首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The aim of this trial was to study the concentration of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), selenium (Se), cobalt (Co) and iodine (I) in milk and blood serum of lactating donkeys, taking into account the effects of lactation stage and dietary supplementation with trace elements. During a 3-month period, 16 clinically healthy lactating donkeys (Martina-Franca-derived population), randomly divided into two homogeneous groups (control (CTL) and trace elements (TE)), were used to provide milk and blood samples at 2-week intervals. Donkeys in both groups had continuous access to meadow hay and were fed 2.5 kg of mixed feed daily, divided into two meals. The mixed feed for the TE group had the same ingredients as the CTL, but was supplemented with a commercial premix providing 163 mg Zn, 185 mg Fe, 36 mg Cu, 216 mg Mn, 0.67 mg Se, 2.78 mg Co and 3.20 mg I/kg mixed feed. The concentrations of Zn, Fe, Cu, Mn, Se, Co and I were measured in feeds, milk and blood serum by inductively coupled plasma-MS. Data were processed by ANOVA for repeated measures. The milk concentrations of all the investigated elements were not significantly affected by the dietary supplementation with TE. Serum concentrations of Zn, Fe, Cu Mn and Se were not affected by dietary treatment, but TE-supplemented donkeys showed significantly higher concentrations of serum Co (1.34 v. 0.69 μg/l) and I (24.42 v. 21.43 μg/l) than unsupplemented donkeys. The effect of lactation stage was significant for all the investigated elements in milk and blood serum, except for serum manganese. A clear negative trend during lactation was observed for milk Cu and Se concentrations (−38%), whereas that of Mn tended to increase. The serum Cu concentration was generally constant and that of Co tended to increase. If compared with data reported in the literature for human milk, donkey milk showed similarities for Zn, Mn, Co and I. Furthermore, this study indicated that, in the current experimental conditions, the mineral profile of donkey milk was not dependent on dietary TE supply.  相似文献   

2.
Arctic environments are commonly considered to be relatively pristine because of minimal local human activity. However, these areas receive air pollution from lower latitude regions. Our goal was to determine concentrations of metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) in dominant species of vascular plants, mosses, lichens, algae, and in the biological soil crust (BSC), and topsoil (0–3 cm) from various types of tundra in the southwestern part of Spitsbergen, Norway. Results indicate that mosses are more efficient bioaccumulators of Cd, Co, Cr, Cu, Fe, Mn, and Zn than lichens. The highest levels of Co, Cr, Cu, Fe, Hg, Mn, Ni, and Pb were found in the BSC, and the moss species Racomitrium lanuginosum, Sanionia uncinata, and Straminergon stramineum from the polygonal tundra, initial cyanobacteria-moss wet tundra, snow bed cyanobacteria-moss tundra, and flow water moss tundra alimented by melting ice or snow. The observed higher concentrations of Cu and lower concentrations of Hg in mosses, lichens, and vascular plants compared with values observed 20 years earlier were apparently associated with changes in the atmospheric deposition of contaminants over Spitsbergen due to changes in the long-distance transport of anthropogenic emissions from industrialized areas. Prasiola crispa and Salix polaris may be useful bioindicators of Cd and Zn, and the BSC, R. lanuginosum, S. uncinata, and S. stramineum as bioindicators of Co, Cr, Cu, Fe, Hg, Mn, Ni, and Pb. These results may be extrapolated across other areas of Spitsbergen with similar climates.  相似文献   

