首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a continued investigation of lecithin cholesterol acyltransferase reaction with micellar discoidal complexes of phosphatidylcholine, cholesterol, and various water soluble apolipoproteins, we prepared complexes containing human apo-E by the cholate dialysis method. These complexes were systematically compared to apo-A-I complexes synthesized under the same reaction conditions. Apo-E complexes (134 A in diameter) were slightly larger than apo-A-I complexes (110 A) but were very similar in terms of their protein and lipid content (2.4:0.10:1.0, egg phosphatidylcholine/cholesterol/apolipoprotein, w/w) and in the percentage of apolipoprotein in alpha-helical structure (72-74%). Concentration and temperature-dependence experiments on the velocity of the lecithin cholesterol acyltransferase reaction revealed differences in apparent Km values and small differences in apparent Vmax but very similar activation energies (18-20 kcal/mol). These observations suggest that differences in lecithin cholesterol acyltransferase activation by apo-A-I and apo-E are primarily a result of different affinities of the enzyme for the particles but that the rate-limiting step of the reaction is comparable for both complexes. Apo-E was found to be 18% as effective as apo-A-I in activating purified human lecithin cholesterol acyltransferase. Addition of free apo-A-I to apo-E complexes resulted in the exchange of bound for free apolipoprotein causing a slight increase in the reactivity with the enzyme when the incubation mixture was assayed. When the unbound apolipoproteins were removed by ultracentrifugation reisolated complexes containing both apo-E and apo-A-I demonstrated an even greater increase in reactivity with the enzyme.  相似文献   

2.
3.
It is known that an acute hepatotoxicity is produced in rats by intraperitoneal administration of galactosamine; a consequence of this treatment is a marked deficiency of lecithin:cholesterol acyltransferase (LCAT) activity in the plasma compartment. In this study high density lipoprotein (HDL) from galactosamine-treated rats was isolated, resolved into subpopulations, and characterized. In contrast to HDL from control rats, which elutes from gel filtration columns as a single peak and has a diameter of 13.1 nm, HDL from the galactosamine-treated animals was found to elute in five major zones with diameters of 7.8-35 nm. Characterization of these subpopulations has revealed that the larger fractions are enriched in apolipoprotein E, phospholipid, and cholesterol, but contain little cholesteryl ester, while the smallest two fractions contain mainly apolipoprotein A-I, are enriched in phospholipid, and have 50-60% of their cholesterol in the ester form. Incubation of HDL from treated rats with a source of LCAT activity plus low and very low density lipoproteins caused transformation of these subpopulations into a species which, by size and composition, was essentially identical to control rat HDL. In addition, when the subpopulations were individually incubated with purified human lecithin:cholesterol acyltransferase and bovine serum albumin, there was a similar convergence toward a moderate particle size approximating control rat HDL. Cross-linking studies showed that incubation with LCAT activity reduced the heterogeneity of the treated rat HDL. We conclude that the galactosamine treatment induces a complex mixture of HDL that bears strong similarities to the small, apoA-I rich and large, apoE-rich particles seen in LCAT deficiency or secreted by hepatic cells in culture. Furthermore, these species appear to coalesce in the presence of the d greater than 1.21 g/ml fraction of control serum to yield a fairly homogeneous population that resembles control rat HDL in size, composition, and apoprotein content.  相似文献   

4.
A Jonas  K E Covinsky  S A Sweeny 《Biochemistry》1985,24(14):3508-3513
Discoidal complexes of human apolipoprotein A-I-egg phosphatidylcholine-cholesterol were prepared by the sodium cholate dialysis procedure and were reacted to varying extents with the amino group reagents citraconic anhydride, diketene, and formaldehyde in the presence of sodium borohydride. Modification of positive lysine residues with negative or neutral groups (citraconic anhydride and diketene, respectively) resulted, for extensively reacted complexes (90%), in structural alterations and in a marked decrease in reactivity with purified human lecithin:cholesterol acyltransferase. The structural and kinetic effects were partially reversible by removal of the modifying groups or by increased ionic strength. Similar extents of modification (84%) with retention of positive charge and introduction of two methyl groups (reductive methylation) had no effect on the structure or the reactivity of the complexes. These results, together with kinetic data at variable complex concentrations or at variable temperatures, indicate that specific lysine residues of apolipoprotein A-I are not involved in the lecithin:cholesterol acyltransferase activation process; instead, charge interactions and structural changes are responsible for the observed decrease in activating capacity. In terms of kinetic parameters, intrinsic K*m values and probably enzyme-substrate particle dissociation constants are affected, but the activation energies remain the same upon chemical modification.  相似文献   

