首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increases in growth at elevated [CO2] may be constrained by a plant's ability to assimilate the nutrients needed for new tissue in sufficient quantity to match the increase in carbon fixation and/or the ability to transport those nutrients and carbon in sufficient quantity to growing organs and tissues. Analysis of metabolites provides an indication of shifts in carbon and nitrogen partitioning due to rising atmospheric [CO2] and can help identify where bottlenecks in carbon utilization occur. In this study, the carbon and nitrogen balance was investigated in growing and fully expanded soybean leaves exposed to elevated [CO2] in a free air CO2 enrichment experiment. Diurnal photosynthesis and diurnal profiles of carbon and nitrogen metabolites were measured during two different crop growth stages. Diurnal carbon gain was increased by c. 20% in elevated [CO2] in fully expanded leaves, which led to significant increases in leaf hexose, sucrose, and starch contents. However, there was no detectable difference in nitrogen-rich amino acids and ureides in mature leaves. By contrast to mature leaves, developing leaves had high concentrations of ureides and amino acids relative to low concentrations of carbohydrates. Developing leaves at elevated [CO2] had smaller pools of ureides compared with developing leaves at ambient [CO2], which suggests N assimilation in young leaves was improved by elevated [CO2]. This work shows that elevated [CO2] alters the balance of carbon and nitrogen pools in both mature and growing soybean leaves, which could have down-stream impacts on growth and productivity.  相似文献   

2.
Growth of plants in terrestrial ecosystems is often limited by the availability of nitrogen (N) or phosphorous (P) Liebig's law of the minimum states that the nutrient in least supply relative to the plant's requirement will limit the plant's growth. An alternative to the law of the minimum is the multiple limitation hypothesis (MLH) which states that plants adjust their growth patterns such that they are limited by several resources simultaneously. We use a simple model of plant growth and nutrient uptake to explore the consequences for the plant's relative growth rate of letting plants invest differentially in N and P uptake. We find a smooth transition between limiting elements, in contrast to the strict transition in Liebig's law of the minimum. At N : P supply ratios where the two elements simultaneously limit growth, an increase in either of the nutrients will increase the growth rate because more resources can be allocated towards the limiting element, as suggested by the multiple limitation hypothesis. However, the further the supply ratio deviates from these supply rates, the more the plants will follow the law of the minimum. Liebig's law of the minimum will in many cases be a useful first-order approximation.  相似文献   

3.
Nitrogen regulation of root branching   总被引:18,自引:0,他引:18  
BACKGROUND: Many plant species can modify their root architecture to enable them to forage for heterogeneously distributed nutrients in the soil. The foraging response normally involves increased proliferation of lateral roots within nutrient-rich soil patches, but much remains to be understood about the signalling mechanisms that enable roots to sense variations in the external concentrations of different mineral nutrients and to modify their patterns of growth and development accordingly. SCOPE: In this review we consider different aspects of the way in which the nitrogen supply can modify root branching, focusing on Arabidopsis thaliana. Our current understanding of the mechanism of nitrate stimulation of lateral root growth and the role of the ANR1 gene are summarized. In addition, evidence supporting the possible role of auxin in regulating the systemic inhibition of early lateral root development by high rates of nitrate supply is presented. Finally, we examine recent evidence that an amino acid, L-glutamate, can act as an external signal to elicit complex changes in root growth and development. CONCLUSIONS: It is clear that plants have evolved sophisticated pathways for sensing and responding to changes in different components of the external nitrogen supply as well as their own internal nitrogen status. We speculate on the possibility that the effects elicited by external L-glutamate represent a novel form of foraging response that could potentially enhance a plant's ability to compete with its neighbours and micro-organisms for localized sources of organic nitrogen.  相似文献   

4.
The economy of carbon in nodulated white lupin (Lupinus albusL.) was studied in terms of consumption of net photosynthatein nitrogen fixation, in maintenance of respiration, and inthe production of dry matter and protein. Net photosynthesisrose to a maximum in early fruiting and then fell abruptly dueto shedding of leaves. Nodulated roots acquired translocateequivalent to 51% of the plant's net photosynthate, 78% of thecarbon of this translocate being respired, 10% entering drymatter, and 12% returning to the shoot attached to productsof nitrogen fixation. Nodules utilized 4?0–6?5 g C infixing 1 g nitrogen. Photosynthate was utilized most effectivelyfor nitrogen fixation in late vegetative growth. Fruits sequestered16% of the plant's net photosynthate, shoot night respiration17%, and dry matter formation in shoot vegetative parts 22%.Averaged over growth, 9?9 g net photosynthate was required toproduce 1 g seed dry matter and 31 g net photosynthate to produce1 g seed protein. Budgets for utilization of the carbon of netphotosynthate were constructed for 10 d intervals of the plant'sgrowth cycle. Feeding of shoots with 14CO2 resulted in radiocarbonbecoming partitioned approximately as predicted by these budgets.The dependence of root respiration on recent photosynthate wasassessed by following the time course of release of 14CO2 tothe rooting medium of the 14CO-labelled plants.  相似文献   

