首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybridization can generate novel phenotypes, and in combination with divergent selection along environmental gradients, can play a driving role in phenotypic diversification. This study examined the influence of introgressive hybridization and environmental variation on the phenotypic diversity of two pupfish species (Cyprinodon atrorus and Cyprinodon bifasciatus) endemic to the Cuatro Ciénegas basin, Mexico. These species occupy opposite environmental extremes and are comprised of multiple, intraspecifically isolated populations. However, interspecific hybridization occurs to various degrees within connecting, intermediate environments. Using geometric morphometric analysis, extensive variation of body shape was observed between and within species, and phenotypic variation was strongly correlated with environmental conditions. Furthermore, some introgressed populations exhibited unique phenotypes not found in either of the parents, and overall morphospace occupation was significantly higher in introgressed populations when compared to the parentals. Overall, we find environmental variation and transgressive segregation both appear to have been important in shaping phenotypic variation in this system.  相似文献   

2.
In the early 1980s, sheepshead minnow Cyprinodon variegates was introduced into the Pecos River, Texas, U.S.A. where it hybridized with the endemic Pecos pupfish C. pecosensis . By 1985, pupfish populations throughout approximately 300 km of the river consisted exclusively of individuals of hybrid origin (intergrades). There was significant ( P <0·05) geographic variation in most morphological characters; the general pattern of variation was of a bidirectional cline centred near Pecos, Texas. At that site, morphology of intergrade populations resembled mostly that of the introduced species. Upstream and downstream from Pecos, morphology shifted progressively toward that typical of the native form. Intergrade populations were morphologically intermediate to the parental forms, showed a rapid approach to random assortment of characters, and generally exhibited greater morphological variability than occurred in either parent species. These observations and the consistent lack of bimodality in frequency distributions of a morphological hybrid index support the contention that intergrade populations comprise panmictic admixtures of C. variegates and C. pecosensis .  相似文献   

3.
We used sequence variation in the mtDNA control-region and ND2 and cyt b genes to assess the systematics and biogeography of the five species of pupfish (Cyprinodon) on Hispaniola. These include four endemics, the relatively large-bodied Cyprinodon bondi, Cyprinodon nichollsi, and Cyprinodon sp., each from a separate lake in southwestern Hispaniola, and Cyprinodon higuey from a coastal lake in eastern Hispaniola. The fifth species consists of coastal populations referable to Cyprinodon variegatus riverendi. The results indicate that Hispaniola has been invaded by at least two forms, first by a late Pliocene progenitor of Cyprinodon variegatus ovinus and the large-bodied Hispaniolan species, and, more recently, by one or more ancestral forms allied with Cyprinodon variegatus variegatus and C. v. riverendi. Levels of divergence indicate that large expanses of open sea have not acted as long-term barriers to inter-island dispersal of cyprinodontiform fishes. This study, together with the molecular systematics of other insular Caribbean fishes, indicates that most insular groups originated from late Neogene dispersal from the mainland. The patterns of mtDNA variation in Cyprinodon showed little congruence with the species/subspecies taxonomy.  相似文献   

4.
Change in developmental timing is one source of heritable variation upon which selection can act. However, the amount of variation possible in ontogenetic trajectories is often unknown. We used three different-sized conspecific breeds of domestic rabbits to investigate the extent of variation in growth trajectories of craniofacial morphology. The growth and adult morphology of several structures (one soft tissue and 15 skeletal) were quantified and analyzed. We took two views of radiographs at close time intervals throughout ontogeny, from one week of age through adult size. Measurements from the radiographs were analyzed using a Gompertz growth model. Between-breed differences in model parameters were tested using one-way ANOVA. Few significant differences existed between the white and giant rabbits, but several differences were found between the white and dwarf breeds. Similarly, comparisons of adult morphology showed that white and giant rabbits are the same shape, while dwarf rabbits have shorter and broader snouts than white rabbits. The variation in size among breeds appeared to be due to differences in the length of time spent growing at rates near the maximum growth rate. While no one parameter of this model quantifies this pattern, differences in duration of maximum growth rate can be seen in the first derivative of the growth trajectory. Small changes in the model's parameters that measure rate and timing of growth have large morphological consequences, indicating that heterochronic changes are important sources of variation.  相似文献   