5.
6.
A 70-75 kDa high-density lipoprotein (HDL) particle with pre-beta-electrophoretic migration (pre-beta(1)-HDL) has been identified in several studies as an early acceptor of cell-derived cholesterol. However, the further metabolism of this complex has not been determined. Here we sought to identify the mechanism by which cell-derived cholesterol was esterified and converted to mature HDL as part of reverse cholesterol transport (RCT). Human plasma selectively immunodepleted of pre-beta(1)-HDL was used to study factors regulating pre-beta(1)-HDL production. A major role for phospholipid transfer protein (PLTP) in the recycling of pre-beta(1)-HDL was identified. Cholesterol binding, esterification by lecithin/cholesterol acyltransferase (LCAT) and transfer by cholesteryl ester transfer protein (CETP) were measured using (3)H-cholesterol-labeled cell monolayers. LCAT bound to (3)H-free cholesterol (FC)-labeled pre-beta(1)-HDL generated cholesteryl esters at a rate much greater than the rest of HDL. The cholesteryl ester produced in pre-beta(1)-HDL in turn became the preferred substrate of CETP. Selective LCAT-mediated reactivity with pre-beta(1)-HDL represents a novel mechanism increasing the efficiency of RCT.  相似文献   

7.
Two populations of apoA-I-containing lipoproteins are found in plasma: particles with apoA-II [Lp(AI w AII)] and particles without apoA-II [Lp(AI w/o AII)]. Both are heterogeneous in size. However, their size subpopulation distributions differ considerably between healthy subjects and patients with coronary artery diseases. The metabolic basis for such alterations was studied by determining the role of lecithin:cholesterol acyltransferase (LCAT) and apoB-containing lipoproteins (LpB) in the size subpopulation distributions of Lp(AI w AII) and Lp(AI w/o AII). ApoB-free and LCAT-free plasmas, prepared by affinity chromatography, and whole plasma were incubated at 4 degrees C and 37 degrees C for 24 hr. After incubation, Lp(AI w AII) and Lp(AI w/o AII) were isolated by anti-A-II and anti-A-I immunosorbents. Their size subpopulation distributions were studied by nondenaturing gradient polyacrylamide gel electrophoresis. At 4 degrees C most Lp(AI w AII) particles were in the range of 7.0-9.2 nm Stokes diameter. Incubation of plasma at 37 degrees C resulted in an overall enlargement of particles up to 11.2 nm and larger. These particles were enriched with cholesteryl ester and triglyceride and depleted of phospholipids and free cholesterol. Removal of LpB or LCAT from plasma prior to incubation greatly reduced their enlargement. At 4 degrees C, Lp(AI w/o AII) contained mostly particles of 8.5 and 10.1 nm. Incubation at 37 degrees C abolished both subpopulations with the formation of a new subpopulation of 9.2 nm. This transformation was identical in apoB-free plasma but was not seen in LCAT-free plasma. Our study shows that transformation of Lp(AI w AII) requires both LCAT and LpB. However, LpB is not necessary for the transformation of Lp(AI w/o AII) in vitro. The relevance of these in vitro studies to in vivo lipoprotein metabolism was demonstrated in a subject with hepatic triglyceride lipase deficiency.  相似文献   