5.
Restricted availability of nitrogen compounds in soils is often a major limiting factor for plant growth and productivity. Legumes circumvent this problem by establishing a symbiosis with soil-borne bacteria, called rhizobia that fix nitrogen for the plant. Nitrogen fixation and nutrient exchange take place in specialized root organs, the nodules, which are formed by a coordinated and controlled process that combines bacterial infection and organ formation. Because nodule formation and nitrogen fixation are energy-consuming processes, legumes develop the minimal number of nodules required to ensure optimal growth. To this end, several mechanisms have evolved that adapt nodule formation and nitrogen fixation to the plant's needs and environmental conditions, such as nitrate availability in the soil. In this review, we give an updated view on the mechanisms that control nodulation.  相似文献   

6.
Plants possess several defense mechanisms against pathogenic attack. One of these defenses is the use of protease inhibitor proteins, which interfere in the development and growth of pathogens. Sugarcane productivity can be impacted by the plant's susceptibility to fungal diseases that result in production losses. A relevant line of investigation, therefore, is into the plant's natural defense mechanisms for the control of phytopathogens using cystatins-proteins that specifically inhibit cysteine proteases. In this paper, we discuss the expression, in Escherichia coli, of a sugarcane cystatin, its purification, antifungal activity, and circular dichroism to monitor correct folding. These studies revealed a secondary structure similar to that of the oryzacystatin I of rice. Moreover, the purified protein proved capable of inhibiting the growth of the filamentous fungus Trichoderma reesei, suggesting that it can also be employed to inhibit the growth of pathogenic sugarcane fungi.  相似文献   

7.
Buysse  Jan  Smolders  Erik  Merckx  Roel 《Plant and Soil》1993,155(1):191-194
Theoretical plant growth models postulate an important role for growth substrates such as sugars and amino acids. To test this experimentally, spinach plants were grown under controlled conditions and with nitrogen added daily, following different exponential addition schemes. Plants were harvested during exponential growth. Free amino acid levels or free sugar levels were only weakly correlated with growth and biomass partitioning. Factor analysis showed however that the product of free sugar concentration and amino acid concentration yielded a parameter adequately reflecting the plant's nutritional state.It is concluded that growth and biomass partitioning under limiting N conditions cannot be modelled solely based on N substrate levels.  相似文献   

8.
Genetic interactions between ABA, ethylene and sugar signaling pathways   总被引:13,自引:0,他引:13  
The identification of genes through mutant screens is beginning to reveal the structure of a number of signaling pathways in plants. In the past year, genes that determine the plant's response to the hormones ethylene and abscisic acid have also been shown to be involved in sugar sensing in early seedlings. These results suggest that hormone signaling and carbon homeostasis are tightly coupled but that the architecture of these interactions is complex. Part of this complexity may be because some genetic screens on exogenous compounds produce signaling linkages that are not necessarily pertinent under normal growth conditions. Because many of the genes identified in these screens are cloned, the relevance of these interactions can now be unraveled at the molecular level.  相似文献   

9.
原始森林土壤NH4+/NO3-生境特征与某些针叶树种的适应性   总被引:8,自引:0,他引:8  
崔晓阳  宋金凤 《生态学报》2005,25(11):3082-3092
在陆地生态系统中,生存地段的土壤养分环境构成了植物的“营养生境”。植物在长期进化过程中往往产生对原生营养生境的生态适应,其中对NH4 和NO3-两种无机氮源的吸收、利用特性便可能是这种适应的一个重要方面。由于硝化抑制(限制)或微生物对NO3-的强烈吸收、固持作用,酸性、弱酸性的原始森林土壤中NH4 含量大都远高于NO3-,从而形成了以NH4 占绝对优势的“氮营养生境”。很多针叶树种(尤其是演替晚期阶段占优势者)对其长期所处的NH4 优势生境产生了充分适应,以致对非还原态氮(NO3-)的吸收、利用能力严重下降。这些针叶树往往表现出典型的“喜铵性”,而在NO3-优势环境中则会引起氮代谢失调和生长下降。从氮同化酶、高耐铵性、根对NH4 和NO3-的相对吸收能力及NO3-吸收的反馈控制、养分关系与养分平衡、根部碳流失、光合作用及耐荫性等多方面阐述了喜铵针叶树适应的生理生化机制。这种生态适应可能是顶极森林群落维持长期稳定的重要机制之一,而采伐干扰后NO3-明显增加的立地条件则可能会导致喜铵的“原优势针叶树种”更新困难。在温带退化森林生态系统恢复与重建过程中,顶极针叶树种对NH4 营养生境的固有适应性是必须充分考虑的问题。  相似文献   

