首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
M E Fling  J Kopf  C A Richards 《Gene》1988,63(2):165-174
The nucleotide sequence of a DNA fragment that contained the Saccharomyces cerevisiae gene DFR coding for dihydrofolate reductase (DHFR) was determined. The DHFR was encoded by a 633-bp open reading frame, which specified an Mr24264 protein. The polypeptide was significantly related to the DHFRs of chicken liver and Escherichia coli. The yeast enzyme shared 60 amino acid (aa) residues with the avian enzyme and 51 aa residues with the bacterial enzyme. DHFR was overproduced about 40-fold in S. cerevisiae when the cloned gene was present in the vector YEp24. As isolated from the Saccharomyces library, the DFR gene was not expressed in E. coli. When the gene was present on a 1.8-kb BamHI-SalI fragment subcloned into the E. coli vector, pUC18, weak expression in E. coli was observed.  相似文献   

4.
5.
Two complementary two-dimensional gel electrophoretic techniques have recently been developed that allow initiation sites to be mapped with relative precision in eukaryotic genomes at least as complex as those of yeast and Drosophila melanogaster. We reported the first application of these mapping methods to a mammalian genome in a study on the amplified dihydrofolate reductase (DHFR) domain of the methotrexate-resistant CHO cell line CHOC 400 (J.P. Vaughn, P.A. Dijkwel, and J.L. Hamlin, Cell 61:1075-1087, 1990). Our results suggested that in this 240-kb domain, initiation of nascent DNA strands occurs at many sites within a 30- to 35-kb zone mapping immediately downstream from the DHFR gene. In the course of these studies, it was necessary to develop methods to stabilize replication intermediates against branch migration and shear. This report describes these stabilization methods in detail and presents a new enrichment protocol that extends the neutral/neutral two-dimensional gel mapping method to single-copy loci in mammalian cells. Preliminary analysis of replication intermediates purified from CHO cells by this method suggests that DNA synthesis may initiate at many sites within a broad zone in the single-copy DHFR locus as well.  相似文献   

6.
To identify cis-acting genetic elements essential for mammalian chromosomal DNA replication, a 5.8-kb fragment from the Chinese hamster dihydrofolate reductase (DHFR) locus containing the origin beta (ori-beta) initiation region was stably transfected into random ectopic chromosomal locations in a hamster cell line lacking the endogenous DHFR locus. Initiation at ectopic ori-beta in uncloned pools of transfected cells was measured using a competitive PCR-based nascent strand abundance assay and shown to mimic that at the endogenous ori-beta region in Chinese hamster ovary K1 cells. Initiation activity of three ectopic ori-beta deletion mutants was reduced, while the activity of another deletion mutant was enhanced. The results suggest that a 5.8-kb fragment of the DHFR ori-beta region is sufficient to direct initiation and that specific DNA sequences in the ori-beta region are required for efficient initiation activity.  相似文献   

7.
8.
Summary A lambda phage recombinant clone, 25 S, which contains a 15.5-kb EcoRI human genomic DNA fragment, has been characterized. Restriction mapping and Southern blot hybridization indicated a 3.0-kb HindIII fragment containing metallothionein (MT)-like sequences. Several interesting features were found upon comparison of this nucleotide sequence with that of other human MT genes: (1) sequences representing the 5 regulatory region, the 5 untranslated region, and the first exon are not contained in the 3.0-kb HindIII fragment; (2) the coding sequence of the second exon (amino acids 10–31 encoding a portion of the -domain of the MT protein) has 11 amino acid changes out of a total of 21, whereas, the third exon (amino acids 32–61, representing the complete -domain of the MT protein) has only 4 amino acid substitutions; however, all cysteine residues are conserved; (3) this MT-like gene retains intron sequences and processing signals; (4) Southern blot analysis of human genomic DNA indicated this MT-like gene is located on a 10.5-kb EcoRI genomic DNA fragment; and (5) unusual AG/CT-rich repetitive elements are located within the second intron and upstream of the second exon of this MT-like gene. This gene is not expressed in response to metal induction in two human cell lines, as shown by northern blot analyses. Based on these observations, this MT-like gene represents a unique nonprocessed pseudogene of the human MT multigene family.  相似文献   