8.
HDL plays an initial role in reverse cholesterol transport by mediating cholesterol removal from cells. During infection and inflammation, several changes in HDL composition occur that may affect the function of HDL; therefore, we determined the ability of acute-phase HDL to promote cholesterol removal from cells. Acute-phase HDL was isolated from plasma of Syrian hamsters injected with lipopolysaccharide. Cholesterol removal from J 774 murine macrophages by acute-phase HDL was less efficient than that by control HDL because of both a decrease in cholesterol efflux and an increase in cholesterol influx. LCAT activity of acute-phase HDL was significantly lower than that of control HDL. When LCAT activity of control HDL was inactivated, cholesterol efflux decreased and cholesterol influx increased to the level observed in acute-phase HDL. Inactivation of LCAT had little effect on acute-phase HDL. In GM 3468A human fibroblasts, the ability of acute-phase HDL to remove cholesterol from cells was also lower than that of normal HDL. The impaired cholesterol removal, however, was primarily a result of an increase in cholesterol influx without changes in cholesterol efflux. When control HDL in which LCAT had been inactivated was incubated with fibroblasts, cholesterol influx increased to a level comparable to that of acute-phase HDL, without any change in cholesterol efflux. These results suggest that the ability of acute-phase HDL to mediate cholesterol removal was impaired compared with that of control HDL and the lower LCAT activity in acute-phase HDL may be responsible for this impairment. The decreased ability of acute-phase HDL to remove cholesterol from cells may be one of the mechanisms that account for the well-known relationship between infection/inflammation and atherosclerosis.  相似文献   

9.
In order to study the role of very low density lipoproteins (VLDL) and low density lipoproteins (LDL) in determining the molecular species composition of phosphatidylcholine (PC) and the specificity of lecithin:cholesterol acyltransferase (LCAT) in human plasma, we studied the PC species composition in plasma from abetalipoproteinemic (ABL) and control subjects before and after incubation at 37 degrees C. The ABL plasma contained significantly higher percentages of sn-2-18:1 species (16:0-18:1, 18:0-18:1, and 18:1-18:1) and lower percentages of sn-2-18:2 species (16:0-18:2, 18:0-18:2, and 18:1-18:2) as well as sn-2-20:4 species (16:0-20:4, 18:0-20:4, and 18:1-20:4). Similar abnormalities were found in the PC of ABL erythrocytes, while the PE of the erythrocytes was less affected. The relative contribution of various PC species towards LCAT reaction in ABL plasma was significantly different from that found in normal plasma. Thus, while 16:0-18:2 and 16:0-18:1 contributed, respectively, 43.8% and 15.9% of the total acyl groups used for cholesterol esterification in normal plasma, they contributed, respectively, 21.5% and 37.9% in ABL plasma. The relative contribution of 16:0-20:4 was also significantly lower in ABL plasma (4.7% vs. 9.0% in normal), while that of 16:0-16:0 was higher (6.4% vs. 0.5%). However, the selectivity factors of various species (percent contribution/percent concentration) were not significantly different between ABL and normal plasma, indicating that the substrate specificity of LCAT is not altered in the absence of VLDL and LDL. Incubation of ABL plasma in the presence of normal VLDL or LDL resulted in normalization of its molecular species composition and in the stimulation of its LCAT activity. Addition of LDL, but not VLDL, also resulted in the activation of lysolecithin acyltransferase (LAT) activity. The incorporation of [1-14C]palmitoyl lysoPC into various PC species in the presence of LDL was similar to that observed in normal plasma, with the 16:0-16:0 species having the highest specific activity. These results indicate that the absence of apoB-containing lipoproteins significantly affects the molecular species composition of plasma PC as well as its metabolism by LCAT and LAT reactions.  相似文献   

10.
Synthetic substrates of lecithin: cholesterol acyltransferase   总被引:1,自引:0,他引:1  
Investigation of the substrate specificity of lecithin: cholesterol acyltransferase has been greatly aided by the use of synthetic particles containing the molecular lipid substrates and the apolipoprotein activators of the enzyme. These synthetic particles, in vesicle or disc-like micelle form, are described in some detail noting their preparation, properties, advantages, and limitations as substrates for lecithin:cholesterol acyltransferase. The reactions of the enzyme with the synthetic particles are reviewed in terms of acyl donor and acceptor specificity, activation by apolipoproteins, effects of various inhibitors, and the kinetics of the reaction.  相似文献   