3.
Trace elements are essential components of biological structures, but alternatively, they can be toxic at concentrations beyond those necessary for their biological functions. Changes in the concentration of essential trace elements and heavy metals may affect acute hemorrhagic stroke. The aim of this study was to measure serum levels of essential trace elements [iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and magnesium (Mg)] and heavy metals [cobalt (Co), cadmium (Cd), and lead (Pb)] in patients with acute hemorrhagic stroke. Twenty-six patients with acute hemorrhagic stroke and 29 healthy controls were enrolled. Atomic absorption spectrophotometry (UNICAM-929) was used to measure serum Fe, Cu, Pb, Cd, Zn, Co, Mn and Mg concentrations. Serum Cd, Pb and Fe levels were significantly higher in patients with acute hemorrhagic stroke than controls (p < 0.001), while serum Cu, Zn, Mg and Mn levels were significantly lower (all p < 0.001). However, there was no significant difference between the groups with respect to serum Co levels (p > 0.05). We first demonstrate increased Cd, Pb, and Fe levels; and decreased Cu, Zn, Mg, and Mn levels in patients with acute hemorrhagic stroke. These findings may have diagnostic and prognostic value for acute hemorrhagic stroke. Further studies are required to elucidate the roles of trace elements and heavy metals in patients with acute hemorrhagic stroke.  相似文献   

4.
Cuprophytes are plants that mostly occur on Cu-rich soil in SC Africa. Crepidorhopalon perennis is endemic of a single site. C. tenuis has a broader niche, from normal to Cu-rich soil. Both have been considered as Cu-Co accumulators. We examined soil factors controlling heavy metal accumulation and plant fitness in natural populations. Plant mass and element concentrations in plants and soil were determined in 153 samples from five populations of C. tenuis on copper soil (CTC), two on normal soil (CTN) and the single population of C. perennis (CP). Soil in Cu-sites had higher concentrations of Ca, Mg, P, Mn, Zn, Cu, Co. Plants from Cu-sites were larger and had higher Cu and Co content, and lower Mg, Mn and Ca. Cu in shoots was influenced positively by Cu and Mn and negatively by Ca in the soil. Co in shoots was influenced positively by Co and negatively by Mn and Fe in the soil. Shoot mass was influenced positively by Cu and Mn (CT) or by Cu and Co (both species pooled) in the soil. The results suggest that C. tenuis and C. perennis are genuinely cuprophilous species. Large variation in metal accumulation in shoots can be accounted for by synergistic and antagonistic interactions among several heavy metals, yielding specific accumulation patterns in different populations.  相似文献   

5.
Differences in the accumulation of seven metallic elements, including micronutrients (Cu, Fe, Mn, Ni and Zn) and non-essential elements (Cd and Pb) among plant organs (leaves, roots and rhizomes) were examined in the seagrass Cymodocea nodosa. Samples were taken from two coastal bays (Catalonia, Western Mediterranean), with a total of nine sampling sites encompassing different levels of metal availability. Metal content was generally higher in uptake organs (leaves and roots) than in rhizomes. However, accumulation in leaves and roots varied between elements. While Cd, Mn and Zn preferentially accumulate in leaves, Fe and Pb accumulate in roots and Cu and Ni in both. There were common spatial (between sites) trends in Cd, Mn, Cu and Zn accumulation in the three organs. However, these spatial trends varied according to the organ considered in the case of Fe, Pb, and Ni. Therefore, assessment of within-plant variability is strongly recommended prior to the use of C. nodosa for biomonitoring purposes, at least for Fe, Pb, and Ni.  相似文献   

6.
采用植物水培方法,以乌拉尔甘草为研究材料,用不同浓度(0、80、160、320mmol·L~(-1))NaCl溶液胁迫处理乌拉尔甘草幼苗3周后,分析其叶片表面盐离子(K~+、Ca~(2+)、Na+)分泌速率的差异,并采集盐化低地草甸重盐土生境中2年生乌拉尔甘草植株,应用ICP-AES测定其不同部位(根、根状茎、茎、老叶和幼叶)中的盐离子(K~+、Na~+、Ga~(2+)、Mg~(2+))含量,探究盐离子在乌拉尔甘草叶片上的分泌格局以及盐离子在植株体内的积存格局,为完善甘草耐盐机理的研究提供依据。结果显示:(1)随着盐胁迫浓度的升高,乌拉尔甘草叶片上K~+、Ca~(2+)、Na+的分泌速率均呈增加趋势,且Na~+的分泌速率远远大于Ca~(2+)和K+的分泌速率。(2)在乌拉尔甘草各部位中,K+的积存量从大到小依次为:幼叶根根状茎茎老叶;Na~+在各个部位的积存量都十分有限,且无论地下部分还是地上部分,差异均不大;Ca~(2+)积存量由大到小依次为:老叶幼叶茎根状茎根,且老叶中Ca~(2+)的积存量显著高于其它部位。研究认为,在重盐碱地生境中,K+主要积存在幼叶中,Ga~(2+)主要积存在老叶中,植株体内各个部位Na~+的积存量很低,乌拉尔甘草表现出明显的拒Na现象;叶片分泌的主要盐离子为Na~+;乌拉尔甘草通过泌盐的方式将Na+排出体外,从而有效降低Na~+在体内的积存,这是其能够在重盐碱地生存生长的重要原因。  相似文献   

