首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
TheSaccharomyces cerevisiae PMR1 gene encodes a Ca2+-ATPase localized in the Golgi. We have investigated the effects ofPMR1 disruption inS. cerevisiae on the glycosylation and secretion of three heterologous glycoproteins, human α1-antitrypsin (α1-AT), human antithrombin III (ATHIII), andAspergillus niger glucose oxidase (GOD). Thepmr1 null mutant strain secreted larger amounts of ATHIII and GOD proteins per a unit cell mass than the wild type strain. Despite a lower growth rate of thepmr1 mutant, two-fold higher level of human ATHIII was detected in the culture supernatant from thepmr1 mutant compared to that of the wild-type strain. Thepmr1 mutant strain secreted α1-AT and the GOD proteins mostly as core-glycosylated forms, in contrast to the hyperglycosylated proteins secreted in the wild-type strain. Furthermore, the core-glycosylated forms secreted in thepmr1 mutant migrated slightly faster on SDS-PAGE than those secreted in themnn9 deletion mutant and the wild type strains. Analysis of the recombinant GOD with anti-α1,3-mannose antibody revealed that GOD secreted in thepmr1 mutant did not have terminal α1,3-linked mannoses unlike those secreted in themnn9 mutant and the wild type strains. The present results indicate that thepmr1 mutant, with the super-secretion phenotype, is useful as a host system to produce recombinant glycoproteins lacking high-mannose outer chains.  相似文献   

2.
The Pmr1 Golgi Ca2+/Mn2+ ATPase negatively regulates target of rapamycin complex (TORC1) signaling, the rapamycin-sensitive TOR complex in Saccharomyces cerevisiae. Since pmr1 causes resistance to rapamycin and tor1 causes hypersensitivity, we looked for genetic interactions of pmr1 with tor1. Deletion of TOR1 restored two wild-type phenotypes. Loss of TOR1 restored the ability of the pmr1 strain to grow on media containing 2 mm MnCl2 and conferred wild type as well as the wild-type sensitivity to rapamycin. Mn2+ additions to media partially suppressed rapamycin resistance of wild type and pmr1 tor1, suggesting that Tor1 and Tor2 are regulated by manganese. We parsed the roles of Ca2+ and Mn2+ transport and the compartments in rapamycin response using separation-of-function mutants available for Pmr1. A strain containing the D53A mutant (Mn2+ transporting) of Pmr1 is rapamycin sensitive, but the Q783A mutant (Ca2+ transporting) strain is rapamycin resistant. Mn2+ transport into the Golgi lumen appears to be required for rapamycin sensitivity. Overexpression of Ca2+ pump SERCA1, Ca2+/H+ antiporter Vcx1, or a Mn2+ transporting mutant of Vcx1 (Vcx1-M1) failed to restore rapamycin sensitivity, and loss of Pmr1 but not other transporters of Ca2+ or Mn2+ results in rapamycin resistance. Overexpression of Ccc1, a Fe2+ and Mn2+ transporter that has been localized to Golgi and the vacuole, does restore rapamycin sensitivity to pmr1Delta. We conclude that Mn2+ in the Golgi inhibits TORC1 signaling.  相似文献   

3.
黑曲霉葡萄糖氧化酶基因的克隆及其在酵母中的高效表达   总被引:8,自引:0,他引:8  
将黑曲霉葡萄糖氧化酶(GOD)基因重组进大肠杆菌酵母穿梭质粒Ppic9,转化甲基营养酵母Pichia pastoris GS115,构建出GOD的高产酵母工程菌株。在酵母αFactor及AOX1基因启动子和终止信号的调控下,黑曲霉GOD在甲基酵母中大量表达并分泌至胞外,经甲醇诱导3~4d,发酵液中的GOD活力可达30~40u/mL。SDS-PAGE证实GOD在培养物上清中的含量显著高于其它杂蛋白,约占胞外蛋白总量的60%~70%,经Q SepharoseTMFast Flow离子交换柱一步纯化即达电泳纯。重组酵母GOD比活达426.63u/mg蛋白,是商品黑曲霉GOD的1.6倍。动力学性质分析表明,重组酵母GOD的KmKcat分别为38.25mmol/L和3492.66s-1,与商品黑曲霉GOD相比,具有更高的催化效率。重组酵母GOD的高活力特性可有效提高葡萄糖传感器的线性检测范围。  相似文献   