9.
10.
11.
Isonitrile hydratase is a novel enzyme in Pseudomonas putida N19-2 that catalyzes the conversion of isonitriles to N-substituted formamides. Based on N-terminal and internal amino acid sequences, a 535-bp DNA fragment corresponding to a portion of the isonitrile hydratase gene was amplified, which was used as a probe to clone a 6.4-kb DNA fragment containing the whole gene. Sequence analysis of the 6.4-kb fragment revealed that the isonitrile hydratase gene (inhA) was 684 nucleotides long and encoded a protein with a molecular mass of 24,211 Da. Overexpression of inhA in Escherichia coli gave a large amount of soluble isonitrile hydratase exhibiting the same molecular and catalytic properties as the native enzyme from the Pseudomonas strain. The predicted amino acid sequence of inhA showed low similarity to that of an intracellular protease in Pyrococcus horikoshii (PH1704), and an active cysteine residue in the protease was conserved in the isonitrile hydratase at the corresponding position (Cys-101). A mutant enzyme containing Ala instead of Cys-101 did not exhibit isonitrile hydratase activity at all, demonstrating the essential role of this residue in the catalytic function.  相似文献   

12.
Rainbow trout (Oncorhynchus mykiss) have two types of lysozyme. Type II lysozyme differs from type I by only one amino acid, but only type II lysozyme has significant bactericidal activity. Due to this novel antibacterial property, lysozyme type II appears to be a candidate gene for enhancing disease resistance in fish as well as livestock species. Using polymerase chain reaction the lysozyme type II gene was amplified from genomic DNA isolated from rainbow trout. Two amplified fragments of 2041 and 2589 bp were observed. Sequencing revealed both amplicons were lysozyme genes having nearly identical nucleotide sequences, except the longer fragment has 548 base pairs inserted in intron 2 at nucleotide position 513 and a few point mutations within intron 2. Both versions of trout lysozyme type II gene were comprised of four exons and three introns. We also demonstrated that trout lysozyme is most likely encoded by these two different genes.  相似文献   

13.
The urease of thermophilic Bacillus sp. strain TB-90 is composed of three subunits with molecular masses of 61, 12, and 11 kDa. By using synthetic oligonucleotide probes based on N-terminal amino acid sequences of each subunit, we cloned a 3.2-kb EcoRI fragment of TB-90 genomic DNA. Moreover, we cloned two other DNA fragments by gene walking starting from this fragment. Finally, we reconstructed in vitro a 6.2-kb DNA fragment which expressed catalytically active urease in Escherichia coli by combining these three DNA fragments. Nucleotide sequencing analysis revealed that the urease gene complex consists of nine genes, which were designed ureA, ureB, ureC, ureE, ureF, ureG, ureD, ureH, and ureI in order of arrangement. The structural genes ureA, ureB, and ureC encode the 11-, 12-, and 61-kDa subunits, respectively. The deduced amino acid sequences of UreD, UreE, UreF, and UreG, the gene products of four accessory genes, are homologous to those of the corresponding Ure proteins of Klebsiella aerogenes. UreD, UreF, and UreG were essential for expression of urease activity in E. coli and are suggested to play important roles in the maturation step of the urease in a co- and/or posttranslational manner. On the other hand, UreH and UreI exhibited no significant similarity to the known accessory proteins of other bacteria. However, UreH showed 23% amino acid identity to the Alcaligenes eutrophus HoxN protein, a high-affinity nickel transporter.  相似文献   

14.
To study initiation of DNA replication in mammalian chromosomes, we have established a methotrexate-resistant Chinese hamster ovary cell line (CHOC 400) that contains approximately 1,000 copies of the early replicating dihydrofolate reductase (DHFR) domain. We have previously shown that DNA replication in the prevalent 243-kilobase (kb) amplicon type in this cell line initiates somewhere within a 28-kb region located downstream from the DHFR gene. In an attempt to localize the origin of replication with more precision, we blocked the progress of replication forks emanating from origins at the beginning of the S phase by the introduction of trioxsalen cross-links at 1- to 5-kb intervals in the parental double-stranded DNA. The small DNA fragments synthesized under these conditions (which should be centered around replication origins) were then used as hybridization probes on digests of cosmids and plasmids from the DHFR domain. These studies suggested that in cells synchronized by this regimen, DNA replication initiates at two separate sites within the previously defined 28-kb replication initiation locus, in general agreement with results described in the accompanying paper (T.-H. Leu and J. L. Hamlin, Mol. Cell. Biol. 9:523-531, 1989). One of these sites contains a repeated DNA sequence element that is found at or near many other initiation sites in the genome, since it was also highly enriched in the early replicating DNA isolated from cross-linked CHO cells that contain only two copies of the DHFR domain.  相似文献   