5.
Dietary specialization on hard prey items, such as mollusks and crustaceans, is commonly observed in a diverse array of fish species. Many fish consume these types of prey by crushing the shell to consume the soft tissue within, but a few fishes extricate the soft tissue without breaking the shell using a method known as oral shelling. Oral shelling involves pulling a mollusc from its shell and it may be a way to subvert an otherwise insurmountable shell defence. However, the biomechanical requirements and potential adaptations for oral shelling are unknown. Here, we test the hypothesis that a novel nasal protrusion is an adaptation for oral shelling in the durophagous pupfish (Cyprinodon brontotheroides). We first demonstrate oral shelling in this species and then predict that a larger nasal protrusion would allow pupfish to consume larger snails. Durophagous pupfish are found within an endemic radiation of pupfish on San Salvador Island, Bahamas. We took advantage of closely related sympatric species and outgroups to test: (a) whether durophagous pupfish shell and consume more snails than other species, (b) if F1 and F2 durophagous hybrids consume similar amounts of snails as purebred durophagous pupfish, and (c) if nasal protrusion size in parental and hybrid populations increases the maximum size of consumed snails. We found that durophagous pupfish and their hybrids consumed the most snails, but did not find a strong association between nasal protrusion size and maximum snail size consumed within the parental or F2 hybrid population, suggesting that the size of their novel nasal protrusion does not provide a major benefit in oral shelling. Instead, we suggest that the nasal protrusion may increase feeding efficiency, act as a sensory organ, or is a sexually selected trait, and that a strong feeding preference may be most important for oral shelling.  相似文献   

6.
To understand the origins of novelty and the evolution of biological diversity, it is important to investigate the processes that generate phenotypic variation from genotypic variation. A number of path‐breaking studies have revealed the genetic basis for phenotypic differences between distantly related taxa, but how qualitative change is produced during the early stages of divergence is largely unexplored. Here, we focus on striking differences in jaw morphology exhibited by three closely related sympatric pupfish species (genus Cyprinodon) from San Salvador Island, Bahamas as a basis for investigating the genetic sources of morphological variation in recently diverged species. San Salvador Island pupfish are trophically diverse and display derived jaw morphologies distinct from any other species in the genus. We illustrate these qualitative morphological differences between species with 3D‐reconstructed CT‐images and camera lucida drawings of the skulls of wild‐caught fish. Quantitative data representing the size of individual bony skull elements in wild fish show how qualitatively novel morphologies arise as a consequence of changes to the size and shape of individual skull elements, particularly the dentary, premaxilla, and maxilla bones associated with the oral jaws. Consistent with these comparative data is that the growth rate of individual bony skull elements, measured on a developmental time series of lab‐reared fish, differs between species. Our data provide a critical foundation for future studies developing San Salvador Cyprinodon pupfishes as a model system to understand the evolution and development of novel morphologies at the species level. J. Morphol. 277:935–947, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Contemporary evolution has been shown in a few studies to be an important component of colonization ability, but seldom have researchers considered whether phenotypic plasticity facilitates directional evolution from the invasion event. In the current study, we evaluated body shape divergence of the New Mexico State-threatened White Sands pupfish (Cyprinodon tularosa) that were introduced to brackish, lacustrine habitats at two different time in the recent past (approximately 30 years and 1 year previously) from the same source population (saline river environment). Pupfish body shape is correlated with environmental salinity: fish from saline habitats are characterized by slender body shapes, whereas fish from fresher, yet brackish springs are deep-bodied. In this study, lacustrine populations consisted of an approximately 30-year old population and several 1-year old populations, all introduced from the same source. The body shape divergence of the 30-year old population was significant and greater than any of the divergences of the 1-year old populations (which were for the most part not significant). Nonetheless, all body shape changes exhibited body deepening in less saline environments. We conclude that phenotypic plasticity potentially facilitates directional evolution of body deepening for introduced pupfish populations.  相似文献   

8.
Three pupfish (Cyprinodon) morphotypes (two endemic) occur in some of the young (6000 ypb) saline lakes on the Bahamian island of San Salvador. The ‘normal’ morph, a detritivore/omnivore, is not different in its general features from Cyprinodon variegatus from other Bahamian islands. ‘Bulldog’ is a scale‐eater/piscivore that preys upon normal pupfish, and ‘bozo’ is a specialized molluskivore. Reproductive isolation among these morphs is not predicted by the evolutionary biology of congeneric species because sympatry of even morphogically and ecologically quite divergent pupfishes has usually resulted in hybridization/introgression. Survey of variation at eight microsatellite loci reveals that sympatric normal and bulldog populations are genetically distinctive by several criteria, and are therefore likely reproductively isolated. The bulldog morph in Crescent Pond is markedly divergent from those in Little Lake and Osprey Lake, a finding consistent with, although it does not prove, separate parallel origins of this morphotype. The data also suggest that the bulldogs in the latter two lakes did not evolve by intralacustrine speciation from the current sympatric normal populations. Some of the genetic data suggest that the bozo morph may also be reproductively isolated from the other two pupfishes, but only a small, pooled sample of this rare morphotype was available, and the issue is not resolved. Isolating mechanisms between bulldog and normal morphs are of special interest because of the possibility that they arose as a consequence of a predator–prey relationship. A strong correlation between reproductive isolation and predator–prey interactions could provide an important example of ecological speciation via direct selection against heterotypic interactions. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 566–582.  相似文献   