10.
Studying the specific effects of water and nutrients on plant development is difficult because changes in a single component can often trigger multiple response pathways. Such confounding issues are prevalent in commonly used laboratory assays. For example, increasing the nitrate concentration in growth media alters both nitrate availability and osmotic potential. In addition, it was recently shown that a change in the osmotic potential of media alters the plant's ability to take up other nutrients such as sucrose. It can also be difficult to identify the initial target tissue of a particular environmental cue because there are correlated changes in development of many organs. These growth changes may be coordinately regulated, or changes in development of one organ may trigger changes in development of another organ as a secondary effect. All these complexities make analyses of plant responses to environmental factors difficult to interpret. Here, we review the literature on the effects of nitrate, sucrose and water availability on root system growth and discuss the mechanisms underlying these effects. We then present experiments that examine the impact of nitrate, sucrose and water on root and shoot system growth in culture using an approach that holds all variables constant except the one under analysis. We found that while all three factors also alter root system size, changes in sucrose and osmotic potential also altered shoot system size. In contrast, we found that, when osmotic effects are controlled, nitrate specifically inhibits root system growth while having no effect on shoot system growth. This effectively decreases the root : shoot ratio. Alterations in root : shoot ratio have been widely observed in response to nitrogen starvation, where root growth is selectively increased, but the present results suggest that alterations in this ratio can be triggered across a wide spectrum of nitrate concentrations.  相似文献   

11.
针对半干旱区水分的植被生产力问题,以黄土丘陵沟壑区典型地陕西清涧的人工刺槐林为研究对象,对植被生长量的成因进行理论假定和分析,结合该地刺槐的解析木分析资料和相对应的同期降水数据,研究了清涧地区刺槐生长与水分的关系,建立了该区水分一刺槐生长的半理论/半经验模型。结果表明:黄土丘陵沟壑区刺槐的材积生长率与水分的变化率具有较好的线性关系。  相似文献   

12.
Summary A stand of mature Pinus sylvestris L. within the rain-shadow of the Grampian Mountains was found to be suffering both from nitrogen deficiency and from early spring drought, the severity of which varied cyclically. Climate affected growth directly through May rainfall and indirectly through an influence of June rainfall on nitrogen uptake. Sectional area growth responded linearly to fertilizer nitrogen at rates up to 234 kg N ha–1, this effect being independent of and additive to climate-induced changes; except for the large trees, the response was more pronounced at 7.6 m up the stem than at breast height. As growth increased, irrespective of cause, early wood percentage rose to a maximum and then declined. re]19760624  相似文献   

13.
低价林早期诊断: 生态因子途径   总被引:3,自引:2,他引:1  
提出了低价林早期诊断的新思路,即根据低价林的形成规律,在林分还未表现出低价林状况时就能诊断出其发展趋势,以便及时采取相应的经营管理措施,以辽西油松林为例,从生态因子途径开展了低价林的早期诊断研究,建立了基于单因素实验和判别分析的生态因子途径早期诊断技术。研究表明,土层厚度X1,有机质含量X2,土壤全氮含量X3,土壤含水率X4,土壤微生物总数量X5可选择作为油松低价林早期诊断的敏感指标;在综合诊断时引入了判别分析的数量分类方法,并根据判别分析的思路建立了油松林生长状况生态因子途径早期诊断方法,其步骤:1)确定判别指标;2)建立判别函数Y=1.596X1-0.51X2-3.196X3+1.622X4+1.898X5;3)通过判别函数和研究对象的各项判别指标值进行早期诊断低价林早期诊断的技术与方法尚有待进一步地研究,检验和完善。  相似文献   