15.
16.
An Escherichia coli F19 recA, nitrate reductase-deficient mutant was constructed by transposon mutagenesis and shown to be resistant to metronidazole. This mutant was a most suitable host for the isolation of Clostridium acetobutylicum genes on recombinant plasmids, which activated metronidazole and rendered the E. coli F19 strain sensitive to metronidazole. Twenty-five E. coli F19 clones containing different recombinant plasmids were isolated and classified into five groups on the basis of their sensitivity to metronidazole. The clones were tested for nitrate reductase, pyruvate-ferredoxin oxidoreductase, and hydrogenase activities. DNA hybridization and restriction endonuclease mapping revealed that four of the C. acetobutylicum insert DNA fragments on recombinant plasmids were linked in an 11.1-kb chromosomal fragment. DNA sequencing and amino acid homology studies indicated that this DNA fragment contained a flavodoxin gene which encoded a protein of 160 amino acids that activated metronidazole and made the E. coli F19 mutant very sensitive to metronidazole. The flavodoxin and hydrogenase genes which are involved in electron transfer systems were linked on the 11.1-kb DNA fragment from C. acetobutylicum.  相似文献   

17.
J Hindley  G A Phear 《Gene》1984,31(1-3):129-134
The complete nucleotide sequence of a 2.9-kb DNA fragment containing the CDC2 gene-complementing activity from Schizosaccharomyces pombe has been determined. Within this region lies a 1.69-kb DNA sequence whose predicted amino acid sequence shows extensive homology to that previously deduced for the CDC28 gene product from Saccharomyces cerevisiae [L?rincz and Reed, Nature 307 (1984) 183-185]. Taken with the earlier observation that mutants in CDC2 can be rescued by the presence of the CDC28 gene [Beach, Durkacz and Nurse, Nature 300 (1982) 706-709], these results strongly suggest that the two genes code for similar functions. In contrast to the CDC28 gene, however, which contains no introns, the CDC2 coding sequence is split by four introns and from a comparison of the two sequences a consensus sequence for intron splicing in S. pombe can be established. Both CDC2 and CDC28 contain the consensus sequences for the ATP binding and phosphorylation acceptor sites of protein kinases such as bovine cAMP-dependent protein kinase (bov PK) and the src family of viral oncogene products.  相似文献   

18.
Mini-chromosome maintenance (MCM) proteins were originally identified in yeast, and homologues have been identified in several other eukaryotic organisms, including mammals. These findings suggest that the mechanisms by which eukaryotic cells initiate and regulate DNA replication have been conserved throughout evolution. However, it is clear that many mammalian origins are much more complex than those of yeast. An example is the Chinese hamster dihydrofolate reductase (DHFR) origin, which resides in the spacer between the DHFR and 2BE2121 genes. This origin consists of a broad zone of potential sites scattered throughout the 55-kb spacer, with several subregions (e.g. ori-beta, ori-beta', and ori-gamma) being preferred. We show here that antibodies to human MCMs 2-7 recognize counterparts in extracts prepared from hamster cells; furthermore, co-immunoprecipitation data demonstrate the presence of an MCM2-3-5 subcomplex as observed in other species. To determine whether MCM proteins play a role in initiation and/or elongation in Chinese hamster cells, we have examined in vivo protein-DNA interactions between the MCMs and chromatin in the DHFR locus using a chromatin immunoprecipitation (ChIP) approach. In synchronized cultures, MCM complexes associate preferentially with DNA in the intergenic initiation zone early in S-phase during the time that replication initiates. However, significant amounts of MCMs were also detected over the two genes, in agreement with recent observations that the MCM complex co-purifies with RNA polymerase II. As cells progress through S-phase, the MCMs redistribute throughout the DHFR domain, suggesting a dynamic interaction with DNA. In asynchronous cultures, in which replication forks should be found at any position in the genome, MCM proteins were distributed relatively evenly throughout the DHFR locus. Altogether, these data are consistent with studies in yeast showing that MCM subunits localize to origins during initiation and then migrate outward with the replication forks. This constitutes the first evidence that mammalian MCM complexes perform a critical role during the initiation and elongation phases of replication at the DHFR origin in hamster cells.  相似文献   

19.
20.
A stepwise selection procedure was used to obtain from Mtx-5011 Aedes albopictus cells, variants with increased resistance to methotrexate (mtx). On the basis of growth, the Mtx-5011 derivatives were 270- to 3,000-fold more resistant to mtx than wild-type mosquito cells. Properties associated with mtx resistance in these cells were consistent with amplification of the dihydrofolate reductase (DHFR) gene. The cells overproduced DHFR protein, were enriched with DHFR mRNA, and DNA from resistant cells was enriched for a band that likely contained the DHFR coding sequence. Karyotype analysis indicated that high levels of resistance were accompanied by a conversion to tetraploidy, chromosome rearrangements, and an apparent duplication of one of the mosquito chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号