9.
Synopsis The final thermal preferendum of Tecopa pupfish Cyprinodon nevadensis amargosae collected from a thermal spring was determined in the laboratory in spatial and temporal thermal gradients. Temperatures chosen centred around 30°C — a value close to those reported for other warmwater species in the literature. Upper limits to final preferenda and thermal tolerance in all species of fish are proposed.  相似文献   

10.
Propagation of threatened or endangered species in artificial habitats is a common strategy for reducing the probability of extinction by demographic or stochastic forces. Differential selection, founder effects and genetic drift can conspire to cause artificial populations to differ irreversibly from native populations for characters important for fitness, thereby compromising conservation efforts. Here we show that artificial propagation of the endangered Devil's Hole pupfish Cyprinodon diabolis resulted in rapid divergence for phenotypic and genetic characteristics despite attempts to replicate key characteristics of the species' native habitat when designing the artificial environments. Although differences in behavior and morphology between the native pool population and the two artificial pools may reflect phenotypic plasticity, the results underscore the need to monitor and control (to the extent possible) closely the evolutionary process when propagating native species in artificial pools for multiple generations.  相似文献   

11.
Understanding the role of the developmental pathways in shaping phenotypic diversity allows appreciating in full the processes influencing and constraining morphological change. Podarcis lizards demonstrate extraordinary morphological variability that likely originated in short evolutionary time. Using geometric morphometrics and a broad suite of statistical tests, we explored the role of developmental mechanisms such as growth rate change, ontogenetic divergence/convergence/parallelism as well as morphological expression of heterochronic processes in mediating the formation of their phenotypic diversity during the post-natal ontogeny. We identified hypermorphosis - the prolongation of growth along the same trajectory - as the process responsible for both intersexual and interspecific morphological differentiation. Albeit the common allometric pattern observed in both sexes of any species constrains and canalizes their cephalic scales variation in a fixed portion of the phenotypic space, the extended growth experienced by males and some species allows them to achieve peramorphic morphologies. Conversely, the intrasexual phenotypic diversity is accounted for by non-allometric processes that drive the extensive morphological dispersion throughout their ontogenetic trajectories. This study suggests a model of how simple heterochronic perturbations can produce phenotypic variation, and thus potential for further evolutionary change, even within a strictly constrained developmental pathway.  相似文献   

12.
We present a novel phylogenetic approach to infer ancestral ontogenies of shape characters described as landmark configurations. The method is rooted in previously published theoretical developments to analyse landmark data in a phylogenetic context with parsimony as the optimality criterion, in this case using the minimization of differences in landmark position to define not only ancestral shapes but also the changes in developmental timing between ancestor–descendant shape ontogenies. Evolutionary changes along the tree represent changes in relative developmental timing between ontogenetic trajectories (possible heterochronic events) and changes in shape within each stage. The method requires the user to determine the shape of the specimens between two standard events, for instance birth and onset of sexual maturity. Once the ontogenetic trajectory is discretized into a series of consecutive stages, the method enables the user to identify changes in developmental timing associated with changes in the offset and/or onset of the shape ontogenetic trajectories. The method is implemented in a C language program called SPASOS. The analysis of two empirical examples (anurans and felids) using this novel method yielded results in agreement with previous hypotheses about shape evolution in these groups based on non-phylogenetic analyses.  相似文献   