14.
Distribution of Nitrogen during Growth of Sunflower (Helianthus annuus L.)   总被引:1,自引:0,他引:1  
The accumulation, distribution and redistribution of dry matterand nitrogen is described for Helianthus annuus L. cv. Hysun21 grown on 6 mM urea in glasshouse culture. Seed dry matterand nitrogen were transferred to seedlings with net efficienciesof 40 and 86 per cent respectively. At flowering, the stem hadmost of the plant's dry matter and the leaves most of its nitrogen.About 35 per cent of the plant's nitrogen accumulated afterthree-row anthesis. The amount of protein in vegetative parts,especially leaves, declined after flowering. Concentrationsof free amino compounds also decreased during growth. Matureseeds had 38 per cent of the total plant dry weight and 68 percent of the total nitrogen. Seeds acquired 33 per cent of theirdry matter and nitrogen from redistribution from above-groundplant parts. The stem was most important for storage of carbohydrate,leaves the most important for nitrogen. Over 50 per cent ofthe nitrogen in the stem and leaves was redistributed. Plantsthat received 6 mM nitrate accumulated more dry matter thanurea-grown plants. Seeds from nitrate-grown plants were heavier(58 mg) than those of urea-grown plants (46 mg), and their percentageoil was greater (50 and 41 respectively). The amount of nitrogenper seed was the same. Little or no urea was detected in xylem sap of plants suppliedwith 5 mM urea, but it was detected in sap of plants which received25 mM. Concentrations of urea and amino compounds in the sapdecreased up the stem. Plants supplied with nitrate had mostof the nitrogen in xylem sap as NO2, suggesting littlenitrate reduction in roots. Plants grown on 6 mM nitrate andchanged to high levels of urea-nitrogen for 14 days still hadhigh levels of nitrate; little nitrate remained in plants receivinglow levels of urea. When urea is applied in irrigation waterto field-grown sunflower, the nitrogen is subsequently takenup as nitrate due to rapid nitrogen transformations in the soil. Helianthus annuus L., sunflower, urea, nitrate, nitrogen transport, xylem sap, nitrogen accumulation nitrogen distribution  相似文献   

15.
J. Tromp 《Plant and Soil》1983,71(1-3):401-413
Summary In trees, nutrient reserves built up in the previous year are of primary importance for early spring growth. Despite the relatively great importance of roots for nutrient storage, the root system should not be regarded as a special storage organ. Quantitatively, carbohydrates predominate in these reserves, but qualitatively N and other minerals are of more than minor significance. In roots carbohydrates are usually stored in insoluble form, mainly as starch; sorbitol is the predominant soluble compound in apple and peach. For nitrogen reserves, the soluble form predominates in roots, especially arginine in apple and peach, followed by asparagine. The level of reserves usually becomes maximal early in the winter. During leafing-out the reserves are drawn on until, later in the season, the supply of newly produced or absorbed nutrients exceeds the demand and replenishment occurs. The initial carbohydrate reserves do not determine the amount of new growth, whereas reserve nitrogen is of decisive importance for shoot growth vigour. Environmental factors such as light intensity and temperature affect the level of carbohydrates in roots; the concentration can be reduced by defoliation and summer pruning and increased by ample supply of nitrogen fertilizer in the autumn. The main cultural factors that influence nitrogen reserves are the amount and the time of nitrogen fertilization.  相似文献   

16.
全杜娟  魏岩  周晓青  严成 《生态学报》2012,32(11):3352-3358
通过对角果藜(Ceratocarpus arenarius L.)的地上与地下部分生长动态以及生物量配置进行研究,结合其生活周期内土壤含水量变化规律,分析了角果藜的生态适应对策。结果表明:①角果藜植株高度生长速率随时间变化呈"增加—减缓—增加"的模式,而根的生长速率呈"逐渐减缓"的模式。角果藜株高、垂直根的生长速率变化同土壤水分的变化密切相关。②地上部分生物量在5月果实初形成时期和8月至9月的果实成熟期形成两个高峰值。地下部分生物量在3月至5月增长缓慢,随后以最大增长速率迅速达到地下生物量的最大值。角果藜地上、地下生物量的积累动态体现了其与季节变化相吻合的生长发育特点。③具有地上地下结果性的角果藜的生殖配置高达40%以上,高于一次结实的草本植物的生殖投入。这些特性是角果藜适应荒漠生境生长策略选择的综合表现。  相似文献   

