首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
NalP is an autotransporter secretory protein found in the outer membrane of Neisseria meningitidis. The crystal structure of the NalP translocator domain revealed a transmembrane β-barrel containing a central α-helix. The role of this α-helix, and of the conformational dynamics of the β-barrel pore have been studied via atomistic molecular dynamics simulations. Three simulations, each of 10 ns duration, of NalP embedded within a solvated DMPC bilayer were performed. The helix was removed from the barrel interior in one simulation. The conformational stability of the protein is similar to that of other outer membrane proteins, e.g., OmpA, in comparable simulations. The transmembrane β-barrel is stable even in the absence of the α-helix. Removal of the helix results in an influx of water into the pore region, suggesting the helix acts as a ‘plug’. Water molecules entering the resultant pore form hydrogen bonds with the barrel lining that compensate for the loss of helix-barrel hydrogen bonds. The dimensions of the pore fluctuate over the course of the simulation revealing it to be flexible, but only wide enough to allow transport of the passenger domain in an unfolded or extended conformation. The simulations help us to understand the role of the central helix in plugging the pore and in maintaining the width of the barrel, and show that the NalP monomer is sufficient for the transport of the passenger domain in an unfolded or extended conformation.  相似文献   

2.
NhhA, Neisseriahia/hsf homologue, or GNA0992, is an oligomeric outer membrane protein of Neisseria meningitidis, recently included in the family of trimeric autotransporter adhesins. In this study we present the structural and functional characterization of this protein. By expressing in Escherichia coli the full-length gene, deletion mutants and chimeric proteins of NhhA, we demonstrated that the last 72 C-terminal residues are able to allow trimerization and localization of the N-terminal protein domain to the bacterial surface. In addition, we investigated on the possible role of NhhA in bacterial-host interaction events. We assessed in vitro the ability of recombinant purified NhhA to bind human epithelial cells as well as laminin and heparan sulphate. Furthermore, we shown that E. coli strain expressing NhhA was able to adhere to epithelial cells, and observed a reduced adherence in a meningococcal isogenic MC58DeltaNhhA mutant. We concluded that this protein is a multifunctional adhesin, able to promote the bacterial adhesion to host cells and extracellular matrix components. Collectively, our results underline a putative role of NhhA in meningococcal pathogenesis and ascertain its structural and functional belonging to the emerging group of bacterial autotransporter adhesins with trimeric architecture.  相似文献   

3.
In a search for immunogenic virulence factors in Neisseria meningitidis, we have identified a gene encoding a predicted 160 kDa protein with homology to the autotransporter family of proteins. Members of this family are secreted or surface exposed and are often associated with virulence in Gram-negative bacterial pathogens. We named the gene adhesion and penetration protein (app), because of its extensive homology to the hap gene of Haemophilus influenzae. We reconstructed the gene with reference to genomic sequence data and cloned and expressed the protein in Escherichia coli. Rabbit antiserum raised against recombinant App reacted with proteins in all meningococcal isolates examined, which represented clonal groups responsible for the majority of meningococcal invasive disease. Antibodies to the protein were detected in the sera of patients convalescing from meningococcal infection. Purified App had strong stimulating activity for T cells isolated from a number of healthy donors and from one convalescent patient. We confirmed that App is surface localized, cleaved and secreted by N. meningitidis. Importantly, the rabbit anti-App serum killed the organism in the presence of complement. Thus, App is conserved among meningococci, immunogenic in humans and potentially involved in virulence. It therefore merits further investigation as a component of a future multivalent vaccine.  相似文献   

4.
Rouhier N  Jacquot JP 《FEBS letters》2003,554(1-2):149-153
A hybrid protein from Neisseria meningitidis, which contains both a peroxiredoxin and a glutaredoxin domain, has been isolated. The enzyme was active in the reduction of various peroxides and dehydroascorbate in the presence of reduced glutathione. These findings suggest that both the peroxiredoxin and glutaredoxin domains are biochemically active in the fusion. Moreover, when expressed separately, the glutaredoxin domain was catalytically active and the peroxiredoxin domain possessed a weak activity when supplemented with exogenous glutaredoxin.  相似文献   

