首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The rapid development of new technologies for the high throughput (HT) study of proteins has increased the demand for comprehensive plasmid clone resources that support protein expression. These clones must be full-length, sequence-verified and in a flexible format. The generation of these resources requires automated pipelines supported by software management systems. Although the availability of clone resources is growing, current collections are either not complete or not fully sequence-verified. We report an automated pipeline, supported by several software applications that enabled the construction of the first comprehensive sequence-verified plasmid clone resource for more than 96% of protein coding sequences of the genome of F. tularensis, a highly virulent human pathogen and the causative agent of tularemia. This clone resource was applied to a HT protein purification pipeline successfully producing recombinant proteins for 72% of the genes. These methods and resources represent significant technological steps towards exploiting the genomic information of F. tularensis in discovery applications.  相似文献   

2.
Telomere-specific clones are a valuable resource for the characterization of chromosomal rearrangements. We previously reported a first-generation set of human telomere probes consisting of 34 genomic clones, which were a known distance from the end of the chromosome ( approximately 300 kb), and 7 clones corresponding to the most distal markers on the integrated genetic/physical map (1p, 5p, 6p, 9p, 12p, 15q, and 20q). Subsequently, this resource has been optimized and completed: the size of the genomic clones has been expanded to a target size of 100-200 kb, which is optimal for use in genome-scanning methodologies, and additional probes for the remaining seven telomeres have been identified. For each clone we give an associated mapped sequence-tagged site and provide distances from the telomere estimated using a combination of fiberFISH, interphase FISH, sequence analysis, and radiation-hybrid mapping. This updated set of telomeric clones is an invaluable resource for clinical diagnosis and represents an important contribution to genetic and physical mapping efforts aimed at telomeric regions.  相似文献   

3.
4.
Early analytical clone screening is important during Chinese hamster ovary (CHO) cell line development of biotherapeutic proteins to select a clonally derived cell line with most favorable stability and product quality. Sensitive sequence confirmation methods using mass spectrometry have limitations in throughput and turnaround time. Next‐generation sequencing (NGS) technologies emerged as alternatives for CHO clone analytics. We report an efficient NGS workflow applying the targeted locus amplification (TLA) strategy for genomic screening of antibody expressing CHO clones. In contrast to previously reported RNA sequencing approaches, TLA allows for targeted sequencing of genomic integrated transgenic DNA without prior locus information, robust detection of single‐nucleotide variants (SNVs) and transgenic rearrangements. During clone selection, TLA/NGS revealed CHO clones with high‐level SNVs within the antibody gene and we report in another case the utility of TLA/NGS to identify rearrangements at transgenic DNA level. We also determined detection limits for SNVs calling and the potential to identify clone contaminations by TLA/NGS. TLA/NGS also allows to identify genetically identical clones. In summary, we demonstrate that TLA/NGS is a robust screening method useful for routine clone analytics during cell line development with the potential to process up to 24 CHO clones in less than 7 workdays.  相似文献   

5.
6.
C Magoulas  D A Hickey 《Génome》1992,35(1):133-139
Several cDNA and genomic clones were isolated from Drosophila melanogaster gene libraries by hybridization with a region of a mammalian gene that contains a simple repetitive sequence of six GCN repeats. One of the cDNA clones, E6, was completely sequenced and it was shown that it contains a region of 16 GCN repeats; these repeats encode a polyalanine stretch within a long open reading frame. The sequencing of three different genomic clones (A, B, and D) revealed that all the isolated Drosophila clones are similar to one another in a short region containing variable numbers of the GCN repeat. The genomic clone B was found to be the genomic counterpart of the cDNA clone E6. The other genomic clones, A and D, also hybridize with Drosophila cDNA clones at high stringency. These results indicate that the short GCN repetitive sequences, which we have named ala, are found within transcribed regions of the Drosophila genome. These Drosophila genes containing the ala repeat do not show significant sequence similarity to any presently known gene; we have named these novel genes ala-A, ala-B, and ala-D. The cDNA clone from gene ala-B was named ala-E6.  相似文献   