11.
We compared the effects of Intralipid and dextrose infusion on plasma lecithin:cholesterol acyltransferase (LCAT), plasma lipid profiles and lipolytic activity. We used 5-week-old male Sprague-Dawley rats which were given total parenteral nutrition (TPN) with either Intralipid (3 g/kg body weight) or an equicaloric amount of 25% dextrose in the presence or absence of heparin (1 or 10 IU/ml of TPN). 40 min after the end of 4 h of infusion, plasma LCAT activity was significantly decreased (P less than 0.001), while total cholesterol and free fatty acid levels were significantly (P less than 0.05) increased in rats given Intralipid as compared to those given dextrose. We found associations (P less than 0.005) between LCAT activity and total cholesterol and between LCAT and free fatty acid levels; the coefficients of negative correlation were 0.543 and 0.607, respectively. Concomitantly to the increment in plasma total cholesterol levels, there was a decrease in the high-density lipoprotein (HDL) cholesterol fraction; the latter, which was 40% of the total plasma cholesterol in control and dextrose-infused rats, declined to 9% in rats given Intralipid. Administration of heparin during Intralipid infusion, even up to 10 IU/ml of TPN, did not affect any of these changes. After dextrose infusion, the values of all three parameters were similar to those of the control group. Plasma lipolytic activity was not significantly different between rats given infusion (Intralipid or dextrose) and controls. However, in the presence of heparin, plasma lipolytic activity increased similarly in both infused groups. These data indicate that in young rats, Intralipid infusion leads to an increase in plasma total cholesterol and free fatty acid levels, which correlates with a decrease in LCAT activity; the concurrent decrease in HDL cholesterol levels might account, in part, for the loss of LCAT activity. The administration of heparin results in an elevation of plasma lipolytic activity; however, it does not prevent the hypercholesterolemia, nor the decline in LCAT activity associated with Intralipid infusion.  相似文献   

12.
Human plasma apoproteins (apo) A-I and A-IV both activate the enzyme lecithin:cholesterol acyltransferase (EC 2.3.1.43). Lecithin:cholesterol acyltransferase activity was measured by the conversion of [4-14C] cholesterol to [4-14C]cholesteryl ester using artificial phospholipid/cholesterol/[4-14C]cholesterol/apoprotein substrates. The substrate was prepared by the addition of apoprotein to a sonicated aqueous dispersion of phospholipid/cholesterol/[4-14C]cholesterol. The activation of lecithin:cholesterol acyltransferase by apo-A-I and -A-IV differed, depending upon the nature of the hydrocarbon chains of the sn-L-alpha-phosphatidylcholine acyl donor. Apo-A-I was a more potent activator than apo-A-IV with egg yolk lecithin, L-alpha-dioleoylphosphatidylcholine, and L-alpha-phosphatidylcholine substituted with one saturated and one unsaturated fatty acid regardless of the substitution position. When L-alpha-phosphatidylcholine esterified with two saturated fatty acids was used as acyl donor, apo-A-IV was more active than apo-A-I in stimulating the lecithin:cholesterol acyltransferase reaction. Complexes of phosphatidylcholines substituted with two saturated fatty acids served as substrate for lecithin:cholesterol acyltransferase even in the absence of any activator protein. Essentially the same results were obtained when substrate complexes (phospholipid-cholesterol-[4-14C]cholesterol-apoprotein) were prepared by a detergent dialysis procedure. Apo-A-IV-L-alpha-dimyristoylphosphatidylcholine complexes thus prepared were shown to be homogeneous particles by column chromatography and density gradient ultracentrifugation. It is concluded that apo-A-IV is able to facilitate the lecithin:cholesterol acyltransferase reaction in vitro.  相似文献   

13.
Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme involved in lipoprotein metabolism. It mediates the transesterification of free cholesterol to cholesteryl ester in an apoprotein A-I-dependent process. We have isolated purified LCAT from human plasma using anion-exchange chromatography and characterized the extracted LCAT in terms of its molecular weight, molar absorption coefficient, and enzymatic activity. The participation of LCAT in the oxidation of very low density lipoproteins (VLDL) and low-density lipoproteins (LDL) was examined by supplementing lipoproteins with exogenous LCAT over a range of protein concentrations. LCAT-depleted lipoproteins were also prepared and their oxidation kinetics examined. Our results provide evidence for a dual role for LCAT in lipoprotein oxidation, whereby it acts in a dose-responsive manner as a potent pro-oxidant during VLDL oxidation, but as an antioxidant during LDL oxidation. We believe this novel pro-oxidant effect may be attributable to the LCAT-mediated formation of oxidized cholesteryl ester in VLDL, whereas the antioxidant effect is similar to that of chain-breaking antioxidants. Thus, we have demonstrated that the high-density lipoprotein-associated enzyme LCAT may have a significant role to play in lipoprotein modification and hence atherogenesis.  相似文献   