13.
Responses of species to environmental gradients are important and frequent determinants of geographic phenotypic variation that can drive adaptive processes. Nonetheless, random genetic processes such as drift can also result in geographic variation in phenotypes, and should be evaluated before implicating selection as the process driving phenotypic change. We examined geographic variation in wing morphology of Artibeus lituratus among 18 different sites distributed across interior Atlantic Forest of Paraguay and Argentina. Moreover, we contrasted geographic variation with environmental, spatial, and genetic variation to test hypotheses related to selection and drift and their impacts on wing morphology. For A. lituratus distributed across interior Atlantic Forest, significant differences among sites characterized variation in wing morphology. Geographic variation was significantly related to climatic variables but not spatial or genetic distances. Such a pattern suggests that phenotypic variation is related to selection for particular environmental regimes, and not genetic drift. Four significant dimensions of phenotypic variation were determined. Three dimensions were related to variation among individuals in terms of wing tips, whereas one was related to overall body size. Wing tips are important for manoeuverability during flight and differences among sites likely reflect differences in forest and vegetation structure that must be managed during foraging. Although climate provides good surrogates for environmental variation, it is probably only an indirect cue of selection regimes that determine variation in wing morphology. Future studies should evaluate more direct environmental measures such as vegetation structure when attempting to interpret geographical variation in wing morphology.  相似文献   

14.
Pupfishes in the Death Valley region have rapidly differentiated in social behaviors since their isolation in a series of desert streams, springs, and marshes less than 20,000 years ago. These habitats can show dramatic fluctuations in ecological conditions, and pupfish must cope with the changes by plastic physiological and behavioral responses. Recently, we showed differences among some Death Valley populations in brain expression of arginine vasotocin (AVT). As AVT regulates both hydromineral balance and social behaviors in other taxa, these population differences may indicate adaptive changes in osmoregulatory and/or behavioral processes. To test whether AVT is relevant for behavioral shifts in these fish, here we examined how manipulations to the AVT system affect agonistic and reproductive behaviors in Amargosa River pupfish (Cyprinodon nevadensis amargosae). We administered exogenous AVT (0.1, 1, and 10 microg/g body weight) and an AVP V1 receptor antagonist (Manning compound, 2.5 microg/g body weight) intraperitoneally to males in mixed-sex groups in the laboratory. We found that AVT reduced the initiation of aggressive social interactions with other pupfish but had no effect on courtship. The effects of AVT were confirmed in males in the wild where AVT (1 microg/g body weight) reduced the aggressive initiation of social interactions and decreased aggressive responses to the behavior of other males. Combined, these results show that AVT can modulate agonistic behaviors in male pupfish and support the idea that variation in AVT activity may underlie differences in aggression among Death Valley populations.  相似文献   

15.

Background

Contemporary evolution following assisted colonization may increase the probability of persistence for refuge populations established as a bet-hedge for protected species. Such refuge populations are considered “genetic replicates” that might be used for future re-colonization in the event of a catastrophe in the native site. Although maladaptive evolutionary divergence of captive populations is well recognized, evolutionary divergence of wild refuge populations may also occur on contemporary time scales. Thus, refuge populations may lose their “value” as true genetic replicates of the native population. Here, we show contemporary evolutionary divergence in body shape in an approximately 30-year old refuge population of the protected White Sands pupfish (Cyprinodon tularosa) resulting in a body-shape mismatch with its native environment.

Methodology/Principal Findings

Geometric morphometic data were collected from C. tularosa cultures raised in experimental mesocosms. Cultures were initiated with fish from the two native populations, plus hybrids, in high or low salinity treatments representing the salinities of the two native habitats. We found that body shape was heritable and that shape variation due to phenotypic plasticity was small compared to shape variation due to population source. C. tularosa from the high salinity population retained slender body shapes and fish from the low salinity population retained deep body shapes, irrespective of mesocosm salinity. These data suggest that the observed divergence of a recently established pupfish population was not explained by plasticity. An analysis of microsatellite variation indicated that no significant genetic drift occurred in the refuge population, further supporting the adaptive nature of changes in body shape. These lines of evidence suggest that body shape divergence of the refuge population reflects a case of contemporary evolution (over a 30-year period).

Conclusions/Significance

These results suggest assisted colonization can introduce novel, and/or relaxed selection, and lead to unintended evolutionary divergence.  相似文献   

16.
In this study we investigated the developmental basis of adult phenotypes in a non-model organism, a polymorphic damselfly (Ischnura elegans) with three female colour morphs. This polymorphic species presents an ideal opportunity to study intraspecific variation in growth trajectories, morphological variation in size and shape during the course of ontogeny, and to relate these juvenile differences to the phenotypic differences of the discrete adult phenotypes; the two sexes and the three female morphs. We raised larvae of different families in individual enclosures in the laboratory, and traced morphological changes during the course of ontogeny. We used principal components analysis to examine the effects of Sex, Maternal morph, and Own morph on body size and body shape. We also investigated the larval fitness consequences of variation in size and shape by relating these factors to emergence success. Females grew faster than males and were larger as adults, and there was sexual dimorphism in body shape in both larval and adult stages. There were also significant effects of both maternal morph and own morph on growth rate and body shape in the larval stage. There were significant differences in body shape, but not body size, between the adult female morphs, indicating phenotypic integration between colour, melanin patterning, and body shape. Individuals that emerged successfully grew faster and had different body shape in the larval stage, indicating internal (non-ecological) selection on larval morphology. Overall, morphological differences between individuals at the larval stage carried over to the adult stage. Thus, selection in the larval stage can potentially result in correlated responses in adult phenotypes and vice versa.  相似文献   