4.
5.
6.
PMR1, the Ca2+/Mn2+ ATPase of the secretory pathway in Saccharomyces cerevisiae was the first member of the secretory pathway Ca2+ ATPases (SPCA) to be characterized. In the past few years, pmr1Delta yeast have received more attention due to the recognition that the human homologue of this protein, hSPCA1 is defective in chronic benign pemphigus or Hailey-Hailey disease (HHD). Recent publications have described pmr1Delta S. cerevisiae as a useful model organism for studying the molecular pathology of HHD. Some observations indicated that the high Ca2+ sensitive phenotype of PMR1 defective yeast strains may be the most relevant in this respect. Here we show that the total cellular calcium response of a pmr1Delta S. cerevisiae upon extracellular Ca2+ challenge is decreased compared to the wild type strain similarly as observed in keratinocytes. Additionally, the novel magnesium sensitivity of PMR1 defective yeast is revealed, which appears to be a result of competition for uptake between Ca2+ and Mg2+ at the plasma membrane level. Our findings indicate that extracellular Ca2+ and Mg2+ competitively influence the intracellular Ca2+ homeostasis of S. cerevisiae. These observations may further our understanding of HHD.  相似文献   

7.
Most Helicobacter pylori strains secrete a toxin (VacA) that causes structural and functional alterations in epithelial cells and is thought to play an important role in the pathogenesis of H. pylori-associated gastroduodenal diseases. The amino acid sequence, ultrastructural morphology, and cellular effects of VacA are unrelated to those of any other known bacterial protein toxin, and the VacA mechanism of action remains poorly understood. To analyze the functional role of a unique strongly hydrophobic region near the VacA amino terminus, we constructed an H. pylori strain that produced a mutant VacA protein (VacA-(Delta6-27)) in which this hydrophobic segment was deleted. VacA-(Delta6-27) was secreted by H. pylori, oligomerized properly, and formed two-dimensional lipid-bound crystals with structural features that were indistinguishable from those of wild-type VacA. However, VacA-(Delta6-27) formed ion-conductive channels in planar lipid bilayers significantly more slowly than did wild-type VacA, and the mutant channels were less anion-selective. Mixtures of wild-type VacA and VacA-(Delta6-27) formed membrane channels with properties intermediate between those formed by either isolated species. VacA-(Delta6-27) did not exhibit any detectable defects in binding or uptake by HeLa cells, but this mutant toxin failed to induce cell vacuolation. Moreover, when an equimolar mixture of purified VacA-(Delta6-27) and purified wild-type VacA were added simultaneously to HeLa cells, the mutant toxin exhibited a dominant negative effect, completely inhibiting the vacuolating activity of wild-type VacA. A dominant negative effect also was observed when HeLa cells were co-transfected with plasmids encoding wild-type and mutant toxins. We propose a model in which the dominant negative effects of VacA-(Delta6-27) result from protein-protein interactions between the mutant and wild-type VacA proteins, thereby resulting in the formation of mixed oligomers with defective functional activity.  相似文献   

8.
The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*, encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Delta strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a non-ethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Delta strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain.  相似文献   

9.
We previously isolated a mutant which showed a high tolerance to freezing that correlated with higher levels of intracellular L-proline derived from L-proline analogue-resistant mutants. The mutation responsible for the analogue resistance and L-proline accumulation was a single nuclear dominant mutation. By introducing the mutant-derived genomic library into a non-L-proline-utilizing strain, the mutant was found to carry an allele of the wild-type PRO1 gene encoding gamma-glutamyl kinase, which resulted in a single amino acid replacement; Asp (GAC) at position 154 was replaced by Asn (AAC). Interestingly, the allele of PRO1 was shown to enhance the activities of gamma-glutamyl kinase and gamma-glutamyl phosphate reductase, both of which catalyze the first two steps of L-proline synthesis from L-glutamate and which together may form a complex in vivo. When cultured in liquid minimal medium, yeast cells expressing the mutated gamma-glutamyl kinase were found to accumulate intracellular L-proline and showed a prominent increase in cell viability after freezing at -20 degrees C compared to the viability of cells harboring the wild-type PRO1 gene. These results suggest that the altered gamma-glutamyl kinase results in stabilization of the complex or has an indirect effect on gamma-glutamyl phosphate reductase activity, which leads to an increase in L-proline production in Saccharomyces cerevisiae. The approach described in this paper could be a practical method for breeding novel freeze-tolerant yeast strains.  相似文献   

