首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
A method for obtaining highly purified endotoxin (lipopolysaccharide [LPS]) in a few hours by repurification of commercial or laboratory preparations was devised. It avoids the use of phenol, which is not suitable for phenol-soluble lipopolysaccharides nor for some industrial purposes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization mass spectrometry analysis confirmed the integrity of the purified LPSs. The purified products did not activate Toll-like receptor 2 (TLR2), nuclear oligomerization domain 1 (NOD1), or NOD2 but did activate TLR4. Applied to different lipopolysaccharides, the method also improved their mass spectra, thus facilitating their structural analysis.  相似文献   

2.
G Jiang  D Sun  HJ Kaplan  H Shao 《PloS one》2012,7(7):e40510
On entering the tissues, infiltrating autoreactive T cells must be reactivated locally to gain pathogenic activity. We have previously reported that, when activated by Toll-like receptor 3 (TLR3) and TLR4 ligands, retinal astrocytes (RACs) are able to function as antigen-presenting cells to re-activate uveitogenic T cells and allow responder T cells to induce uveitis in mice. In the present study, we found that, although the triggering of TLR2 or nucleotide-binding oligomerization domain receptor 2 (NOD2) alone did not activate RACs, their combined triggering induced RACs with the phenotypes required to efficiently re-activate interphotoreceptor retinoid-binding protein (IRBP)-specific T cells. The synergistic effect of TLR2 and NOD2 ligands on RAC activation might be explained by the observations that bacterial lipoprotein (BLP, a TLR2 ligand) was able to upregulate NOD2 expression and the combination of BLP and muramyldipeptide (MDP, a NOD2 ligand) enhanced the expression of RICK (Rip2), the signaling molecule of NOD2. Moreover, the synergistic effect of MDP and BLP on RACs was lost when the RACs were derived from NOD2 knockout mice or were pre-treated with Rip2 antagonist. Thus, our data suggest that exogenous or endogenous molecules acting on both TLR2 and NOD2 on RACs might have an enhancing effect on susceptibility to autoimmune uveitis.  相似文献   

3.
Kim HS  Shin TH  Yang SR  Seo MS  Kim DJ  Kang SK  Park JH  Kang KS 《PloS one》2010,5(10):e15369
Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs), little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs). The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3)CSK(4) for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2) led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3)CSK(4) and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor) restored osteogenic differentiation enhanced by Pam(3)CSK(4). Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3)CSK(4) and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.  相似文献   

4.
With the discovery of CARD15 as susceptibility gene for Crohn's disease (CD) a first link to a potential defect in the innate immune system was made. In this work we aimed to analyze enterocyte NOD2/CARD15 expression and regulation in response to bacterial motifs and the consequences of the most common CD-specific CARD15 mutation on antibacterial responses of normal intestinal epithelial cells (IEC). Under normal conditions, IEC lines and ileal enterocytes did not express NOD2/CARD15 mRNA or protein, contrary to IEC derived from inflammatory CD sections. In vitro analyses revealed that the simple contact with non-pathogenic commensal E. Coli K12 was sufficient to induced NOD2/CARD15 mRNA and protein in human IEC (HIEC). We identified bacterial flagellin interacting with TLR5 as major motif in this regulation of NOD2/CARD15. E. Coli mutants not expressing flagellin (DeltaFliC) failed to induce CARD15. Similarly, in HIEC transfected with a plasmid encoding dominant negative TLR5, no CARD15 induction was observed after K12 contact. Isolated TLR2 or TLR4 stimulation had no or only a marginal effect on NOD2/CARD15 expression. NOD2/CARD15 negative HIEC were unresponsive to muramyl dipeptide (MDP), but once NOD2/CARD15 was induced, HIEC and Caco2 cells responded to intra or extracellular MDP presentation with the activation of the NFkB pathway. IEC transfected with the Crohn-specific CARD15 mutant (F3020insC, FS) failed to activate NFkB after MDP-challenge, in contrast to CARD15WT IEC. In response to MDP, IEC induced a massive antibacterial peptide (ABP) response, seen in the apical release of CCL20. This was completely abolished in IEC carrying CARD15FS. These data suggest a critical role of NOD2/CARD15 in the bacterial clearance of the intestinal epithelium while CD-specific mutated NOD2/CARD15 causes an impaired epithelial barrier.  相似文献   

