首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaerobic treatment with cyanide of reduced ascorbate oxidase causes total depletion of copper. No significant amount of the metal is reincorporated when the apo-enzyme is incubated with cupric ions, but it is upon incubation with a stoichiometric amount (eight mol per mol of native enzyme) of a Cu(I) complex stable in air [Cu(I)(thiourea)3]Cl. The yield in reconstituted protein is higher under anaerobic conditions (85-90%) than in air (70-75%). By treatment with less than stoichiometric amounts of [Cu(I)(thiourea)3]Cl the apo-protein binds copper preferentially at the blue copper site. As a consequence the recovery of enzymatic activity is percentually lower than copper reincorporation.  相似文献   

2.
A very pure ascorbate oxidase solution was obtained by dissolving a crystalline sample of the enzyme. The ratio between 280 and 610 nm absorbancies was 22.5. It contained 8.0 +/- 0.2 Cu ions, 50% EPR detectable, per dimeric molecule (140,000 M.W.) with a molar extinction coefficient of 10,000 cm-1 at 610 nm. Two Cu ions were removed by treatment with N,N-diethyldithiocarbamate. The optical blue absorption band was unaffected, while two EPR detectable Cu ions were lost, with disappearance of the type 2 Cu signal. It is concluded that native ascorbate oxidase contains two type 1, two type 2, and four type 3 Cu ions.  相似文献   

3.
Aspects of the utilization of copper by the fungus, Dactylium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, and extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (holoenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (less than 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 micrometer, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 micrometer medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN(-)-insensitive, manganese form of this enzyme. Cells grown at 10 micrometer copper show 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.  相似文献   

4.
A comprehensive survey of the interaction of the copper proteins and oxygen is presented including a correlation of structure, function, and other properties of the known copper oxidases and of hemocyanin. The origin of their blue color and the structure of copper complexes and copper proteins are related to the oxidation state of copper ion and relevant electronic transitions probably arising from the formation of charge transfer complexes. The oxygen reactions of hemocyanin, ceruloplasmin, and cytochrome oxidase show half-saturation values far below the other Cu enzymes. The formation of hydrogen peroxide as a reaction product is associated with the presence of one Cu atom per oxidase molecule or catalytic system. Water is the corresponding product of the other Cu oxidases with four or more Cu atoms per molecule, except for monoamine oxidase. Mechanisms for the oxidase action of the two and four electron transfer Cu oxidases and tyrosinase are proposed. These reactions account for the number, the oxidation-reduction potential, and the oxidation state of Cu in the resting enzyme, the cyclical change from Cu(II) to Cu(I), the diatomic nature of O2, the sequence of the oxidation and reduction reactions, and other salient features. The catalytic reactions involved in the oxidation of ascorbic acid by plant ascorbate oxidase, ceruloplasmin, and Cu(II) are compared. Finally the substrate specificity, inhibitory control, and the detailed mechanism of the oxidase activity of ceruloplasmin are summarized.  相似文献   

5.
The last step of (+)-geodin biosynthesis is a phenol oxidative coupling, which is one of the most important reactions in biosynthesis of natural products. The enzyme named dihydrogeodin oxidase catalyzes the regio- and stereospecific phenol oxidative coupling reaction to form (+)-geodin from dihydrogeodin. The enzyme was purified from the cell-free extract of Aspergillus terreus, a (+)-geodin producer, by ammonium sulfate fractionation, acid treatment, and column chromatographies on DEAE-cellulose, Hydroxyapatite, chromatofocusing, and Toyopearl HW-55S. The purified enzyme was homogeneous as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 153,000 by gel filtration on a Toyopearl HW-55S column and 76,000 by SDS-polyacrylamide gel electrophoresis, indicating that the enzyme is a dimer. The purified enzyme showed an intense blue color and had absorption maxima at 280 and 600 nm, which suggested it to be a blue copper protein. The copper content was found to be 8 atoms per subunit by atomic absorption analysis and no significant amount of other metals was detected by ICP emission spectrometry. The electron paramagnetic resonance spectrum showed the presence of type 1 and type 2 copper atoms in the enzyme molecule. Sodium azide and ethylxanthate inhibited the enzyme activity, but potassium cyanide and diethyldithiocarbamate, both known as potent copper enzyme inhibitors, were not inhibitory.  相似文献   