7.
High-performance ion chromatography and inductively coupled plasma–mass spectrometry methods have been applied to estimate the content of Cd, Co, Cu, Fe, Mn, Zn, and Ni in whole blood, plasma, and urine of obese and nonobese children. The study was conducted on a group of 81 Polish children of age 6–17 years (37 males, 44 females). Obese children were defined as those with body mass index (BMI) >95th percentile in each age–gender-specific group. Statistical testing was done by the use of nonparametric tests (Kruskal–Wallis's and Mann–Whitney's U) and Spearman's correlation coefficient. Significant correlations appeared for control group in plasma (Mn–Cd, Ni–Co), urine (Cu–Co), and blood (Fe–Cu), while for obese patients in plasma (Cd–Mn, Ni–Cu, Ni–Zn) and urine (Fe–Cd, Co–Mn). Sex criteria did not influence correlations between metals' content in plasma and urine of obese patients. Metals' abundance was correlated in non-corresponding combinations of body fluids. Rare significant differences between content of metals according to sex and the type of body fluids were discovered: Zn in plasma from obese patients of both sexes, and Zn, Co, and Mn in blood, Mn in plasma from healthy subjects. Negative correlations between BMI and Zn in blood, Cu in plasma, and Fe in urine were discovered for girls (control group). Positive correlation between Co content in plasma and BMI was discovered for obese boys. The changes in metals' content in body fluids may be indicators of obesity. Content of zinc, copper, and cobalt should be monitored in children with elevated BMI to avoid deficiency problems.  相似文献   

8.
We analysed the concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, fish and plants of the River Hindon, U.P., India, at seven sampling stations, in the year 1982. Considerable variation in concentration between water, sediments, fish and plants were noted. The concentration in the water was in the order Fe > Zn > Cr > Mn > Cu > Pb > Ni > Co > Cd, in the sediments, Fe > Mn > Zn > Ni > Cr > - Co > Cu > Pb > Cd; in a fish (Heteropnuestes fossilis) Fe > Zn > Mn > Pb > Ni > Co > Cu > Cd > Cr, and in a plant (Eicchornia crassipes) Fe > Mn > Zn > Ni > Cu > Cr > Pb > Co > Cd.  相似文献   

9.
T. Hara  Y. Sonoda 《Plant and Soil》1979,51(1):127-133
Summary Cabbage plants were grown for 55 days with a nutrient solution containing 1 and 10 ppm of V, Cr(III), Cr(VI), Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg(I), orHg(II). A comparison of the plant growth and chemical analysis revealed that Cr(VI), Cu, Cd, and Hg(II) in the solution are most toxic to the plant growth (hence detrimental to the cabbage-head formation) and Mn, Fe, and Zn are less toxic than other heavy metals, and that Mn, Zn, Co, Ni, and Cd and translocated into all the plant organs while V, Cr(III), Cr(VI), Fe, Cu, Hg(I), and Hg(II) are accumulated in the roots.  相似文献   

