首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Calbindin-D9k (CaBP-9k) is a member of intracellular calcium binding proteins, which have a high affinity to calcium. CaBP-9k is mainly expressed in the mammalian intestine, uterus and placenta, and is regulated in tissue- and species-specific manners. Previous studies have shown that CaBP-9k expression is mainly controlled by steroid hormones and their receptors. Thus, we further investigated the expression and regulation of CaBP-9k during an estrus cycle in the pig uterus by Northern blot and immunoblot analysis in this study. In addition, serum levels of estrogen (E2) and progesterone (P4) were measured using ELISA. The CaBP-9k mRNA is highly expressed in the porcine uterus during a luteal phase compared to a follicular phase, and its mRNA level in a luteal phase is increased up to 10-fold compared to a follicular phase. In parallel to the level of CaBP-9k mRNA, the CaBP-9k protein is also dominantly expressed in the porcine uterus, and strongly expressed in the epithelium and glands of the porcine uterus during a luteal phase. Although, the localization of the CaBP-9k protein is scarcely detected at follicular phase, it is dominantly expressed in the porcine uterus during a luteal phase. In addition, the serum P4 level was significantly increased during a luteal phase compared to a follicular phase, whereas no difference was observed in E2 levels between follicular and luteal phases, indicating that the ratio of P4/E2 is remarkably increased in porcine uterus during a luteal phase compared to a follicular phase. In conclusion, these results suggest that P4 may play an important role in the up-regulation of CaBP-9k gene in the porcine uterus in a luteal phase, which is unlike the condition in the rat uterus. In addition, the porcine CaBP-9k may be dominantly expressed in the epithelium and glandular structure of pig uterus during a luteal phase. It may also be differentially regulated during this cycle presumably by steroid hormones, especially up-regulated P4 levels in this tissue.  相似文献   

5.
Calbindin-D(9k) (CaBP-9k) and -D(28k) (CaBP-28k) are cytosolic proteins with EF-hand motifs that have a high affinity for calcium ions. Many types of calcium channels and intracellular calcium binding proteins, such as sodium/calcium exchangers (NCXs) and transient receptor potential cation channels (TRPVs), have been detected in the placenta. In this study, the expression of calcium channels involved in maternal-fetal calcium transport were investigated in wild-type mice versus CaBP-9k, CaBP-28k, and CaBP-9k/28k double knockout (KO) mouse models. The expression of calcium transport genes in three dissected sections of the placenta (maternal, central, and fetal) was examined on gestational day 19 (GD 19). The expression of CaBP-9k, TRPV6, TRPV5, and NCX1 mRNA was high in fetal compared to maternal placenta, while CaBP-28k was abundant in the maternal placenta. CaBP-9k was enhanced in all sections of placenta in CaBP-28k KO mice, whereas CaBP-28k was reduced in CaBP-9k KO mice. The expression of TRPV6, TRPV5, and NCX1 were induced in both maternal and fetal placentas in CaBP-9k KO mice, but were upregulated in maternal and central placentas of CaBP-28k KO mice. The levels of these proteins showed similar patterns with those of their mRNA. Placental CaBP-9k, TRPV6, TRPV5, and NCX1 proteins were abundantly expressed in the intraplacental yolk sac located in the fetal placenta. CaBP-28k did not colocalize with other calcium transport genes, although it was enriched in the placental trophoblasts of the decidual zone in the maternal placenta. These results indicate that placental TRPV6, TRPV5, and NCX1 compensate for CaBPs in CaBP-9k and/or CaBP-28k KO mice, and may take over the roles of CaBP-9k and CaBP-28k to transfer calcium ions in the placenta. Taken together, these results indicate that TRPV6, NCX1, and CaBP-9k in the fetal placenta and CaBP-28k in the maternal placenta may play key roles in controlling calcium transport across the placenta during pregnancy.  相似文献   