6.
Aspects of the utilization of copper by the fungus, Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, an extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (haloenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (< 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 μM, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 μM medium copper, holoenzyme secretion is maintained throughout cell growth.The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN?-insensitive, manganese form of this enzyme. Cells grown at 10 μM copper shown 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.  相似文献   

7.
1. Ascorbate oxidase has been isolated from the green squash Cucurbita pepo medullosa by a new purification method. Furthermore a low-molecular-weight copper protein containing one type-1 copper/20000 Mr could be separated during the purification of the oxidase. The six-step procedure developed improved the yield of ascorbate oxidase by a factor of 2.5. The method is well reproducible and a constant value of 8 Cu (7.95 +/- 0.1/140000 Mr) has been established. By ultracentrifugal and electrophoretic criteria the enzyme preparations have been found to be homogeneous. They exhibited a specific activity of 3930 +/- 50 units/mg protein or 1088 +/- 15 units/microgram copper. 2. The pure enzyme is characterized by the following optical purity indices: A280/A610 = 25 +/- 0.5, A330/A610 = 0.65 +/- 0.05 and A610/A500 = 7.0 +/- 0.25. The molar absorption coeffient of the characteristic absorption maximum at 610 nm (oxidized minus reduced) amounts of 9700 M-1 cm-1 . 3. Computer simulations of the electron paramagnetic resonance (EPR) spectra of the oxidized enzyme reveal the following parameters: for the type-1 (blue) copper gz = 2.227, gy = 2.058, gx = 2.036; Az = 5.0 mT, Ay = Ax = 0.5 mT, for the type-2 (non-blue) copper g parallel to = 2.242, g perpendicular = 2.053; A parallel to = 19.0 mT, A perpendicular 0.5 mT. Out of the eight copper atoms present in the oxidase four are detectable by EPR. Of these, three belong to the type-1 class, and one to the type-2 class, as demonstrated by computer simulations of the EPR spectra. 4. To achieve full reduction of the enzyme, as measured by bleaching of the blue chromophore, four equivalents of L-ascorbate or reductase must be added in the absence of molecular oxygen. Upon reduction of the enzyme the fluorescence at 330 nm (lambda max ex = 295 nm) is enhanced by a factor of 1.5 to 1.75. The reduced enzyme is readily reoxidized by dioxygen, ferricyanide or hydrogen peroxide. It binds two molecules of hydrogen peroxide in the oxidized state (1/type-3 Cu pair), which can be monitored by a characteristic increase of the absorbance around 310 nm (delta epsilon = 1000 +/- 50 M-1 cm-1). Corresponding changes in EPR and fluorescence spectra have not been detected.  相似文献   

8.
《Inorganica chimica acta》1988,151(4):265-268
Titration of apo-caeruloplasmin employing substoichiometric concentrations of [Cu(I)-(thiourea)3]Cl was performed to elucidate possible sequential incorporation of copper into the different specific binding sites. The successful reconstitution was monitored by A610 absorption, EPR spectroscopy and oxidase activity. Maximum activity and final absorption at 610 nm were reached after 20 min. When both A610, indicative for type 1 copper, and oxidase activity were expressed per g-atom of copper, a sequential insertion was found. Owing to the specific data at the beginning, some type 3 copper appeared to be preferentially incorporated. After 3–4 g-atoms (including most of type 1 and type 2 copper), both absorption and oxidase activity surpassed transient maxima. Then type 3 and 4 copper were further bound to reach the known stoichiometry of six copper atoms per mole of protein.  相似文献   