14.
15.
16.
17.
18.
The ability of different human and rat brain cell lines (neuronal and gliomal) to secrete lecithin:cholesterol acyltransferase (LCAT) was examined. Of these, the strongly secreting human gliomal (U343 and U251) cell lines were selected for a detailed study of enzymatic and structural properties of the secreted LCAT. Both plasma- and brain-derived enzymes are inhibited by DTNB (90%) and are activated by apolipoprotein A-I. LCAT mRNA was measured in these cell lines at levels similar to that found in HepG2 cells. In contrast, apoA-I, apoE, and apoD mRNAs were undetectable in these cell lines. The presence of functional LCAT secreted by cultured nerve cells provides an in vitro model to study the expression and function of LCAT in the absence of others factors of plasma cholesterol metabolism.  相似文献   

19.
Human plasma lecithin:cholesterol acyltransferase (LCAT, EC 2.3.1.43) has been purified more than 20,000 fold from plasma in 10% yield. This new procedure is composed of only four steps, including ultracentrifugation of plasma to yield a 1.21-1.25 kg/l density fraction, covalent binding of LCAT in this fraction to thiopropyl-Sepharose followed by adsorption of the enzyme to wheat-germ lectin-Sepharose for elimination of albumin and finally batch-wise treatment of the desorbed LCAT with hydroxyapatite to remove residual impurities. The purified enzyme was free of apolipoprotein A-I, A-II, B, C-I, C-II, C-III and E as checked by double immunodiffusion and SDS-electrophoresis, which latter method also demonstrated the absence of hitherto characterized lipid transfer proteins. Only traces of apolipoprotein D were present in the preparation as detected by immunoblotting. The purified enzyme retained alpha- and beta-LCAT activities. Non-denaturing and denaturing polyacrylamide gel electrophoresis yielded apparent molecular masses of 69 and 66 kDa, respectively, for the enzyme which on isoelectric focusing produced one major and one minor isoform with pI values of 4.20 and 4.25, respectively. Apolipoprotein A-I was required to transform artificial lecithin-cholesterol liposomes into substrates for the purified LCAT.  相似文献   

20.
Human HDL3 (d 1.125-1.21 g/ml) were treated by an exogenous phospholipase A2 from Crotalus adamenteus in the presence of albumin. Phosphatidylcholine hydrolysis ranged between 30 and 90% and the reisolated particle was essentially devoid of lipolysis products. (1) An exchange of free cholesterol was recorded between radiolabelled erythrocytes at 5-10% haematocrit and HDL3 (0.6 mM total cholesterol) from 0 to 12-15 h. Isotopic equilibration was reached. Kinetic analysis of the data indicated a constant rate of free cholesterol exchange of 13.0 microM/h with a half-time of equilibration around 3 h. Very similar values of cholesterol exchange, specific radioactivities and kinetic parameters were measured when phospholipase-treated HDL replaced control HDL. (2) The lecithin: cholesterol acyltransferase reactivity of HDL3, containing different amounts of phosphatidylcholine, as achieved by various degrees of phospholipase A2 treatment, was measured using a crude preparation of lecithin: cholesterol acyltransferase (the d 1.21-1.25 g/ml plasma fraction). The rate of esterification was determined between 0 and 12 h. Following a 15-30% lipolysis, the lecithin: cholesterol acyltransferase reactivity of HDL3 was reduced about 30-40%, and then continued to decrease, though more slowly, as the phospholipid content was further lowered in the particle. (3) The addition of the lecithin: cholesterol acyltransferase preparation into an incubation medium made of labelled erythrocytes and HDL3 promoted a movement of radioactive cholesterol out of cells, above the values of exchange, and an accumulation of cholesteryl esters in HDL. This reflected a mass consumption of free cholesterol, from both the cellular and the lipoprotein compartments upon the lecithin: cholesterol acyltransferase action. As a consequence of a decreased reactivity, phospholipase-treated HDL (with 2/3 of phosphatidylcholine hydrolyzed) proved much less effective in the lecithin: cholesterol acyltransferase-induced removal of cellular cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号