10.
Licorice (Glycyrrhizae radix) is the roots and stolons of Glycyrrhiza uralensis Fischer or Glycyrrhiza glabra Linnaeus in the Japanese Pharmacopoeia. Glycyrrhizae radix has been widely used as a sweetener and a traditional medicine. A Glycyrrhizae radix extract contains many constituents and has antispasmodic, antitussive, anti-ulcer, and anti-inflammatory effects. However, reports comparing the anti-inflammatory effects of these constituents are very few. Here, we purified several constituents from the roots and stolons of G. uralensis and examined and compared their anti-inflammatory effects by monitoring the levels of the inflammatory mediator, nitric oxide (NO), in interleukin (IL)-1β-treated rat hepatocytes. From the G. uralensis extract, we purified the main constituent glycyrrhizin and the constituents that are characteristic of G. uralensis (chalcones and flavanones). These constituents suppressed NO production in IL-1β-treated rat hepatocytes, and isoliquiritigenin showed the greatest suppression activity. Isoliquiritigenin, isoliquiritin, and liquiritigenin significantly decreased both protein and mRNA for the inducible nitric oxide synthase. These constituents reduced the levels of mRNAs encoding tumor necrosis factor α and IL-6. In contrast, although glycyrrhizin is abundant, it showed a 100-fold lower potency in NO suppression. Therefore, both glycyrrhizin and the minor constituents (isoliquiritigenin, isoliquiritin, and liquiritigenin) may be responsible for the anti-inflammatory effects of G. uralensis. It is also implied that these constituents may have a therapeutic potential for inflammatory hepatic disorders.  相似文献   

11.
Licorice (Glycyrrhiza uralensis) is a medicinal plant that contains glycyrrhizin (GL), which has various pharmacological activities. Because licorice is a legume, it can establish a symbiotic relationship with nitrogen-fixing rhizobial bacteria. However, the effect of this symbiosis on GL production is unknown. Rhizobia were isolated from root nodules of Glycyrrhiza glabra, and a rhizobium that can form root nodules in G. uralensis was selected. Whole-genome analysis revealed a single circular chromosome of 6.7 Mbp. This rhizobium was classified as Mesorhizobium by phylogenetic analysis and was designated Mesorhizobium sp. J8. When G. uralensis plants grown from cuttings were inoculated with J8, root nodules formed. Shoot biomass and SPAD values of inoculated plants were significantly higher than those of uninoculated controls, and the GL content of the roots was 3.2 times that of controls. Because uninoculated plants from cuttings showed slight nodule formation, we grew plants from seeds in plant boxes filled with sterilized vermiculite, inoculated half of the seedlings with J8, and grew them with or without 100 µM KNO3. The SPAD values of inoculated plants were significantly higher than those of uninoculated plants. Furthermore, the expression level of the CYP88D6 gene, which is a marker of GL synthesis, was 2.5 times higher than in inoculated plants. These results indicate that rhizobial symbiosis promotes both biomass and GL production in G. uralensis.  相似文献   

12.
The active biomonitoring method was used to examine the changes in heavy-metal (Fe, Zn, Cu, Cd, Mn, Pb, and Ni) contents in the organs (muscle, gonads, mantle, gills, digestive gland, and kidney) of the mussels Crenomytilus grayanus and Modiolus modiolus. The dynamics of trace element concentrations in mussel organs during the experiment were compared with their subcellular distribution. The defense strategy of M. modiolus consisted of the threshold accumulation of toxic metals in all organs followed by their excretion, whereas the strategy of C. grayanus involved short-term isolation from adverse environmental influence. Under chronic pollution, in C. grayanus the main loads occurred in the digestive gland and kidney. Under acute changes in environmental conditions, the processes of regulation (detoxification/excretion) of Fe, Mn, and Pb in this species were impaired substantially.  相似文献   

13.
安钰  安慧 《西北植物学报》2015,35(2):373-378
于2011年植物生长旺季(8月)在围封禁牧(NG)、轻度放牧(LG)、中度放牧(MG)和重度放牧(HG)区分别随机选取荒漠草原优势植物甘草(Glycyrrhiza uralensis)和牛心朴子(Cynanchum komarovii)各15株为研究对象,对比分析其生长特征、各植物构件生物量及生物量资源分配差异对不同放牧强度的响应机制,为退化草原的恢复演替提供依据。结果表明:(1)甘草株高和地径、牛心朴子株高均随放牧强度的增加呈先升高后下降的趋势,而且均在轻度放牧条件下最高,重度放牧时则显著降低。(2)甘草和牛心朴子的总生物量、茎生物量和叶生物量随着放牧强度的增加呈先升高后降低的趋势,且不同放牧强度间差异显著;甘草和牛心朴子根系生物量随放牧强度的加强变化趋势不同。(3)甘草和牛心朴子生物量分配的总体格局为:根叶茎;随着放牧强度的增加,甘草根生物量比呈先升高后降低趋势,茎生物量比呈下降的趋势,叶生物量比呈上升趋势,而牛心朴子根生物量比呈先下降后升高的趋势,茎生物量和叶生物量呈先增加后下降的趋势。研究认为,不同放牧强度下两种植物形态可塑性和生物量分配格局的差异反映出植物生态适应策略的不同。  相似文献   