6.
7.
ABSTRACT: BACKGROUND: Transient receptor potential channel type 6 (TRPV6) and Calbindin-D9k (CaBP-9 k) are involved in the active calcium (Ca2+) transport mechanism in many tissues including placenta and uterus, suggesting a role in the establishment and maintenance of pregnancy. Moreover, TRPV6 and CaBP-9 k seem to support the materno-fetal Ca2+ transport that is crucial for fetal Ca2+ homeostasis, bone growth and development. However, it is unknown if these proteins are also involved in the aetiology of pathologies associated with parturition in cows, such as retained fetal membranes (RFM). The aim of the current study was to create an expression profile of uterine and placentomal TRPV6 and CaBP-9 k mRNAs and proteins during pregnancy and postpartum in cows with and without fetal membrane release. METHODS: Uteri and placentomes of 27 cows in different stages of pregnancy and placentomes of cows with and without RFM were collected. Protein and mRNA expression of TRPV6 and CaBP-9 k was investigated by real-time PCR, immunohistochemistry and Western blot. RESULTS: In the uterine endometrium, highest TRPV6 and CaBP-9 k expression was found in the last trimester of pregnancy, with a particular increase of protein in the glandular epithelium. In the placentomes, a gradual increase in TRPV6 mRNA was detectable towards parturition, while protein expression did not change significantly. Placentomal CaBP-9 k expression did not change significantly throughout pregnancy but immunohistochemistry revealed an increase in staining intensity in the maternal crypt epithelium. Immunohistochemical, stronger placental CaBP-9 k signals were seen in animals with RFM compared to animals with an undisturbed fetal membrane release, while protein levels, measured by Western blot analyses did not change significantly. CONCLUSIONS: The results of the present study demonstrate a dynamic expression of TRPV6 and CaBP-9 k during pregnancy in the bovine uterine endometrium and placentomes, suggesting a functional role for these proteins in Ca2+ metabolism during pregnancy. The temporal and spatial expression patterns indicate that TRPV6 and CaBP-9 k may be involved in materno-fetal Ca2+ transport, mainly through an interplacentomal transport, and that both proteins may participate in physiological processes that are crucial for fetal and placental development. However, neither TRPV6 nor CaBP-9 k seem to be causative in the retention of fetal membranes.  相似文献   

8.
Human endometrium resists embryo implantation except during the 'window of receptivity'. A change in endometrial gene expression is required for the development of receptivity. Uterine calbindin-D28k (CaBP-28k) is involved in the regulation of endometrial receptivity by intracellular Ca2+. Currently, this protein is known to be mainly expressed in brain, kidneys, and pancreas, but potential role(s) of CaBP-28k in the human uterus during the menstrual cycle remain to be clarified. Thus, in this study we demonstrated the expression of CaBP-28k in the human endometrium in distinct menstrual phases. During the human menstrual cycle, uterine expression levels of CaBP-28k mRNA and protein increased in the proliferative phase and fluctuated in these tissues, compared with that observed in other phases. We assessed the effects of two sex-steroid hormones, 17beta-estradiol (E2) and progesterone (P4), on the expression of CaBP-28k in Ishikawa cells. A significant increase in the expression of CaBP-28k mRNA was observed at the concentrations of E2 (10(-9 to -7) M). In addition, spatial expression of CaBP-28k protein was detected by immunohistochemistry. CaBP-28k was abundantly localized in the cytoplasm of the luminal and glandular epithelial cells during the proliferative phases (early-, mid-, late-) and early-secretory phase of menstrual cycle. Taken together, these results indicate that CaBP-28k, a uterine calcium binding protein, is abundantly expressed in the human endometrium, suggesting that uterine expression of CaBP-28k may be involved in reproductive function during the human menstrual cycle.  相似文献   

9.
10.
11.
12.
The exact role of calbindin D9k in vitamin D-mediated calcium absorption has been debated but remains unsettled. In 129/OlaHsd mice, calbindin D9k was found highest in duodenum (36-50%) and kidney (24-34%) followed by stomach, lung and uterus. Age does not affect the relative distribution of calbindin D9k but it does decline with age in duodenum of both male and female 129/Ola mice. Recently, we produced a null calbindin D9k mutant 129/OlaHsd mouse; this mouse proved to be indistinguishable from the wild-type in phenotype and in a serum calcium level regardless of age or gender. We have now examined directly whether the mutant mouse can absorb calcium from the intestine in response to the active form of vitamin D. The calbindin D9k null mutant mouse is fully able to absorb calcium from the intestine in response to 1,25-dihydroxyvitamin D3. It is, therefore, clear that calbindin D9k is not required for vitamin D-induced intestinal calcium absorption.  相似文献   