9.
Studies on the active site of pig plasma amine oxidase.   总被引:2,自引:0,他引:2       下载免费PDF全文
Amine oxidase from pig plasma (PPAO) has two bound Cu2+ ions and at least one pyrroloquinoline quinone (PQQ) moiety as cofactors. It is shown that recovery of activity by copper-depleted PPAO is linear with respect to added Cu2+ ions. Recovery of e.s.r. and optical spectral characteristics of active-site copper parallel the recovery of catalytic activity. These results are consistent with both Cu2+ ions contributing to catalysis. Further e.s.r. studies indicate that the two copper sites in PPAO, unlike those in amine oxidases from other sources, are chemically distinct. These comparative studies establish that non-identity of the Cu2+ ions in PPAO is not a requirement for amine oxidase activity. It is shown through the use of a new assay procedure that there are two molecules of PQQ bound per molecule of protein in PPAO; only the more reactive of these PQQ moieties is required for activity.  相似文献   

10.
Roles of the two copper ions in bovine serum amine oxidase   总被引:3,自引:0,他引:3  
With a view to obtaining information on the roles of the two copper ions in bovine serum amine oxidase (BSAO), spectroscopic and magnetic studies on several BSAO derivatives have been carried out. Cu-depleted BSAO (Cu-depBSAO) exhibits no enzyme activity and only a low absorption intensity at ca. 475 nm, which is the characteristic absorption maximum of the chromophore in BSAO. The binding of 1 mol of Cu to 1 mol of Cu-depBSAO slightly but definitely increases the enzyme activity and the absorptivity, although they are much lower than those of native BSAO. The incorporation of 2 mol of Cu into Cu-depBSAO gives rise to a similar high activity and absorptivity as those of the native enzyme. Electron paramagnetic resonance (EPR) spectra of the BSAO derivatives reveal that two copper ions in the enzyme molecule are environmentally identical. Titrations of BSAO, Cu-depBSAO, and Cu-half-depleted BSAO (Cu-half-depBSAO), containing 1 mol of copper per mole of protein, with phenylhydrazine (an inhibitor of BSAO) indicate that only 1 mol of phenylhydrazine reacts with 1 mol of the enzyme. In other words the enzyme possesses only one chromophore or one active site, though the molecule is composed of two electrophoretically identical subunits. The binding constants between phenylhydrazine and BSAO, Cu-depBSAO, or Cu-half-depBSAO were estimated to be 5 X 10(6), 5 X 10(4), and 1 X 10(5) M-1, respectively. The binding of phenylhydrazine to the chromophore is assisted by the presence of two copper ions by a factor of 100.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Nitrite reductase of Alcaligenes xylosoxidans contains three blue type 1 copper centers with a function in electron transfer and three catalytic type 2 copper centers. The mutation H139A, in which the solvent-exposed histidine ligand of the type 1 copper ion was changed to alanine, resulted in the formation of a colorless protein containing 4.4 Cu atoms per trimer. The enzyme was inactive with reduced azurin as the electron donor, and in contrast to the wild-type enzyme, no EPR features assignable to type 1 copper centers were observed. Instead, the EPR spectrum of the H139A enzyme, with parameters of g(1) = 2.347 and A(1) = 10 mT, was typical of type 2 copper centers. On the addition of nitrite, the EPR features developed spectral features with increased rhombicity, with g(1) = 2.29 and A(1) = 11 mT, arising from the type 2 catalytic site. As assessed by visible spectroscopy, ferricyanide (E degree = +430 mV) was unable to oxidize the H139A enzyme, and this required a 30-fold excess of K(2)IrCl(6) (E degree = +867 mV). Oxidation resulted in the EPR spectrum developing additional axial features with g(1) = 2.20 and A(1) = 9.5 mT, typical of type 1 copper centers. The oxidized enzyme after separation from the excess of K(2)IrCl(6) by gel filtration was a blue-green color with absorbance maxima at 618 and 420 nm. The instability of the protein prevented the precise determination of the midpoint potential, but these properties indicate that it is in the range 700-800 mV, an increase of at least approximately 470 mV compared with the native enzyme. This high potential, which is consistent with a trigonal planar geometry of the Cu ion, effectively prevents azurin-mediated electron transfer from the type 1 center to the catalytic type 2 Cu site. However, with dithionite as reductant, 20% of the activity of the wild-type enzyme was observed, indicating that the direct reduction of the catalytic site by dithionite can occur. When CuSO(4) was added to the crude extract before isolation of the enzyme, the Cu content of the purified H139A enzyme increased to 5.7 Cu atoms per trimer. The enzyme remained colorless, and the activity with dithionite as a donor was not significantly increased. The additional copper in such preparations was associated with an axial type 2 Cu EPR signal with g(1) = 2.226 and A(1) = 18 mT, and which were not changed by the addition of nitrite, consistent with the activity data.  相似文献   