5.
6.
NOD2, a protein associated with susceptibility to Crohn's disease, confers responsiveness to bacterial preparations of lipopolysaccharide and peptidoglycan, but the precise moiety recognized remains elusive. Biochemical and functional analyses identified muramyl dipeptide (MurNAc-L-Ala-D-isoGln) derived from peptidoglycan as the essential structure in bacteria recognized by NOD2. Replacement of L-Ala for D-Ala or D-isoGln for L-isoGln eliminated the ability of muramyl dipeptide to stimulate NOD2, indicating stereoselective recognition. Muramyl dipeptide was recognized by NOD2 but not by TLR2 or co-expression of TLR2 with TLR1 or TLR6. NOD2 mutants associated with susceptibility to Crohn's disease were deficient in their recognition of muramyl dipeptide. Notably, peripheral blood mononuclear cells from individuals homozygous for the major disease-associated L1007fsinsC NOD2 mutation responded to lipopolysaccharide but not to synthetic muramyl dipeptide. Thus, NOD2 mediates the host response to bacterial muropeptides derived from peptidoglycan, an activity that is important for protection against Crohn's disease. Because muramyl dipeptide is the essential structure of peptidoglycan required for adjuvant activity, these results also have implications for understanding adjuvant function and effective vaccine development.  相似文献   

7.
We have recently described the response of human brain pericytes to lipopolysaccharide (LPS) through toll‐like receptor 4 (TLR4). However, Gram‐negative pathogen‐associated molecular patterns include not only LPS but also peptidoglycan (PGN). Given that the presence of co‐purified PGN in the LPS preparation previously used could not be ruled out, we decided to analyse the expression of the intracellular PGN receptors NOD1 and NOD2 in HBP and compare the responses to their cognate agonists and ultrapure LPS. Our findings show for the first time that NOD1 is expressed in pericytes, whereas NOD2 expression is barely detectable. The NOD1 agonist C12‐iE‐DAP induced IL6 and IL8 gene expression by pericytes as well as release of cytokines into culture supernatant. Moreover, we demonstrated the synergistic effects of NOD1 and TLR4 agonists on the induction of IL8. Using NOD1 silencing in HBP, we showed a requirement for C12‐iE‐DAP‐dependent signalling. Finally, we could discriminate NOD1 and TLR4 pathways in pericytes by pharmacological targeting of RIPK2, a kinase involved in NOD1 but not in TLR4 signalling cascade. p38 MAPK and NF‐κB appear to be downstream mediators in the NOD1 pathway. In summary, these results indicate that pericytes can sense Gram‐negative bacterial products by both NOD1 and TLR4 receptors, acting through distinct pathways. This provides new insight about how brain pericytes participate in the inflammatory response and may have implications for disease management.  相似文献   

8.
Human embryonic stem cell-derived endothelial cells (hESC-EC), as well as other stem cell derived endothelial cells, have a range of applications in cardiovascular research and disease treatment. Endothelial cells sense Gram-negative bacteria via the pattern recognition receptors (PRR) Toll-like receptor (TLR)-4 and nucleotide-binding oligomerisation domain-containing protein (NOD)-1. These pathways are important in terms of sensing infection, but TLR4 is also associated with vascular inflammation and atherosclerosis. Here, we have compared TLR4 and NOD1 responses in hESC-EC with those of endothelial cells derived from other stem cells and with human umbilical vein endothelial cells (HUVEC). HUVEC, endothelial cells derived from blood progenitors (blood outgrowth endothelial cells; BOEC), and from induced pluripotent stem cells all displayed both a TLR4 and NOD1 response. However, hESC-EC had no TLR4 function, but did have functional NOD1 receptors. In vivo conditioning in nude rats did not confer TLR4 expression in hESC-EC. Despite having no TLR4 function, hESC-EC sensed Gram-negative bacteria, a response that was found to be mediated by NOD1 and the associated RIP2 signalling pathways. Thus, hESC-EC are TLR4 deficient but respond to bacteria via NOD1. This data suggests that hESC-EC may be protected from unwanted TLR4-mediated vascular inflammation, thus offering a potential therapeutic advantage.  相似文献   

9.
The recognition of peptidoglycan by cells of the innate immune system has been controversial; both TLR2 and nucleotide-binding oligomerization domain-2 (NOD2) have been implicated in this process. In the present study we demonstrate that although NOD2 is required for recognition of peptidoglycan, this leads to strong synergistic effects on TLR2-mediated production of both pro- and anti-inflammatory cytokines. Defective IL-10 production in patients with Crohn's disease bearing loss of function mutations of NOD2 may lead to overwhelming inflammation due to a subsequent Th1 bias. In addition to the potentiation of TLR2 effects, NOD2 is a modulator of signals transmitted through TLR4 and TLR3, but not through TLR5, TLR9, or TLR7. Thus, interaction between NOD2 and specific TLR pathways may represent an important modulatory mechanism of innate immune responses.  相似文献   