5.
The sequenced genomes of pathogenic Neisseria meningitidis strains contain up to eight genes putatively encoding autotransporters, which are secreted proteins implicated in virulence. Here, we have characterized one of these genes, designated ausI, which encodes an autotransporter of the serine protease family. It was found to be specific for N. meningitidis and present in 14 out of 20 isolates, although only six of them expressed the gene. We show that expression of the gene is subject to phase variation as a result of a variable number of cytosines in a poly-C tract in the coding region. The open reading frame went out-of-phase at the poly-C tract in seven strains that did not express AusI. In the eighth strain, the open reading frame remained in frame at the poly-C tract, but it was disrupted by a premature stop codon further downstream. In accordance with its assignment as an autotransporter, a secreted AusI passenger domain was released into the extracellular milieu. This release was influenced by another autotransporter, NalP, as different forms of AusI were produced in the presence or absence of NalP. In silico sequence analysis suggested several putative functions for AusI, which, however, could not be confirmed experimentally.  相似文献   

6.
Autotransporters constitute a relatively simple secretion system in Gram-negative bacteria, depending for their translocation across the outer membrane only on a C-terminal translocator domain. We have studied a novel autotransporter serine protease, designated NalP, from Neisseria meningitidis strain H44/76, featuring a lipoprotein motif at the signal sequence cleavage site. Indeed, lipidation of NalP could be demonstrated, but the secreted 70 kDa domain of NalP lacked the lipid-moiety as a result of additional N-terminal processing. A nalP mutant showed a drastically altered profile of secreted proteins. Mass-spectrometric analysis of tryptic fragments identified the autotransporters IgA protease and App, a homologue of the adhesin Hap of Haemophilus influenzae, as the major secreted proteins. Two forms of both of these proteins were found in the culture supernatant of the wild-type strain, whereas only the lower molecular-weight forms predominated in the culture supernatant of the nalP mutant. The serine-protease active site of NalP was required for the modulation of the processing of these autotransporters. We propose that, apart from the autoproteolytic processing, NalP can process App and IgA protease and hypothesize that this function of NalP could contribute to the virulence of the organism.  相似文献   

7.
Mono ADP-ribosyltransferases (ADPRTs) are a class of functionally conserved enzymes present in prokaryotic and eukaryotic organisms. In bacteria, these enzymes often act as potent toxins and play an important role in pathogenesis. Here we report a profile-based computational approach that, assisted by secondary structure predictions, has allowed the identification of a previously undiscovered ADP-ribosyltransferase in Neisseria meningitidis (NarE). NarE shows structural homologies with E. coli heat-labile enterotoxin (LT) and cholera toxin (CT) and possesses ADP-ribosylating and NAD-glycohydrolase activities. As in the case of LT and CT, NarE catalyses the transfer of the ADP-ribose moiety to arginine residues. Despite the absence of a signal peptide, the protein is efficiently exported into the periplasm of Neisseria. The narE gene is present in 25 out of 43 strains analysed, is always present in ET-5 and Lineage 3 but absent in ET-37 and Cluster A4 hypervirulent lineages. When present, the gene is 100% conserved in sequence and is inserted upstream of and co-transcribed with the lipoamide dehydrogenase E3 gene. Possible roles in the pathogenesis of N. meningitidis are discussed.  相似文献   

8.
Cox K  Watson T  Soultanas P  Hirst JD 《Proteins》2003,52(2):254-262
Helicases are ubiquitous enzymes involved in nucleic acid metabolism. The PcrA DNA helicase is an essential bacterial protein involved in rolling circle plasmid replication and DNA repair. Recent crystal structures of PcrA bound to DNA indicate that a flexible loop mediates a functionally important rigid-body-domain rotation. In this study, we report stochastic boundary molecular dynamics simulations focused on this region for wild-type and mutants designed to increase the rigidity of the region. Residues in the region that were helix-disfavoring, such as glycine, threonine, and others, were mutated to alanine. The simulated dynamics, analyzed with a variety of measures of structure and mobility, indicate that a few point mutations will substantially increase helix formation in this region. Subnanosecond stochastic boundary molecular dynamics simulations at several temperatures offer a rapid protocol for assessing large numbers of mutants and provides a novel strategy for the design of experiments to test the role of this flexible loop region in the function of PcrA.  相似文献   

9.
Molecular dynamics simulations have become a standard tool for the investigation of biomolecules. Simulations are performed of ever bigger systems using more realistic boundary conditions and better sampling due to longer sampling times. Recently, realistic simulations of systems as complex as transmembrane channels have become feasible. Simulations aid our understanding of biochemical processes and give a dynamic dimension to structural data; for example, the transformation of harmless prion protein into the disease-causing agent has been modeled.  相似文献   