7.
Several biological subclones of a biological clone of foot-and-mouth disease virus (FMDV) have been subjected to many plaque-to-plaque (serial bottleneck) transfers in cell culture. At transfer 190 to 409, clones underwent a transition towards a non-cytolytic (NC) phenotype in which the virus was unable to produce plaques, representing at least a 140-fold reduction in specific infectivity relative to the parental biological clone. NC clones, however, were competent in RNA replication and established a persistent infection in cell culture without an intervening cytolytic phase. In one clone, the transition to the NC phenotype was associated with the elongation of an internal oligodenylate tract that precedes the second functional AUG translation initiation codon. The pattern of mutations and their distribution along the FMDV genome of the clones subjected to serial bottleneck transfers were compared with the pattern of mutations in FMDV clones subjected to large population passages. Both the corrected ratios of non-synonymous to synonymous mutations and some specific mutations in coding and non-coding regions suggest participation of positive selection during large population passages and not during bottleneck transfers. Some mutations in the clones that attained the NC phenotype were located in genomic regions affecting the capacity of FMDV to kill BHK-21 cells. The resistance to extinction of clones subjected to plaque-to-plaque transfers marks a striking contrast with regard to the ease of extinction mediated by lethal mutagenesis. The results document a major phenotypic transition of a virus as a result of serial bottleneck events.  相似文献   

8.
We present a high‐resolution map of genomic transformation‐competent artificial chromosome (TAC) clones extending over all Arabidopsis thaliana (Arabidopsis) chromosomes. The Arabidopsis genomic TAC clones have been valuable genetic tools. Previously, we constructed an Arabidopsis genomic TAC library consisting of more than 10 000 TAC clones harboring large genomic DNA fragments extending over the whole Arabidopsis genome. Here, we determined 13 577 end sequences from 6987 Arabidopsis TAC clones and mapped 5937 TAC clones to precise locations, covering approximately 90% of the Arabidopsis chromosomes. We present the large‐scale data set of TAC clones with high‐resolution mapping information as a Java application tool, the Arabidopsis TAC Position Viewer, which provides ready‐to‐go transformable genomic DNA clones corresponding to certain loci on Arabidopsis chromosomes. The TAC clone resources will accelerate genomic DNA cloning, positional walking, complementation of mutants and DNA transformation for heterologous gene expression.  相似文献   

9.
Classic strain engineering methods have previously been limited by the low-throughput of conventional sequencing technology. Here, we applied a new genomics technology, scalar analysis of library enrichments (SCALEs), to measure >3 million Escherichia coli genomic library clone enrichment patterns resulting from growth selections employing three aspartic-acid anti-metabolites. Our objective was to assess the extent to which access to genome-scale enrichment patterns would provide strain-engineering insights not reasonably accessible through the use of conventional sequencing. We determined that the SCALEs method identified a surprisingly large range of anti-metabolite tolerance regions (423, 865, or 909 regions for each of the three anti-metabolites) when compared to the number of regions (1-3 regions) indicated by conventional sequencing. Genome-scale methods uniquely enable the calculation of clone fitness values by providing concentration data for all clones within a genomic library before and after a period of selection. We observed that clone fitness values differ substantially from clone concentration values and that this is due to differences in overall clone fitness distributions for each selection. Finally, we show that many of the clones of highest fitness overlapped across all selections, suggesting that inhibition of aspartate metabolism, as opposed to specific inhibited enzymes, dominated each selection. Our follow up studies confirmed our observed growth phenotypes and showed that intracellular amino-acid levels were also altered in several of the identified clones. These results demonstrate that genome-scale methods, such as SCALEs, can be used to dramatically improve understanding of classic strain engineering approaches.  相似文献   

10.
The generation of a 7.5x dog genome assembly provides exciting new opportunities to interpret tumor-associated chromosome aberrations at the biological level. We present a genomic microarray for array comparative genomic hybridization (aCGH) analysis in the dog, comprising 275 bacterial artificial chromosome (BAC) clones spaced at intervals of approximately 10 Mb. Each clone has been positioned accurately within the genome assembly and assigned to a unique chromosome location by fluorescence in situ hybridization (FISH) analysis, both individually and as chromosome-specific BAC pools. The microarray also contains clones representing the dog orthologues of 31 genes implicated in human cancers. FISH analysis of the 10-Mb BAC clone set indicated excellent coverage of each dog chromosome by the genome assembly. The order of clones was consistent with the assembly, but the cytogenetic intervals between clones were variable. We demonstrate the application of the BAC array for aCGH analysis to identify both whole and partial chromosome imbalances using a canine histiocytic sarcoma case. Using BAC clones selected from the array as probes, multicolor FISH analysis was used to further characterize these imbalances, revealing numerous structural chromosome rearrangements. We outline the value of a combined aCGH/FISH approach, together with a well-annotated dog genome assembly, in canine and comparative cancer studies.  相似文献   