10.
NOD2 of the NLRs and TLR4 of the TLRs are major pattern-recognition receptors, which sense different microbial pathogens and have important roles in innate immunity. Herein, we investigated the roles of NOD2 in TLR4-mediated signalling and gene regulation in RAW264.7 macrophages. We found that MDP (a NOD2 ligand) increased LPS-induced expressions of TNF-α, IL-1β, IL-6, iNOS and COX-2. MDP did not affect LPS-induced activation of MAPKs or IKK, while it potentiated LPS-induced NF-κB activation. Meanwhile TLR4 activation increased NOD2 mRNA expression, and upregulated NOD2 upon MDP treatment is a positive regulator of TLR4-mediated signalling. Intriguingly we found that NOD2 silencing led to increases in LPS-induced signal transduction and inflammatory responses, and a decrease in LPS-elicited homologous tolerance. We thus propose that NOD2 in the absence of MDP treatment might also play a negative regulatory role in the action of TLR4. Further, we demonstrated that both CARD and LRR domains of the NOD2 protein were responsible for the negative regulatory action on TLR4. In summary, it is the first time to demonstrate that NOD2 have dual effects on TLR4 signalling and exert a novel ligand-independent action. Elucidating molecular mechanisms by which NOD2 exerts its ligand-independent action on TLR4 requires further investigation.  相似文献   

11.
The nucleotide-binding domain and leucine-rich repeat containing protein NOD2 serves as a cytoplasmic pattern recognition molecule sensing bacterial muramyl dipeptide (MDP), whereas TLR2 mediates cell surface recognition of bacterial lipopeptides. In this study, we show that NOD2 stimulation activated Rac1 in human THP-1 cells and primary human monocytes. Rac1 inhibition or knock-down, or actin cytoskeleton disruption increased MDP-stimulated IL-8 secretion and NF-kappaB activation, whereas TLR2-dependent cell activation was suppressed by Rac1 inhibition. p21-activated kinase [Pak]-interacting exchange factor (beta-PIX) plays a role in this negative regulation, because knock-down of beta-PIX also led to increased NOD2-mediated but not TLR2-mediated IL-8 secretion, and coimmunoprecipitation experiments demonstrated that NOD2 interacted with beta-PIX as well as Rac1 upon MDP stimulation. Moreover, knock-down of beta-PIX or Rac1 abrogated membrane recruitment of NOD2, and interaction of NOD2 with its negative regulator Erbin. Overall, our data indicate that beta-PIX and Rac1 mediate trafficking and negative regulation of NOD2-dependent signaling which is different from Rac1's positive regulatory role in TLR2 signaling.  相似文献   

12.
The toll-like receptor (TLR) system is expressed in cumulus cells of ovulated cumulus-oocyte complexes (COCs) and is activated by bacterial lipopolysaccharides (LPS). However, the endogenous ligand(s) for the TLRs and the physiological role(s) in ovulated COCs remain to be defined. Based on reports that hyaluronan fragments can activate TLR2 and TLR4 in macrophages, and that ovulated COCs are characterized by a hyaluronan-rich matrix, we cultured ovulated mouse COCs with purified hyaluronan fragments, treated them with purified hyaluronidase or exposed them to sperm as a physiologically relevant source of hyaluronidase. Hyaluronan fragments or hyaluronidase activated the NFkappaB pathway and induced Il6, Ccl4 and Ccl5 mRNA expression within 2 hours. Anti-TLR2 and anti-TLR4 neutralizing antibodies significantly suppressed hyaluronan fragment- and hyaluronidase-induced activation of the NFkappaB pathway and the expression of these genes. When ovulated COCs were cultured with sperm, the expression and secretion of cytokine/chemokine family members were induced in a time-dependent manner that could be blocked by TLR2/TLR4 antibodies or by a hyaluronan-blocking peptide (Pep-1). The chemokines secreted from TLR2/TLR4-stimulated COCs activated cognate chemokine receptors (CCRs) localized on sperm and induced sperm protein tyrosine phosphorylation, which was used as an index of capacitation. Significantly, in vitro fertilization of COC-enclosed oocytes was reduced by the TLR2/TLR4 neutralizing antibodies or by Pep-1. From these results, we propose that TLR2 and TLR4 present on cumulus cells were activated by the co-culture with sperm in a hyaluronan fragment-dependent manner, and that chemokines secreted from COCs induced sperm capacitation and enhanced fertilization, providing evidence for a regulatory loop between sperm and COCs during fertilization.  相似文献   