10.
Galactose can be used not only as an inducer of the GAL promoters, but also as a carbon source by Saccharomyces cerevisiae, which makes recombinant fermentation processes that use GAL promoters complicated and expensive. To overcome this problem during the cultivation of the recombinant strain expressing human serum albumin (HSA) from the GAL10 promoter, a gal1 Delta mutant strain was constructed and its induction kinetics investigated. As expected, the gal1 Delta strain did not use galactose, and showed high levels of HSA expression, even at extremely low galactose concentrations (0.05-0.1 g/L). However, the gal1 Delta strain produced much more ethanol, in a complex medium containing glucose, than the GAL1 strain. To improve the physiological properties of the gal1 Delta mutant strain as a host for heterologous protein production, a null mutation of either MIG1 or HXK2 was introduced into the gal1 Delta mutant strain, generating gal1 Delta mig1 Delta and gal1 Delta hxk2 Delta double strains. The gal1 Delta hxk2 Delta strain showed a decreased rate of ethanol synthesis, with an accelerated rate of ethanol consumption, compared to the gal1 Delta strain, whereas the gal1 Delta mig1 Delta strain showed similar patterns to the gal1 Delta strain. Furthermore, the gal1 Delta hxk2 Delta strain secreted much more recombinant proteins (HSA and HSA fusion proteins) than the other strains. The results suggest that the gal1 Delta hxk2 Delta strain would be useful for the large-scale production of heterologous proteins from the GAL10 promoter in S. cerevisiae.  相似文献   

11.
We proposed a yeast transformant cell incorporating the Aspergillus niger glucose oxidase gene (GOX gene), which is capable of constitutively as well as secretory expression. The GOX gene has been cloned in this study. This conclusion is based on the following: first, the ligated DNA determined by electrophoresis, was a 1489-1882bp fragment, close to the size of glucose oxidase (GOD), which is 1818bp. Secondly, the single open reading frame encoded a protein of 605 amino acids. Thirdly, secreted GOD recombinant proteins in the culture supernatants of the GOX gene transformant migrated as a single band in SDS-PAGE with an apparent molecular mass of between 75,000 and 100,000 Da, which is glycosylated GOD by the Pichia pastoris X-33 host machinery during the secretion process. Finally, the clones were cultured and secreted a protein, which possessed the GOD activity of catalyzing beta-d-glucose oxidation. With regard to the pH characteristics, the activity was more than 80% of the maximum activity in the range between pH 5 and pH 7. As for the temperature characteristics, the activity was not less than 92% of the maximum in the temperature range between 10 and 45 degrees C. The GOX gene transformant was able to maintain the GOD enzyme activity and produce recombinant GOD continuously for at least 2 weeks.  相似文献   

12.
黑曲霉mnn9基因缺失株的构建及其功能分析   总被引:2,自引:0,他引:2  
本研究通过分析比较黑曲霉基因组与酿酒酵母基因组序列同源性,分离鉴定了黑曲霉mnn9基因。通过同源重组,在黑曲霉GICC2773(ΔAP4:pGPT-laccase)菌株中敲除了mnn9基因。该黑曲霉mnn9基因缺失使外源蛋白漆酶的分泌表达提高了14%,内源蛋白葡萄糖淀粉酶的分泌表达则降低了4%。  相似文献   