14.
Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their acquisition via the shoot. We conducted field experiments to investigate the effects of intercropping with turnip (Brassica campestris L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.) on the iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations in the grain and their acquisition via the above-ground shoots of maize (Zea mays L.). Compared with monocropped maize grain, the grain of maize intercropped with legumes showed lower concentrations of Fe, Mn, Cu, and Zn and lower values of their corresponding harvest indexes. The micronutrient concentrations and harvest indexes in grain of maize intercropped with turnip were the same as those in monocropped maize grain. Intercropping stimulated the above-ground maize shoot acquisition of Fe, Mn, Cu and Zn, when averaged over different phosphorus (P) application rates. To our knowledge, this is the first report on the effects of intercropping on micronutrient concentrations in maize grain and on micronutrients acquisition via maize shoots (straw+grain). The maize grain Fe and Cu concentrations, but not Mn and Zn concentrations, were negatively correlated with maize grain yields. The concentrations of Fe, Mn, Cu, and Zn in maize grain were positively correlated with their corresponding harvest indexes. The decreased Fe, Mn, Cu, and Zn concentrations in grain of maize intercropped with legumes were attributed to reduced translocation of Fe, Mn, Cu, and Zn from vegetative tissues to grains. This may also be related to the delayed senescence of maize plants intercropped with legumes. We conclude that turnip/maize intercropping is beneficial to obtain high maize grain yield without decreased concentrations of Fe, Mn, Cu, and Zn in the grain. Further research is required to clarify the mechanisms underlying the changes in micronutrient concentrations in grain of intercropped maize.  相似文献   

15.
The concentrations of metals (Mn, Pb, Fe, Zn, Cu, Cd,Co, Ni, Cr, Na, K, Ca, Mg) were determined in thegreen alga Ulva rigida, in the sediment andseawater of Thermaikos Gulf (Greece) during monthlysamplings in 1994–1995. This Gulf is the recipientof domestic and industrial effluents. Pb, Fe, Cu, Coand Cr concentrations in U. rigida at the studyarea were higher than those 13 years earlier andapparently came from different sources than those forZn, Cd and Ni. The relative abundance of metals inthe alga decreased in the order: Mg > Na > K >Ca > Pb > Fe > Mn > Zn > Cr, Cu > Ni >Co > Cd. Only Cu concentrations in the alga fromKalochori and Cd ones from Viamyl showed significantseasonal changes. Cu and Cd concentrations ingeneral followed the same pattern of variation, withminimum values in winter-spring. This pattern isdiscussed in relation to growth dynamics and tissueage. Only Pb concentrations in the alga showed asignificant positive correlation with concentrationsin the seawater. There were both positive andnegative correlations among some metals in the alga. It is concluded that U. rigida can be used as anindicator species, especially for Pb.  相似文献   

16.
The structure of a flavanone glycoside from the roots of Glycyrrhiza uralensis has been confirmed as 4′-O-[β-d-apio-d-furanosyl-(1 → 2)-β-d-glucopyranosyl]liquiritigenin. In addition, two known flavonoid glucosides, ononin (a minor component) and liquiritin (a major component), were isolated from the same extract.  相似文献   