12.
Structural and catalytic properties of copper in lysyl oxidase   总被引:3,自引:0,他引:3  
The spectral and catalytic properties of the copper cofactor in highly purified bovine aortic lysyl oxidase have been examined. As isolated, various preparations of purified lysyl oxidase are associated with 5-9 loosely bound copper atoms per molecule of enzyme which are removed by dialysis against EDTA. The enzyme also contains 0.99 +/- 0.10 g atom of tightly bound copper per 32-kDa monomer which is not removed by this treatment. The copper-free apoenzyme, prepared by dialysis of lysyl oxidase against alpha,alpha'-dipyridyl in 6 M urea, catalyzed neither the oxidative turnover of amine substrates nor the anaerobic production of aldehyde at levels stoichiometric with enzyme active site content, thus contrasting with the ping pong metalloenzyme. Moreover, the spectrum of the apoenzyme was not measurably perturbed upon anaerobic incubation with n-butylamine, while difference absorption bands were generated at 250 and 308 nm in the spectrum of the metalloenzyme incubated under the same conditions. A difference absorption band also developed at 300-310 nm upon anaerobic incubation of pyrroloquinoline quinone, the putative carbonyl cofactor of lysyl oxidase, with n-butylamine. Full restoration of catalytic activity occurred upon the reconstitution of the apoenzyme with 1 g atom of copper/32-kDa monomer, whereas identical treatment of the apoenzyme with divalent salts of zinc, cobalt, iron, mercury, magnesium, or cadmium failed to restore catalytic activity. The EPR spectrum of copper in lysyl oxidase is typical of the tetragonally distorted, octahedrally coordinated Cu(II) sites observed in other amine oxidases and indicates coordination by at least three nitrogen ligands. The single copper atom in the lysyl oxidase monomer is thus essential at least for the catalytic and possibly for the structural integrity of this protein.  相似文献   

13.
Nitrous oxide reductase (N2OR), Pseudomonas stutzeri, catalyses the 2 electron reduction of nitrous oxide to di-nitrogen. The enzyme has 2 identical subunits (Mr approximately 70,000) of known amino acid sequence and contains approximately 4 Cu ions per subunit. By measurement of the optical absorption, electron paramagnetic resonance (EPR) and low-temperature magnetic circular dichroism (MCD) spectra of the oxidised state, a semi-reduced form and the fully reduced state of the enzyme it is shown that the enzyme contains 2 distinct copper centres of which one is assigned to an electron-transfer function, centre A, and the other to a catalytic site, centre Z. The latter is a binuclear copper centre with at least 1 cysteine ligand and cycles between oxidation levels Cu(II)/Cu(II) and Cu(II)/Cu(I) in the absence of substrate or inhibitors. The state Cu(II)/Cu(I) is enzymatically inactive. The MCD spectra provide evidence for a second form of centre Z, which may be enzymatically active, in the oxidised state of the enzyme. Centre A is structurally similar to that of CuA in bovine and bacterial cytochrome c oxidase and also contains copper ligated by cysteine. This centre may also be a binuclear copper complex.  相似文献   