13.
The expression of calcitropic genes and proteins was localized within murine placenta during late gestation (the time frame of active calcium transfer) with an analysis of several gene-deletion mouse models by immunohistochemistry and in situ hybridization. Parathyroid hormone-related protein (PTHrP), the PTH/PTHrP receptor, calcium receptor, calbindin-D(9k), Ca(2+)-ATPase, and vitamin D receptor were all highly expressed in a localized structure of the murine placenta, the intraplacental yolk sac, compared with trophoblasts. In the PTHrP gene-deleted or Pthrp-null placenta in which placental calcium transfer is decreased, calbindin-D(9k) expression was downregulated in the intraplacental yolk sac but not in the trophoblasts. These observations indicated that the intraplacental yolk sac contains calcium transfer and calcium-sensing capability and that it is a probable route of maternal-fetal calcium exchange in the mouse.  相似文献   

14.
Environmental estrogenic compounds which bind to the estrogen receptor (ER) can block or alter endogenous functions of estrogen in reproductive and developmental stages. A microarray technology is a very valuable method for the prediction of hormone-responsive activities in various gene expressions. Thus, we investigated the altered gene expression by estrogen and endocrine disruptors (EDs) using microarray technology in the uterus of immature rats. In this study, the expression levels of only 555 genes (7.42%) among the 7636 genes spotted on microarray chips were enhanced by more than two-fold following treatment with estradiol (E2), suggesting that direct or rapid response to E2 is widespread at the mRNA levels in these genes. In addition, elevated expression levels of the genes (over 2-fold) were observed by diethylstilbestrol (DES; 9.01%), octyl-phenol (OP; 8.81%), nonyl-phenol (NP; 9.51%), bisphenol-A (BPA; 8.26%) or genistein (9.97%) in the uterus of immature rats. The expression levels of representative genes, i.e., calbindin-D9k (CaBP-9k; vitamin D-dependent calcium-binding protein), oxytocin, adipocyte complement related protein (MW 30 kDa), lactate dehydrogenase A and calcium binding protein A6 (S100a6; calcyclin), were confirmed in these tissues by real-time PCR. In addition, the mRNA levels of these genes by real-time PCR were increased at follicular phase when E2 level was elevated during estrous cycle of adult female rats. In conclusion, these results indicate distinct altered expression of responsive genes following exposure to E2 and estrogenic compounds, and implicate distinct effects of endogenous E2 and environmental endocrine disrupting chemicals in the uterus of immature rats.  相似文献   

15.
Calcium (Ca(2+)) is an important regulator of apoptotic signaling. Calbindin-D(9k) (CaBP-9k) and -D(28k) (CaBP-28k) have a high affinity for Ca(2+) ions. Uterine calbindins appear to be involved in the regulation of myometrial activity by intracellular Ca(2+). In addition, uterine calbindins are expressed in the mouse endometrium and are regulated by steroid hormones during implantation and development. The aim of the present study was to evaluate the regulation of apoptosis in the uteri of CaBP-9k, CaBP-28k, and CaBP-9k/28k knockout (KO) mice. Our findings indicated that Bax protein was enhanced in the uteri of CaBP-28k and CaBP-9k/28k KO mice compared to wild-type (WT) and CaBP-9k KO mice, but no difference was observed in Bcl-2 protein expression. The expressions of caspase 3, 6, and 7 proteins were higher in both CaBP-28k and CaBP-9k/28k KO mice than in WT and CaBP-9k KO mice. These results suggest that the absence of CaBP-28k increases apoptotic signaling. We also investigated the expression of endoplasmic reticulum (ER) stress genes by Western blot analysis in calbindin KO mice. C/EBP homologous protein and immunoglobulin heavy chain-binding protein protein levels were elevated in CaBP-28k KO mice compared to WT mice. When immature mice were treated with 17β-estradiol (E2) or progesterone (P4) for 3 days, we found that the expressions of Bax and caspase 3 protein were increased by E2 treatment in WT and CaBP-9k KO mice, and by P4 treatment in CaBP-28k KO mice. These results indicate that CaBP-28k blocks the up-regulation of apoptosis-related genes and ER stress genes, implying that CaBP-28k may decrease the expression of genes involved in apoptosis and ER stress in murine uterine tissue.  相似文献   