17.
We report the characterization of nine new microsatellite markers for a threatened species, the White Sands pupfish (Cyprinodon tularosa), using an enriched library method. These markers show moderate levels of variation (two to five alleles per locus) in the two native populations of this species and reveal substantial divergence between these two populations as indicated by a high percentage of private alleles. These markers will prove very useful in the conservation management of this rare species.  相似文献   

18.
Many animals show unique morphological and behavioural adaptations to specific habitats. In particular, variation in cranial morphology is known to influence feeding performance, which in turn influences dietary habits and, ultimately, fitness. Dietary separation is an important means of partitioning ecological niches and avoiding inter‐ and intraspecific competition. Consequently, differences in dietary resources may help explain phenotypic divergence in closely‐related species occupying different habitats, as well as sexual dimorphism. We test this hypothesis on five phenotypic forms of a recent radiation of dwarf chameleons (Bradypodion) that vary extensively in habitat use and cranial morphology. By examining stomach contents, the dietary composition of each phenotypic form is compared to investigate potential differences in feeding strategies. Overall, chameleons in the present study exhibit considerable dietary overlap (at both inter‐ and intraspecific levels), indicating that diet is not a major driver of variation in cranial morphology within this radiation. However, the stomachs of closed‐canopy females were found to contain more prey items than male stomachs, possibly indicating that females require a greater caloric intake than their male counterparts.  相似文献   

19.
Rogowski DL  Stockwell CA 《Oecologia》2006,146(4):615-622
Parasites and environmental conditions can have direct and indirect effects on individuals. We explore the relationship between salinity and parasites in an endemic New Mexico State threatened fish, the White Sands pupfish (Cyprinodon tularosa). Spatial variation in salinity limits the distribution of the endemic springsnail (Juturnia tularosae) within Salt Creek, a small desert stream. The springsnail is the presumed intermediate host for trematodes that infect the White Sands pupfish, and trematode prevalence and intensity in pupfish are positively associated with the springsnail. Salinity and parasites both have negative impacts on pupfish, but in areas of high salinity, pupfish can effectively escape parasites. Pupfish trematodes were absent from sites lacking snails. At the upstream site, the absence of parasites and lower variance in salinity were correlated with larger pupfish that were in better condition than pupfish at either the middle or lower sites. Springsnails were present in the middle section, an area with moderate salinity, and all pupfish had trematodes (median abundance 847 trematodes/fish). Lipid levels and condition were lowest in fish from the middle site. Additionally, fewer older fish indicated an increased mortality rate. At the lower site, springsnails were absent due to high salinity; pupfish trematode abundance was much lower (six trematodes/fish), and fish condition was intermediate. An additional experiment revealed that snail activity and survival were significantly reduced at high salinities commonly present at the lower site. Although both high salinity and parasites significantly affect pupfish, parasites might be more detrimental.  相似文献   

20.
Natural plant populations consist of individuals that exhibit variation in their phenotypic traits and demographic parameters. Here we report a study on maternal effects and the effects of different light environments on intra-specific variation in survivorship and ecologically relevant phenotypic traits of Fagus crenata seedlings in a cool-temperate forest community. We collected 901 seedlings from the ground beneath five maternal trees and used microsatellite DNA markers to identify maternal siblings that germinated naturally in the forest community. Selected seedlings were planted at three sites––one under a closed canopy with low light availability, one under a canopy gap in the natural forest community with moderate light availability, and one in a common garden with high light availability. The proportion of seedlings that were correctly assigned to their putative mother ranged from 60.0 to 82.7 % per maternal family, and 655 (72.7 %) seedlings in total were used for the analysis of survivorship and phenotypic traits. Among-family differences in survivorship remained after correcting for the effects of initial stem size during the first year after planting. However, this difference in survivorship became less pronounced in subsequent years. Seedlings grown under the canopy gap and/or in the common garden exhibited better performance in terms of phenotypic traits such as stem, leaf, and root morphology. In addition, seedlings of different maternal origins grown in the same environments had different individual leaf areas. These findings suggest that phenotypic variation due to maternal effects was a significant source of intra-specific variation within the local population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号