14.
1. The reaction of nitric oxide with oxidized and reduced ascorbate oxidase (L-ascorbate: oxygen oxidoreductase, EC 1.10.3.3) has been investigated by optical absorption measurements and electron paramagnetic resonance, and the results are compared with those of ceruloplasmin. 2. Upon anaerobic incubation of oxidized ascorbate oxidase with nitric oxide a decrease of the absorbance at 610 nm is found, which is due to an electron transfer from nitric oxide to Type-1 copper. 3. In the presence of nitric oxide the EPR absorbance of ascorbate oxidase decreases and shows predominatly a signal with characteristics of Type-2 copper (g parallel = 2.248; A parallel = 188 G), whereas the type-1 copper signal has vanished. 4. Comparison of the intensities of the EPR signals before and after NO-treatment points to the presence of one Type-2 and three Type-1 copper atoms per molecule of ascorbate oxidase. 5. It is shown that the changes in the optical and the EPR spectrum of ascorbate oxidase induced by nitric oxide are reversible. No difference in enzymic activity is found between the native enzyme and the NO-treated enzyme after removal of nitric oxide.  相似文献   

15.
The aa3-type cytochrome c oxidases purified from Nitrobacter agilis, Thiobacillus novellus, Nitrosomonas europaea, and Pseudomonas AM 1 were compared. They have haem a and copper atom as the prosthertic groups and show alpha and gamma absorption peaks at around 600 and 440 nm, respectively. Each oxidase molecule is composed of two kinds of subunits. The N. agilis oxidase has 2 moles of haem a and 2 atoms of copper in the minimal structural unit composed of one molecule each of the two kinds of subunits, while the T. novellus enzyme seems to contain one molecule of the haem and one atom of the metal in the unit. The N. europaea oxidase shows very low affinity for carbon monoxide. Each oxidase reacts rapidly with some eukaryotic cytochromes c as well as with its native cytochrome c. The cytochrome c oxidase activity of the N. agilis oxidase is 50% inhibited by 1 microM KCN, while 50% inhibition of the activity requires 100 microM KCN in the case of the N. europaea enzyme.  相似文献   

16.
Cytochrome aa3 from Nitrosomonas europaea   总被引:3,自引:0,他引:3  
Cytochrome c oxidase has been purified from the ammonia oxidizing chemoautotroph Nitrosomonas europaea by ion-exchange chromatography in the presence of Triton X-100. The enzyme has absorption maxima at 420 and 592 nm in the resting state and at 444 and 598 nm in the dithionite-reduced form; optical extinction coefficient (598 nm minus 640 nm) = 21.9 cm-1 nM-1. The enzyme has approximately 11 nmol of heme a and approximately 11 nmol of copper per mg of protein (Lowry procedure). There appear to be three subunits (approximate molecular weights 50,800, 38,400, and 35,500), two heme groups (a and a3), and two copper atoms per minimal unit. The EPR spectra of the resting and partially reduced enzyme are remarkably similar to the corresponding spectra of the mitochondrial cytochrome aa3-type oxidase. Although the enzyme had been previously classified as "cytochrome a1" on the basis of its ferrous alpha absorption maximum (598 nm), its metal content and EPR spectral properties clearly show that it is better classified as a cytochrome aa3. Neither the data reported here nor a review of the literature supports the existence of cytochrome a1 as an entity discrete from cytochrome aa3. The purified enzyme is reduced rapidly by ferrous horse heart cytochrome c or cytochrome c-554 from N. europaea, but not with cytochrome c-552 from N. europaea. The identity of the natural electron donor is as yet unestablished. With horse heart cytochrome c as electron donor, the purified enzyme could account for a significant portion of the terminal oxidase activity in vivo.  相似文献   