17.
Abundant nitrogen is required for the optimal growth and development of plants, while numerous biotic and abiotic factors that consume soil nitrogen frequently create a nitrogen limitation growth condition. To cope with this, plants have evolved a suite of adaptive responses to nitrogen limitation. However, the molecular mechanism governing the adaptability of plants to nitrogen limitation is totally unknown because no reported mutant defines this trait. Here we isolated an Arabidopsis mutant, nla (nitrogen limitation adaptation), and identified the NLA gene as an essential component in this molecular mechanism. Supplied with insufficient inorganic nitrogen (nitrate or ammonium), the nla mutant failed to develop the essential adaptive responses to nitrogen limitation, but senesced much earlier and more rapidly than did the wild type. Under other stress conditions including low phosphorus nutrient, drought and high temperature, the nla mutant did not show this early senescence phenotype, but closely resembled the wild type in growth and development. Map-based cloning of NLA revealed that this gene encodes a RING-type ubiquitin ligase, and nla is a deletion mutation which does not code for the RING domain in the NLA protein. The NLA protein is localized to the nuclear speckles, where this protein interacts with the Arabidopsis ubiquitin conjugase 8 (AtUBC8). In the nla mutant, the deletion of the RING domain from NLA altered its subcellular localization, disrupted the interaction between NLA and AtUBC8 and caused the early senescence phenotype induced by low inorganic nitrogen. All the results indicate that NLA is a positive regulator for the development of the adaptability of Arabidopsis to nitrogen limitation.  相似文献   

18.
Moso bamboo is a large, woody bamboo with the highest ecological, economic and cultural value of all the bamboo types and accounts for up to 70% of the total area of bamboo grown. However, the spatiotemporal variation role of moso bamboo shoot during growth period is still unclear. We found that the bamboo shoot growth can be divided into three distinct periods, including winter growth, early growth and late growth based on gene expression and anatomy. In the early growth period, lateral buds germinated from the top of the bamboo joint in the shoot tip. Intercalary meristems grew vigorously during the winter growth period and early growth period, but in the late growth period, mitosis in the intercalary meristems decreased. The expression of cell cycle‐associated genes and the quantity of differentially expressed genes were higher in early growth than those in late growth, appearing to be influenced by hormonal concentrations. Gene expression analysis indicates that hormone signalling genes play key roles in shoot growth, while auxin signalling genes play a central role. In situ hybridization analyses illustrate how auxin signalling genes regulate apical dominance, meristem maintenance and lateral bud development. Our study provides a vivid picture of the dynamic changes in anatomy and gene expression during shoot growth in moso bamboo, and how hormone signalling‐associated genes participate in moso bamboo shoot growth.  相似文献   

19.
为了了解青藏高原东缘高山森林-苔原交错带土壤微生物的特征和季节变化, 研究了米亚罗鹧鸪山原始针叶林、林线、树线、密灌丛、疏灌丛和高山草甸土壤微生物生物量碳(MBC)、氮(MBN)和可培养微生物数量的季节动态。结果表明, 植被类型和季节动态对MBCMBN和微生物数量都有显著影响。不同时期的微生物在各植被类型间分布有差异, 植物生长季初期和生长季中期, 树线以上群落的MBC高于树线下的群落, 而到生长季末期恰恰相反, 暗针叶林、林线和树线的MBC显著升高, 各植被之间MBC的差异减小; 微生物数量基本上也是以树线为界, 树线以下群落土壤微生物数量显著低于树线以上群落, 其中密灌丛的细菌数量最高; 可培养微生物数量为生长季末期>生长季初期>生长季中期。生长季末期真菌数量显著增加, 且MBC/MBN最高。统计分析表明, MBN与细菌、真菌、放线菌数量存在显著的相关关系, 而MBC仅与真菌数量存在显著相关关系( p < 0.05)。植物生长季末期大量的凋落物输入和雪被覆盖可能是微生物季节变异的外在因素, 而土壤微生物和高山植物对有效氮的竞争可能是微生物季节变异的内在因素。植物生长季初期对氮的吸收和土壤微生物在植物生长季末期对氮的固定加强了高山生态系统对氮的利用。气候变暖可能会延长高山植物的生长季, 增加高山土壤微生物生物量, 加速土壤有机质的分解, 进而改变高山土壤碳的固存速率。  相似文献   

20.
Nitrogen deficiency in musts is one of the causes of sluggish or stuck fermentations. In this work we propose that arginase activity determination can be useful for detecting nitrogen starvation early in vinification. CAR1 and YGP1 genes are not specifically induced under conditions of nitrogen starvation. However, a significant increase in the enzymatic activity of arginase, the product of the CAR1 gene, is detected in vinifications carried out with musts containing limiting amounts of nitrogen. Moreover, on adding ammonia to a nitrogen-deficient vinification, even at late stages, this enzymatic activity is repressed, and growth rate is restored simultaneously. We also investigate the role of ethanol toxicity in nitrogen starvation. The results suggest that ethanol produced during vinification or exogenously added up to 8% (v/v) concentration does not cause nitrogen starvation under the conditions tested because arginase activity is not increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号