10.
The adhesin involved in diffuse adherence (AIDA) is an autotransporter protein that confers the diffuse adherence phenotype to certain diarrheagenic Escherichia coli strains. It consists of a 49 amino acid signal peptide, a 797 amino acid passenger domain, and a 440 amino acid beta-domain integrated into the outer membrane. The beta-domain consists of two parts: the beta(1)-domain, which is predicted to form two beta-strands on the bacterial cell surface, and the beta(2)-domain, which constitutes the transmembrane domain. We have previously shown that the beta-domain can be folded from the urea-denatured state when bound to a nickel column during purification. It has not been possible to achieve proper refolding of the beta-domain in solution; instead, a misfolded state C is formed. Here, we characterize this misfolded state in greater detail, showing that despite being misfolded, C can be analyzed as a conventional conformational state, with cooperative unfolding in urea and SDS as well as showing simple exponential kinetics during its formation in the presence of lipid vesicles and detergent micelles. The kinetics of formation of C is sensitive to the lipid composition in vesicles. We have also attempted to identify biological factors that might aid folding of the beta-domain to the properly folded state. However, no purified periplasmic or cytosolic chaperone was found to increase folding yields, and no factor in a periplasmic extract was identified that could bind to C. We conclude that it is the exposure to the unique spatial arrangement of the bacterial cell that leads to proper refolding of the beta-domain.  相似文献   

11.
R Sparling  A R Bhatti 《Microbios》1984,41(164):73-79
A restriction endonuclease, Nmel, present in Neisseria meningitidis was partially purified by passing through a blue 2-cross linked agarose column; no contaminating nucleases remained detectable. This enzyme cleaved phage lambda, adenovirus type 2 and phi x 174 DNA but did not cleave SV40 DNA. It had an absolute requirement for Mg2+ for its activity and was inhibited by high concentrations of NaCl or MgCl2. Nmel activity was completely abolished after 1 h of incubation at 65 degrees C. S-adenosyl-L-methionine and ATP had no effect on its activity suggesting that Nmel is a type II restriction endonuclease enzyme. It is the first report of a restriction enzyme present in N. meningitidis.  相似文献   

12.
Lipopolysaccharyl alpha-galactosyltransferase from Neisseria meningitidis catalyzes the transfer of a galactosyl moiety from the activated donor UDP-Gal to glycoconjugates to yield an elongated saccharide product with net retention of anomeric configuration relative to the donor substrate. Through kinetic analyses in which the concentrations of both substrates are independently varied and through inhibition studies with dead-end analogues of both substrates and with the oligosaccharide product, we have demonstrated that this enzyme follows an ordered bi-bi kinetic mechanism. Various aspects of the chemical mechanism including the possible formation of a covalent glycosyl-enzyme intermediate were also probed using an assortment of strategies. While the results of these investigations were unable to clearly delineate the chemical mechanism of this enzyme, they provide important insights into the catalytic machinery surrounding the events involved in catalysis.  相似文献   

13.

Background

Neisseria meningitidis serogroup B has been predominant in Brazil, but no broadly effective vaccine is available to prevent endemic meningococcal disease. To understand genetic diversity among serogroup B strains in Brazil, we selected a nationally representative sample of clinical disease isolates from 2004, and a temporally representative sample for the state of São Paulo (1988–2006) for study (n = 372).

Methods

We performed multi-locus sequence typing (MLST) and sequence analysis of five outer membrane protein (OMP) genes, including novel vaccine targets fHbp and nadA.

Results

In 2004, strain B:4:P1.15,19 clonal complex ST-32/ET-5 (cc32) predominated throughout Brazil; regional variation in MLST sequence type (ST), fetA, and porB was significant but diversity was limited for nadA and fHbp. Between 1988 and 1996, the São Paulo isolates shifted from clonal complex ST-41/44/Lineage 3 (cc41/44) to cc32. OMP variation was associated with but not predicted by cc or ST. Overall, fHbp variant 1/subfamily B was present in 80% of isolates and showed little diversity. The majority of nadA were similar to reference allele 1.

Conclusions

A predominant serogroup B lineage has circulated in Brazil for over a decade with significant regional and temporal diversity in ST, fetA, and porB, but not in nadA and fHbp.  相似文献   

14.
We perform molecular dynamics simulation studies on interaction between bacterial proteins: an outer‐membrane protein STY3179 and a yfdX protein STY3178 of Salmonella Typhi. STY3179 has been found to be involved in bacterial adhesion and invasion. STY3178 is recently biophysically characterized. It is a soluble protein having antibiotic binding and chaperon activity capabilities. These two proteins co‐occur and are from neighboring gene in Salmonella Typhi‐occurrence of homologs of both STY3178 and STY3179 are identified in many Gram‐negative bacteria. We show using homology modeling, docking followed by molecular dynamics simulation that they can form a stable complex. STY3178 belongs to aqueous phase, while the beta barrel portion of STY3179 remains buried in DPPC bilayer with extra‐cellular loops exposed to water. To understand the molecular basis of interaction between STY3178 and STY3179, we compute the conformational thermodynamics which indicate that these two proteins interact through polar and acidic residues belonging to their interfacial region. Conformational thermodynamics results further reveal instability of certain residues in extra‐cellular loops of STY3179 upon complexation with STY3178 which is an indication for binding with host cell protein laminin.  相似文献   