17.
The dietary antagonism between copper and molybdate salts prompted a study of the inhibition of copper enzymes by thiomolybdate (TM). TM strongly inhibited the oxidase activity of five copper oxidase with I50% values in the 1-5 microM range. The mechanism of the TM effect on the copper oxidase, ceruloplasmin (Cp) (E.C. 1.16.3.1), was studied in detail. In Vmax vs. E plots, TM gave parallel data suggesting irreversibility but a large number of TM molecules per Cp were required. The inhibition of Cp by TM could not be reversed by dialysis. Isolation of TM-inhibited Cp on Sephadex G-10 did not yield any active Cp molecules. Cu(II) did not restore any inhibited oxidase activity. Gel electrophoresis supported the covalent binding of Cp by TM without any extensive change in protein structure. EPR results confirmed that Cu(II) is reduced to Cu(I) after reaction with TM. However, the Mo(VI) in MoS4(2-) did not change in oxidation number. Analysis of the TM-Cp compound accounted for all six Cu atoms as found in native Cp. The data suggest the covalent binding of sulfide to Cp copper. TM also inhibited the activity of ascorbate oxidase, cytochrome oxidase, superoxide dismutase, and tyrosinase. However, no inhibition of carbonic anhydrase, a zinc enzyme, was observed at 1 mM TM.  相似文献   

18.
Bilirubin oxidase (EC:1.3.3.5) purified from a culture medium of Myrothecium verrucaria MT-1 (authentic enzyme) catalyzes the oxidation of bilirubin to biliverdin in vitro and recombinant enzyme (wild type) was obtained by using an overexpression system of the bilirubin oxidase gene with Aspergillus oryzae harboring an expression vector. The absorption and ESR spectra showed that both bilirubin oxidases are multicopper oxidases containing type 1, type 2, and type 3 coppers similar to laccase, ascorbate oxidase, and ceruloplasmin. Site-directed mutagenesis has been performed for the possible ligands of each type of copper. In some mutants, Cys457 --> Val, Ala, His94 --> Val, and His134.136 --> Val, type 1 and type 2 copper centers were perturbed completely and the enzyme activity was completely lost. Differing from the holoenzyme, these mutants showed type 3 copper signals. However, the optical and magnetic properties characteristic of type 1 copper were retained even by mutating one of the type 1 copper ligands, i.e., a mutant, Met467 --> Gly, showed a weak but apparent enzyme activity. A double mutant His456.458 --> Val had only type 1 Cu, showing a blue band at 600 nm (epsilon = 1.6 x 10(3)) and an ESR signal with very narrow hyperfine splitting (A parallel = 7.2 x 10(-)3 cm-1). Since the type 2 and type 3 coppers are not present, the mutant did not show enzyme activity. These results strongly imply that the peculiar sequence in bilirubin oxidase, His456-Cys457-His458, forms an intramolecular electron-transfer pathway between the type 1 copper site and the trinuclear center composed of the type 2 and type 3 copper sites.  相似文献   

19.
Resonance Raman spectroscopy at ambient temperature and 77 K has been used to probe the structures of the copper sites in Achromobacter cycloclastes nitrite reductase. This enzyme contains three copper ions per protein molecule and has two principal electronic absorption bands with lambda max values of 458 and 585 nm. Comparisons between the resonance Raman spectra of nitrite reductase and blue copper proteins establish that both the 458 and 585 nm bands are associated with Cu(II)-S(Cys) chromophores. A histidine ligand probably is also present. Different sets of vibrational frequencies are observed with 457.9 nm (ambient) or 476.1 nm (77 K) excitation as compared with 590 nm (ambient) or 593 nm (77 K) excitation. Excitation profiles indicate that the 458 and 585 nm absorption bands are associated with separate [Cu(II)-S(Cys)N(His)] sites or with inequivalent and uncoupled cysteine ligands in the same site. The former possibility is considered to be more likely.  相似文献   

20.
The reaction of human ceruloplasmin and anion treated ceruloplasmin with diethyldithiocarbamate was studied at pH 5.5. The analysis of optical and EPR spectra at 9 GHz showed that ceruloplasmin contains five paramagnetic copper ions, two of which, X and Y, not involved in enzymatic activity, are chelated by diethyldithiocarbamate; the complex thus formed is easily removed by high-speed centrifugation. However, the enzyme depleted of these two X and Y copper ions is able to compete with the Cu(II)-diethyldithiocarbamate complex, as time elapses, recovering both Cu(II) atoms. In addition diethyldithiocarbamate acts as a reducing agent for the two type-I copper atoms when added in large excess to the enzyme or the anion treated enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号