13.
The Yarrowia lipolytica PMR1 gene (YlPMR1) is a Saccharomyces cerevisiae PMR1 homolog which encodes a putative secretory pathway Ca2+-ATPase. In this study, we investigated the effects of a YlPMR1 disruption on the processing and secretion of native and foreign proteins in Y. lipolytica and found variable responses by the YlPMR1-disrupted mutant depending on the protein. The secretion of 32-kDa mature alkaline extracellular protease (AEP) was dramatically decreased, and incompletely processed precursors were observed in the YlPMR1-disrupted mutant. A 36- and a 52-kDa premature AEP were secreted, and an intracellular 52-kDa premature AEP was also detected. The acid extracellular protease activity of the YlPMR1-disrupted mutant was increased by 60% compared to that of the wild-type strain. The inhibitory effect of mutations in secretory pathway Ca2+-ATPase genes on the secretion of rice α-amylase was also observed in the Y. lipolytica and S. cerevisiae PMR1-disrupted mutants. Unlike rice α-amylase, the secretion of Trichoderma reesei endoglucanase I (EGI) was not influenced by the YlPMR1 disruption. However, the secreted EGI from the YlPMR1-disrupted mutant had different characteristics than that of the control. While wild-type cells secreted the hyperglycosylated form of EGI, hyperglycosylation was completely absent in the YlPMR1-disrupted mutant. Our results indicate that the effects of the YlPMR1 disruption as manifested by the phenotypic response depend on the characteristics of the reporter protein in the recombinant yeast strain evaluated.  相似文献   

14.
We screened for mutant strains of Saccharomyces cerevisiae that are sensitive to overexpression of specific cyclins, and identified mutations in two genes that caused growth inhibition in response to mild overexpression of Clb3. One was the ANP1 gene, which encodes a glycosyltransferase previously identified by a similar strategy using Clb2 instead of Clb3. This paper describes the second strain of S. cerevisiae that is hypersensitive to Clb3 expression. The gene mutated in this strain was identified as PMR1, which encodes a Ca2+-ATPase located in the Golgi membrane. The protein product of pmr1-1 was truncated at residue 409 and thus lacked the C-terminal ATPase domain. The pmr1-1 strain was hypersensitive to over-expression of Clb3, but not Cln2, Clb5 or Clb2. The lethality due to Clb3 expression in pmr1-1 could be suppressed by adding Ca2+ ions to the medium. The pmr1-1 strain proved to be defective in glycosylation, and the defects in glycosylation were exacerbated by high levels of Clb3. On induction of Clb3 expression in the pmr1-1 strain, the cells arrested at anaphase with an elongated daughter bud. We discuss possible interpretations of this synthetic lethal phenotype.  相似文献   

15.
黑曲霉糖化酶在酿酒酵母中的表达和分泌   总被引:9,自引:0,他引:9  
从黑曲霉糖化酶高产株T2l合成的糖化酶cDNA,经5’端和3’端改造后克隆到酵母质粒YFDl8上,转化酿酒酵母。转化子的淀粉培养基平板检测,培养滤液蛋白电泳和糖化酶活力分析都表明,含有糖化酶基因表达质粒的酵母转化子能有效地分泌有功能的糖化酶到细胞外。实验证明酵母a园子启动子和分泌信号序列能促使黑曲霉糖化酶cDNA在酵母中表达和分泌.实验还表明.黑曲霉糖化酶原的翻译后加工序列很可能亦能被酵母识别,加工生成有功能的成熟的糖化酶。以上成功为构建有实用意义的淀粉水解酵母工程菌迈出了重要的一步。  相似文献   