15.
Neisseria meningitidis is a Gram‐negative bacterium that asymptomatically colonises the nasopharynx of humans. For an unknown reason, Nmeningitidis can cross the nasopharyngeal barrier and invade the bloodstream where it becomes one of the most harmful extracellular bacterial pathogen. This infectious cycle involves the colonisation of two different environments. (a) In the nasopharynx, Nmeningitidis grow on the top of mucus‐producing epithelial cells surrounded by a complex microbiota. To survive and grow in this challenging environment, the meningococcus expresses specific virulence factors such as polymorphic toxins and MDAΦ. (b) Meningococci have the ability to survive in the extra cellular fluids including blood and cerebrospinal fluid. The interaction of Nmeningitidis with human endothelial cells leads to the formation of typical microcolonies that extend overtime and promote vascular injury, disseminated intravascular coagulation, and acute inflammation. In this review, we will focus on the interplay between Nmeningitidis and these two different niches at the cellular and molecular level and discuss the use of inhibitors of piliation as a potent therapeutic approach.  相似文献   

16.
The pathway to amyloid fibril formation in proteins involves specific structural changes leading to the combination of misfolded intermediates into oligomeric assemblies. Recent NMR studies showed the presence of “turns” in amyloid peptides, indicating that turn formation may play an important role in the nucleation of the intramolecular folding and possible assembly of amyloid. Fully solvated all-atom molecular dynamics simulations were used to study the structure and dynamics of the apolipoprotein C-II peptide 56 to 76, associated with the formation of amyloid fibrils. The peptide populated an ensemble of turn structures, stabilized by hydrogen bonds and hydrophobic interactions enabling the formation of a strong hydrophobic core which may provide the conditions required to initiate aggregation. Two competing mechanisms discussed in the literature were observed. This has implications in understanding the mechanism of amyloid formation in not only apoC-II and its fragments, but also in other amyloidogenic peptides.  相似文献   

17.
Molecular dynamics (MD) simulations of N-terminal peptides from lactate dehydrogenase (LDH) with increasing length and individual secondary structure elements were used to study their stability in relation to folding. Ten simulations of 1–2 ns of different peptides in water starting from the coordinates of the crystal structure were performed. The stability of the peptides was compared qualitatively by analyzing the root mean square deviation (RMSD) from the crystal structure, radius of gyration, secondary and tertiary structure, and solvent accessible surface area. In agreement with earlier MD studies, relatively short (< 15 amino acids) peptides containing individual secondary structure elements were generally found to be unstable; the hydrophobic α1-helix of the nucleotide binding fold displayed a significantly higher stability, however. Our simulations further showed that the first βαβ supersecondary unit of the characteristic dinucleotide binding fold (Rossmann fold) of LDH is somewhat more stable than other units of similar length and that the α2-helix, which unfolds by itself, is stabilized by binding to this unit. This finding suggests that the first βαβ unit could function as an N-terminal folding nucleus, upon which the remainder of the polypeptide chain can be assembled. Indeed, simulations with longer units (βαβα and βαβαββ) showed that all structural elements of these units are rather stable. The outcome of our studies is in line with suggestions that folding of the N-terminal portion of LDH in vivo can be a cotranslational process that takes place during the ribosomal peptide synthesis.  相似文献   

18.
19.
20.
K. Ueda  J. W. Brady 《Biopolymers》1997,41(3):323-330
Molecular mechanics calculations have been performed for the disaccharide carrabiose, one of the repeat units of β-carrageenan, as a general model for the (1→4)-linkage in the carrageenans. An adiabatic conformational energy map for this unsulfated molecule was prepared by constrained energy minimization and compared to a previously reported rigid-residue energy map for the sulfated molecule and to a similar adiabatic map for neocarrabiose, the related (1→3)-linked dimer repeat unit of β-carrageenan. Molecular dynamics simulations of this molecule in vacuo and in an aqueous (TIP3P) solution were calculated, and the observed motions were found to be generally consistent with the vacuum adiabatic energy map. Unlike the case observed in previous simulations of neocarrabiose, little salvation shift in the molecular conformation was observed for carrabiose. From the dynamics, the linkage was observed to be relatively flexible, as has been inferred from experiment on sulfated carrageenan polymers. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号