically active analogues served as coenzymes for ribonucleotide reductase of this bacterium, whereas that of the inactive analogues did not. The latter acted as weak competitive inhibitors against adenosylcobalamin. ON the contrary, all the analogues did not support the growth of E. coli 215 at all by themselves and inhibited the growth when added with a suboptimum level of cyanocobalamin. A methyl form of the analogues also did not support the growth of E. coli 215, although they served as active coenzymes for methionine synthase of the bacterium. Since unlabeled analogues strongly inhibited the uptake of [3H]cyanocobalamin by this bacterium, it seems likely that the analogues exert their anti-B12 activity toward E. coli 215 by blocking the B12-transport systemAbbreviations AdoCbl adenosylcobalamin - MeCbl methylcobalamin - CN-Cbl cyanocobalamin or vitamin B12 - Cbl cobalamin - (CN, aq)Cbi cyanoaquacobinamide - MeCbi methylcobinamide - Cbi cobinamide - (CN, aq)Cbi-PMe cyanoaquacobinamide methyl phosphate - Cbi-PMe cobinamide methyl phosphate - DBI 5,6-dimethylbenzimidazole - DBIyl 5,6-dimethylbenzimidazolyl - FMNH2 fully reduced form of riboflavin 5-phosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号