13.
Two types of synthetic peptidoglycan fragments, diaminopimelic acid (DAP)-containing desmuramylpeptides (DMP) and muramyldipeptide (MDP), induced secretion of interleukin (IL)-8 in a dose-dependent manner in human monocytic THP-1 cells, although high concentrations of compounds are required as compared with chemically synthesized Toll-like receptor (TLR) agonists mimicking bacterial components: TLR2 agonistic lipopeptide (Pam3CSSNA), TLR4 agonistic lipid A (LA-15-PP) and TLR9 agonistic bacterial CpG DNA. We found marked synergistic IL-8 secretion induced by MDP or DAP-containing DMP in combination with synthetic TLR agonists in THP-1 cells. Suppression of the mRNA expression of nucleotide-binding oligomerization domain (NOD)1 and NOD2 by RNA interference specifically inhibited the synergistic IL-8 secretion induced by DMP and MDP with these TLR agonists respectively. In accordance with the above results, enhanced IL-8 mRNA expression and the activation of nuclear factor (NF)-kappaB induced by MDP or DMP in combination with synthetic TLR agonists were markedly suppressed in NOD2- and NOD1-silenced cells respectively. These findings indicated that NOD2 and NOD1 are specifically responsible for the synergistic effects of MDP and DMP with TLR agonists, and suggested that in host innate immune responses to invading bacteria, combinatory dual signalling through extracellular TLRs and intracellular NODs might lead to the synergistic activation of host cells.  相似文献   

14.
Evidence for specific and direct bacterial product recognition through toll-like receptors (TLRs) has been emphasized recently. We analyzed lipopeptide analogues and enterobacterial lipopolysaccharide (eLPS) for their potential to activate cells through TLR2 and TLR4. Whereas bacterial protein palmitoylated at its N-terminal cysteine and N-terminal peptides derived thereof are known to induce TLR2-mediated cell activation, a synthetic acylhexapeptide mimicking a bacterial lipoprotein subpopulation for which N-terminal trimyristoylation is characteristic (Myr(3)CSK(4)) activated cells not only through TLR2 but also through TLR4. Conversely, highly purified eLPS triggered cell activation through overexpressed TLR2 in the absence of TLR4 expression if CD14 was coexpressed. Accordingly, TLR2(-/-) macrophages prepared upon gene targeting responded to Myr(3)CSK(4) challenge, whereas TLR2(-/-)/TLR4(d/d) cells were unresponsive. Through interferon-gamma (IFNgamma) priming, macrophages lacking expression of functional TLR4 and/or MD-2 acquired sensitivity to eLPS, whereas TLR2/TLR4 double deficient cells did not. Not only TLR2(-/-) mice but also TLR4(-/-) mice were resistant to Myr(3)CSK(4) challenge-induced fatal shock. d-Galactosamine-sensitized mice expressing defective TLR4 or lacking TLR4 expression acquired susceptibility to eLPS-driven toxemia upon IFNgamma priming, whereas double deficient mice did not. Immunization toward ovalbumin using Myr(3)CSK(4) as adjuvant was ineffective in TLR2(-/-)/TLR4(-/-) mice yet effective in wild-type, TLR2(-/-), or TLR4(-/-) mice as shown by analysis of ovalbumin-specific serum Ig concentration. A compound such as Myr(3)CSK(4) whose stimulatory activity is mediated by both TLR2 and TLR4 might constitute a preferable adjuvant. On the other hand, simultaneous blockage of both of the two TLRs might effectively inhibit infection-induced pathology.  相似文献   