17.
Glycyrrhiza uralensis is a widely used Chinese herb and glycyrrhizic acid is believed to be its marker compound. Three key enzymes, 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), squalene synthase (SQS) and beta-amyrin synthase (β-AS), are involved in the glycyrrhizic acid biosynthetic pathway. In this paper, the relationship between copy number variations (CNVs) of HMGR, SQS and β-AS genes and the content levels of glycyrrhizic acid in G. uralensis were investigated. CNVs of the 62 G. uralensis samples from different origins were determined by real-time PCR and their glycyrrhizic acid contents were analyzed by HPLC. The real-time PCR results showed that the copy numbers of HMGR, SQS1 and β-AS in the 62 G. uralensis samples were either one copy or two copies. According to the copy number patterns of HMGR, SQS1 and β-AS, the 62 G. uralensis samples can be divided into six groups. Among the six groups, group B with two copies of HMGR, one copy of SQS1 and β-AS contained relatively higher contents of glycyrrhizic acid. The accumulation of glycyrrhizic acid was lower in the group C with two copies of β-AS, one copy of SQS1 and HMGR. The results of this work may provide a basis for enhancing the accumulation of glycyrrhizic acid in cultivars of G. uralensis.  相似文献   

18.
Glycyrrhiza plants are important resources for sweeteners and medicines, because underground parts of them contain glycyrrhizic acid (GL), which has sweet taste and various pharmacological activities (ex. anti-inflammatory, antiallergy, antiviral activity, etc.). Although such importance of them, their supply still depends principally on the collection of wild plants. Therefore, it is an important issue to develop stable and efficient production system of Glycyrrhiza plants. To overcome this problem, we established the hydroponic cultivation system of Glycyrrhiza uralensis and selected superior G. uralensis clones with high-GL contents in the containment greenhouse. In this study, we aimed to develop a method of selecting these superior G. uralensis clones by DNA sequence polymorphisms in biosynthetic genes. Among the DNA sequences of GL biosynthetic key enzyme gene (CYP88D6), we found Glycyrrhiza species and clone-specific polymorphisms in intronic regions. By using these polymorphisms, discrimination among Glycyrrhiza species and G. uralensis clones became possible. Furthermore, the appearance frequency of superior clone-specific alleles in cloned CYP88D6 sequences was correlated with GL contents in crude drugs collected from the Japanese market. We also observed the tendency that G. uralensis seedlings having superior clone-specific alleles of CYP88D6 gene showed higher secondary metabolite productivity than those without the alleles. These results indicated that superior clone-specific alleles of CYP88D6 gene could be applied as DNA markers for selecting G. uralensis clones accumulating high secondary metabolites.  相似文献   

19.
The concentrations of Fe, Zn, Cu, Cd, Mn, Pb, and Ni were determined in the hepatopancreas, muscle tissue, and carapace of the grass shrimp Pandalus kessleri from the coastal waters of the Lesser Kurilskaya Ridge. Sex reversal of the grass shrimp, which is a proterandrous hermaphrodite, had a marked influence on the concentrations of such metals as Fe, Cu, Cd, and Mn. The levels of Cd in the hepatopancreas of grass shrimp exceeded maximum permissible concentrations for seafood at all the stations studied. The main factors determining the metal levels in P. kessleri from the investigated locations are discussed.  相似文献   

20.
Norvell  W. A.  Welch  R. M.  Adams  M. L.  Kochian  L. V. 《Plant and Soil》1993,(1):123-126
Neither the reduction of Fe(III) to Fe(II) by roots nor its induction by Fe-deficiency are unique characteristics of the reductive activities of roots. We show that chelated Mn(III) or chelated Cu(II), as well as chelated Fe(III), may be reduced by Fe-stressed roots of pea (Pisum sativum L.). Deficiency of Fe stimulated the reduction of Fe(III)EDTA about 20-fold, the reduction of Mn(III)CDTA about 11-fold, the reduction of Cu(II)(BPDS)2 about 5-fold, and the reduction of Fe(III)(CN)6 by only about 50%. Not only are metals other than Fe reduced as part of the Fe-stress response, but deficiencies of metals other than Fe stimulate the reductive activity of roots. We show that depriving peas or soybeans (Glycine max) of Cu or Zn stimulates the reduction of Fe(III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号