11.
MOTIVATION: To enhance the usefulness of the I.M.A.G.E. Consortium (Lennon et al., 1996, Genomics, 33, 151-152) cDNA clone collection by directed analysis and organization of their associated Expressed Sequence Tags (ESTs), thus enabling effective mining of the immense amounts of public cDNA information. RESULTS: This paper introduces the IMAGEne suite of tools, which clusters ESTs around known genes, then ranks each clone within a cluster. IMAGEne filters data from known gene sequence databases and the GenBank's EST database (Boguski and Shuler, 1995, Nature Genet., 10, 369-371). It applies biological criteria in connection with judicious use of the BLAST (Altschul et al., 1990, J. Mol. Biol., 215), FASTA (Pearson and Lipman, 1988, Proc. Natl Acad. Sci. USA, 85, 2444-2448; Pearson, 1990, Methods Enzymol., 183, 63-98; Gusfield, 1997, Algorithms on Strings, Trees, and Sequences, Cambridge University Press), and SIM (Huang et al., 1990, Comput. Appl. Biosci., 6, 373-381) tools to form known gene clusters. It then applies criteria derived from experienced biologists to select the best representative I.M.A.G.E. clone for a gene. The tool provides an intuitive Java interface for query and display of the gene and its associated clones, thus directing researchers in selecting a clone that will best enhance their research. An important product is a listing of clones that best represent all known genes. The listing will be used for re-arraying clones into minimally redundant Master Arrays. Both the listings and Master Arrays will be made available to the public, which will be a valuable resource to the genomic community in furthering discovery in the area of gene function.  相似文献   

12.
We have isolated four overlapping human genomic clones associated with the polynuclear aromatic hydrocarbon-induced form of cytochrome P-450. The form of P-450 most closely associated with polynuclear aromatic hydrocarbons induction has been defined as P1-450. These four overlapping genomic clones span a total of 31.0 X 10(3) base pairs in length with the coding sequence lying in the center of these clones. Translation in vitro of 3-methylcholanthrene-induced mRNA, selected with the human P1-450 genomic clone, detect a protein with Mr 52000, which is immunoprecipitable by the anti-(mouse P1-450) antibody. The isolated human P1-450 genomic clone hybridizes to 3-methylcholanthrene-induced mRNA from monkey liver, benzanthracene and 3-methylcholanthrene-treated human mammary tumor cells (MCF-7), but not to isosafrole-treated human cells. Upon treatment with polynuclear aromatic hydrocarbons there is a positive correlation between induced arylhydrocarbon hydroxylase (flavoprotein-linked monoxygenase) activity and the amount of mRNA that hybridizes to the isolated human genomic clone for P1-450. The size of mRNA, induced from human cells and monkey liver by polynuclear aromatic hydrocarbons, is around 3.3 X 10(3) base pairs, which is the same as the larger of two mRNA induced by polynuclear aromatic hydrocarbons in the inbred strain of mouse (C57BL/6N). Our data also showed that the isolated DNA clone can detect a mRNA size of 3.3 X 10(3) base pairs from phytohemagglutinin-activated, benzanthracene-treated human lymphocytes. Densitometer scanning indicated the presence of a 3.6-fold variation (highest-lowest) in the levels of lymphocyte P1-450 mRNA contents among six individuals studied.  相似文献   