16.
17.
18.
Fatty acids with double bonds at odd-numbered positions such as oleic acid can enter beta-oxidation via a pathway relying solely on the auxiliary enzyme Delta(3)-Delta(2)-enoyl-CoA isomerase, termed the isomerase-dependent pathway. Two novel alternative pathways have recently been postulated to exist in mammals, and these additionally depend on Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase (di-isomerase-dependent) or on Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase and 2,4-dienoyl-CoA reductase (reductase-dependent). We report the identification of the Saccharomyces cerevisiae oleic acid-inducible DCI1 (YOR180c) gene encoding peroxisomal di-isomerase. Enzyme assays conducted on soluble extracts derived from yeast cells overproducing Dci1p using 3,5,8,11,14-eicosapentenoyl-CoA as substrate demonstrated a specific di-isomerase activity of 6 nmol x min(-1) per mg of protein. Similarly enriched extracts from eci1Delta cells lacking peroxisomal 3,2-isomerase additionally contained an intrinsic 3,2-isomerase activity that could generate 3, 5,8,11,14-eicosapentenoyl-CoA from 2,5,8,11,14-eicosapentenoyl-CoA but not metabolize trans-3-hexenoyl-CoA. Amplification of this intrinsic activity replaced Eci1p since it restored growth of the eci1Delta strain on petroselinic acid for which di-isomerase is not required whereas Eci1p is. Heterologous expression in yeast of rat di-isomerase resulted in a peroxisomal protein that was enzymatically active but did not re-establish growth of the eci1Delta mutant on oleic acid. A strain devoid of Dci1p grew on oleic acid to wild-type levels, whereas one lacking both Eci1p and Dci1p grew as poorly as the eci1Delta mutant. Hence, we reasoned that yeast di-isomerase does not additionally represent a physiological 3,2-isomerase and that Dci1p and the postulated alternative pathways in which it is entrained are dispensable for degrading oleic acid.  相似文献   

19.
We have previously reported that L-proline has cryoprotective activity in Saccharomyces cerevisiae. A freeze-tolerant mutant with L-proline accumulation was recently shown to carry an allele of the PRO1 gene encoding gamma-glutamyl kinase, which resulted in a single amino acid substitution (Asp154Asn). Interestingly, this mutation enhanced the activities of gamma-glutamyl kinase and gamma-glutamyl phosphate reductase, both of which catalyze the first two steps of L-proline synthesis and which together may form a complex in vivo. Here, we found that the Asp154Asn mutant gamma-glutamyl kinase was more thermostable than the wild-type enzyme, which suggests that this mutation elevated the apparent activities of two enzymes through a stabilization of the complex. We next examined the gene dosage effect of three L-proline biosynthetic enzymes, including Delta(1)-pyrroline-5-carboxylate reductase, which converts Delta(1)-pyrroline-5-carboxylate into L-proline, on L-proline accumulation and freeze tolerance in a non-L-proline-utilizing strain. Overexpression of the wild-type enzymes has no influence on L-proline accumulation, which suggests that the complex is very unstable in nature. However, co-overexpression of the mutant gamma-glutamyl kinase and the wild-type gamma-glutamyl phosphate reductase was effective for L-proline accumulation, probably due to a stabilization of the complex. These results indicate that both enzymes, not Delta(1)-pyrroline-5-carboxylate reductase, are rate-limiting enzymes in yeast cells. A high tolerance for freezing clearly correlated with higher levels of L-proline in yeast cells. Our findings also suggest that, in addition to its cryoprotective activity, intracellular L-proline could protect yeast cells from damage by oxidative stress. The approach described here provides a valuable method for breeding novel yeast strains that are tolerant of both freezing and oxidative stresses.  相似文献   

20.
Many Candida albicans azole-resistant (AR) clinical isolates overexpress the CDR1 and CDR2 genes encoding homologous multidrug transporters of the ATP-binding cassette family. We show here that these strains also overexpress the PDR16 gene, the orthologue of Saccharomyces cerevisiae PDR16 encoding a phosphatidylinositol transfer protein of the Sec14p family. It has been reported that S. cerevisiae pdr16Delta mutants are hypersusceptible to azoles, suggesting that C. albicans PDR16 may contribute to azole resistance in these isolates. To address this question, we deleted both alleles of PDR16 in an AR clinical strain overexpressing the three genes, using the mycophenolic acid resistance flipper strategy. Our results show that the homozygous pdr16Delta/pdr16Delta mutant is approximately twofold less resistant to azoles than the parental strain whereas reintroducing a copy of PDR16 in the mutant restored azole resistance, demonstrating that this gene contributes to the AR phenotype of the cells. In addition, overexpression of PDR16 in azole-susceptible (AS) C. albicans and S. cerevisiae strains increased azole resistance by about twofold, indicating that an increased dosage of Pdr16p can confer low levels of azole resistance in the absence of additional molecular alterations. Taken together, these results demonstrate that PDR16 plays a role in C. albicans azole resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号