15.
Toll-like receptor 2 (TLR2)-mediated cell activation induced by commercial preparations of LPS was recently shown to arise from impurities whose identities are not known. In this work, we determined the molecules responsible for TLR2-mediated cell activation in LPS derived from Escherichia coli K-12 strain LCD25. When LCD25 LPS was phenol extracted, two proteins capable of TLR2-mediated cell activation were purified and identified as E. coli lipoproteins. We cloned, expressed, and purified these two lipoproteins, Lip19 and Lip12. Lip19 or Lip12 activated TNF-alpha production from RAW264.7 and THP-1 cells in a TLR2-dependent manner. However, neither Lip19 nor Lip12 activated HUVECs, which lack endogenous TLR2. Additionally, IkappaB kinase beta and c-Jun N-terminal kinase 1 activation in THP-1 cells induced by Lip19 or Lip12 was observed. TLR2 activation by Lip19 and Lip12 in HEK293 cells was blocked by inhibitory anti-TLR2 mAbs. The unlipidated mutants, Lip19-C19S and Lip12-C21S, in which the NH(2)-terminal cysteine was substituted by serine, lost their ability to activate TLR2-transfected HEK 293 cells. Taken together, these results demonstrate that two lipoproteins constitute the major contaminants responsible for TLR2-mediated cell activation in E. coli LCD25 LPS.  相似文献   

16.
K63 polyubiquitin chains spatially and temporally link innate immune signaling effectors such that cytokine release can be coordinated. Crohn's disease is a prototypical inflammatory disorder in which this process may be faulty as the major Crohn's disease-associated protein, NOD2 (nucleotide oligomerization domain 2), regulates the formation of K63-linked polyubiquitin chains on the I kappa kinase (IKK) scaffolding protein, NEMO (NF-kappaB essential modifier). In this work, we study these K63-linked ubiquitin networks to begin to understand the biochemical basis for the signaling cross talk between extracellular pathogen Toll-like receptors (TLRs) and intracellular pathogen NOD receptors. This work shows that TLR signaling requires the same ubiquitination event on NEMO to properly signal through NF-kappaB. This ubiquitination is partially accomplished through the E3 ubiquitin ligase TRAF6. TRAF6 is activated by NOD2, and this activation is lost with a major Crohn's disease-associated NOD2 allele, L1007insC. We further show that TRAF6 and NOD2/RIP2 share the same biochemical machinery (transforming growth factor beta-activated kinase 1 [TAK1]/TAB/Ubc13) to activate NF-kappaB, allowing TLR signaling and NOD2 signaling to synergistically augment cytokine release. These findings suggest a biochemical mechanism for the faulty cytokine balance seen in Crohn's disease.  相似文献   

17.
Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-α, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKCδ-MAPK pathway to suppress β-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.  相似文献   

18.

Objective:

Obesity is associated with chronic inflammation. Toll‐like receptors (TLR) and NOD‐like receptors (NLR) are two families of pattern recognition receptors that play important roles in immune response and inflammation in adipocytes. It has been reported that TLR4 and TLR2 activation induce proinflammatory changes that impair adipocyte differentiation. However, the effects of activation of NOD1 and NOD2, the two prominent members of NLR, on adipocyte differentiation have not been studied.

Design and Methods:

3T3‐L1 and human adipose‐derived stem cells were tested for adipocyte differentiation in the presence or absence of NOD ligand. Adipocyte differentiation was evaluated by the adipocyte markers gene expression and Oil Red O staining for lipid accumulation.

Results:

Activation of NOD1, but not NOD2, by a synthetic ligand dose‐dependently suppressed 3T3‐L1 adipocyte differentiation as revealed by Oil Red O stained cell morphology, lipid accumulation, and attenuated gene expression of adipocyte markers (PPARγ, C/EBPα, SCD, FABP4, Adiponectin). Activation of NOD1, but not NOD2, induced NF‐κB activation, which correlated with their abilities to suppress ligand‐induced PPARγ transaction. Moreover, the suppressive effect by NOD1 activation was reversed by IκB super‐repressor which blocks NF‐κB activation. The suppression by NOD1 ligand C12‐iEDAP on adipocyte differentiation was reversed by small RNA interference targeting NOD1, demonstrating the specificity of NOD1 activation. In contrast, activation of NOD1 and NOD2 both significantly suppressed adipocyte differentiation of human adipose‐derived adult stem cells, demonstrating the species specific effects of NOD activation. In contrast to enhanced leptin mRNA by LPS and TNFα, NOD1 activation suppressed leptin mRNA in adipocytes, suggesting the differential effects of NOD1 activation in adipocytes.

Conclusions:

Overall, our results suggest that NOD1 represents a novel target for adipose inflammation in obesity.  相似文献   

19.
Pattern recognition receptors (PRR), like Toll-like receptors (TLR) and NOD-like receptors (NLR), are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR). This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号