13.
14.
15.
Y Ge  M J Wagner  M Siciliano  D E Wells 《Genomics》1992,13(3):585-593
We have characterized alphoid repeat clones derived from a chromosome 8 library. These clones are specific for human chromosome 8, as demonstrated by use of a somatic cell hybrid mapping panel and by in situ hybridization. Hybridization of the clones to HindIII digests of human genomic DNA reveals a complex pattern of fragments ranging in size from 1.3 to greater than 20 kb. One clone, which corresponds in size to the most prevalent genomic HindIII fragment, appears to represent a major higher order repeat in the chromosome 8 centromere. The DNA sequence of this clone reveals a dimeric organization of alphoid monomers. Restriction analysis of two other clones indicates that they are derivatives of this same repeat unit. The chromosome 8 alphoid clones hybridize to EcoRI fragments of genomic DNA ranging up to 1000 kb in length and reveal a high degree of polymorphism between chromosomes. Distribution of higher order repeat units across the centromere was examined by two-dimensional gel electrophoresis. Repeat units of the same size class tended to cluster together in restricted regions of centromeric DNA.  相似文献   

16.
Özgür Sahin 《FEBS letters》2009,583(11):1766-1771
Substantial progress in functional genomic and proteomic technologies has opened new perspectives in biomedical research. The sequence of the human genome has been mostly determined and opened new visions on its complexity and regulation. New technologies, like RNAi and protein arrays, allow gathering knowledge beyond single gene analysis. Increasingly, biological processes are studied with systems biological approaches, where qualitative and quantitative data of the components are utilized to model the respective processes, to predict effects of perturbations, and to then refine these models after experimental testing. Here, we describe the potential of applying functional genomics and proteomics, taking the ERBB family of growth-factor receptors as an example to study the signaling network and its impact on cancer.  相似文献   

17.
The term 'biological resources' is applied to the living biological material collected, held and catalogued in culture collections: bacterial and fungal cultures; animal, human and plant cells; viruses; and isolated genetic material. A wealth of information on these materials has been accumulated in culture collections, and most of this information is accessible. Digitalisation of data has reached a high level; however, information is still dispersed. Individual and coordinated approaches have been initiated to improve accessibility of biological resource centres, their holdings and related information through the Internet. These approaches cover subjects such as standardisation of data handling and data accessibility, and standardisation and quality control of laboratory procedures. This article reviews some of the most important initiatives implemented so far, as well as the most recent achievements. It also discusses the possible improvements that could be achieved by adopting new communication standards and technologies, such as web services, in view of a deeper and more fruitful integration of biological resources information in the bioinformatics network environment.  相似文献   

18.
Accidents with ionizing radiation often involve single, acute high-dose exposures that can lead to acute radiation syndrome and late effects such as carcinogenesis. To study such effects at the cellular level, we investigated acute ionizing radiation-induced chromosomal aberrations in A549 adenocarcinoma cells at the genome-wide level by exposing the cells to an acute dose of 6 Gy 240 kV X rays. One sham-irradiated clone and four surviving irradiated clones were recovered by minimal dilution and further expanded and analyzed by chromosome painting and tiling-path array CGH, with the nonirradiated clone 0 serving as the control. Acute X-ray exposure induced specific translocations and changes in modal chromosome number in the four irradiated clones. Array CGH disclosed unique and recurrent genomic changes, predominantly losses, and revealed that the fragile sites FRA3B and FRA16D were preferential regions of genomic alterations in all irradiated clones, which is likely related to radioresistant S-phase progression and genomic stress. Furthermore, clone 4 displayed an increased radiosensitivity at doses >5 Gy. Pairwise comparisons of the gene expression patterns of all irradiated clones to the sham-irradiated clone 0 revealed an enrichment of the Gene Ontology term "M Phase" (P = 6.2 × 10(-7)) in the set of differentially expressed genes of clone 4 but not in those of clones 1-3. Ionizing radiation-induced genomic changes and fragile site expression highlight the capacity of a single acute radiation exposure to affect the genome of exposed cells by inflicting genomic stress.  相似文献   

19.
Human leukocyte cDNA library was screened to isolate cDNA clones coding for hepatocyte growth factor using cDNA from human liver as a probe. Nucleotide and deduced amino acid sequences were analyzed for two of four clones obtained. One of them contained an open reading frame coding for a polypeptide chain of 728 amino acid residues like that of cDNA clone derived from human liver. In another clone a spontaneous deletion of 15 base pairs was found within the coding sequence. When expressed transiently using COS-1 cells both clones produced protein with similar biological activity against rat hepatocyte in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号