16.
17.
Environmental chemicals are proposed to possess hormone-like properties, such as mimicking natural hormones, inhibiting the action of hormones, and inducing abnormal gene expression. Among environmental chemicals, the alkylphenol products (APs), octylphenol (OP) and nonylphenol (NP), are derived from alkylphenol ethoxylates and have been reported to be environmentally persistent. Thus, in the present study, we examined the effect of two APs, OP and NP, on the expression of Calbindin-D(9k) (CaBP-9k) following maternal exposure during late pregnancy in maternal and fetal uteri. Treatment with a high dose (600 mg/kg body weight [BW]) of OP and NP resulted in an induction of CaBP-9k mRNA at Day 5 of lactation, as did a single treatment with diethylstilbestrol (DES) and 17beta-estradiol (E2) in maternal uteri. The expression of CaBP-9k mRNA was also induced following treatment with a high dose (600 mg/kg BW) of OP, transferred from the mother, exposed to fetuses during late pregnancy, and persisted through Day 5 of lactation. It is of interest that treatments with high doses of OP (400 and 600 mg/kg BW) reduced the expression of maternal estrogen receptor alpha (ERalpha) mRNA, as E2 did. However, all doses of NP resulted in an inhibition of neonatal ERalpha, while only the high does of OP (600 mg/kg BW) induced the reduction of neonatal ERalpha mRNA expression, as E2 did. Parallel to mRNA, the expression of CaBP-9k protein was significantly induced by treatment with a high dose of OP and NP. In conclusion, maternal exposure to APs, OP and NP, during late pregnancy increased the expressions of CaBP-9k mRNA and protein in maternal and neonatal uteri. These results suggest that the absorption and distribution of environmental estrogenic compounds in maternal and neonatal uteri are extremely rapid, and these chemicals can easily pass though the placenta during pregnancy to affect functions of neonatal reproductive tissues.  相似文献   

18.
Calbindin (CaBP), the vitamin D-dependent calcium-binding protein, is believed to play an important role in intracellular calcium transport. The aim of this study was to investigate the effect of high dietary calcium on the expression of CaBP-D9k and CaBP-D28k in the presence and absence of a functional vitamin D receptor (VDR). Treatment with the HCa-Lac diet containing 2% calcium, 1.5% phosphorus and 20% lactose reversed the hypocalcemia seen in adult VDR-null mice in 3 weeks but did not significantly change the blood ionized calcium in wild-type mice. This dietary treatment dramatically suppressed both the duodenal and the renal CaBP-D9k expression in wild-type mice at both mRNA and protein levels but had little effect on the expression of the same gene in VDR-null mice. Removal of this diet gradually restored the expression of CaBP-D9k to the untreated level in wild-type mice. Only moderate or little change in CaBP-D28k expression was seen in wild-type and VDR-null mice fed with the HCa-Lac diet. The VDR content in the duodenum or kidney of wild-type mice was not altered by the dietary treatment. These results suggest that calcium regulates CaBP-D9k expression by modulating the circulating 1,25-dihydrxyvitamin D(3) level and that VDR is thus required for the dietary calcium-induced suppression of CaBP-D9k expression. Calcium regulation of the CaBP-D9k level may represent an important mechanism by which animals maintain their calcium balance.  相似文献   

19.
The presence of vitamin-D-dependent calcium-binding protein (CaBP-9K) in tibial growth-plate cartilage was immunohistochemically demonstrated using a specific antibody to rat duodenal CaBP-9K. The protein was found to be mainly localized in the cytoplasm of maturing chondrocytes. In hypertrophic chondrocytes, CaBP-9K concentrations decreased, and the protein was found in the cytoplasmic processes. No CaBP-specific immunoreactivity was seen in the hypertrophic chondrocytes of the lower calcified hypertrophic zone; in contrast, the protein was found in the extracellular lateral edges of longitudinal septa, i.e. where matrix vesicles are preferentially localized and where cartilage mineralization is initiated. These findings suggest that vitamin D has a direct function in this tissue. It also seems likely that CaBP-9K is an indicator of chondrocyte maturation, and that it is involved in the matrix vesicle-associated process of cartilage calcification.  相似文献   

20.
Summary The presence of vitamin-D-dependent calcium-binding protein (CaBP-9K) in tibial growth-plate cartilage was immunohistochemically demonstrated using a specific antibody to rat duodenal CaBP-9K. The protein was found to be mainly localized in the cytoplasm of maturing chondrocytes. In hypertrophic chondrocytes, CaBP-9K concentrations decreased, and the protein was found in the cytoplasmic processes. No CaBP-specific immunoreactivity was seen in the hypertrophic chondrocytes of the lower calcified hypertrophic zone; in contrast, the protein was found in the extracellular lateral edges of longitudinal septa, i.e. where matrix vesicles are preferentially localized and where cartilage mineralization is initiated. These findings suggest that vitamin D has a direct function in this tissue. It also seems likely that CaBP-9K is an indicator of chondrocyte maturation, and that it is involved in the matrix vesicle-associated process of cartilage calcification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号