首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plasmid pBR322 replication is inhibited after bacteriophage T4 infection. If no T4 DNA had been cloned into this plasmid vector, the kinetics of inhibition are similar to those observed for the inhibition of Escherichia coli chromosomal DNA. However, if T4 DNA has been cloned into pBR322, plasmid DNA synthesis is initially inhibited but then resumes approximately at the time that phage DNA replication begins. The T4 insert-dependent synthesis of pBR322 DNA is not observed if the infecting phage are deleted for the T4 DNA cloned in the plasmid. Thus, this T4 homology-dependent synthesis of plasmid DNA probably reflects recombination between plasmids and infecting phage genomes. However, this recombination-dependent synthesis of pBR322 DNA does not require the T4 gene 46 product, which is essential for T4 generalized recombination. The effect of T4 infection on the degradation of plasmid DNA is also examined. Plasmid DNA degradation, like E. coli chromosomal DNA degradation, occurs in wild-type and denB mutant infections. However, neither plasmid or chromosomal degradation can be detected in denA mutant infections by the method of DNA--DNA hybridization on nitrocellulose filters.  相似文献   

3.
R Meffert  K Dose 《FEBS letters》1988,239(2):190-194
An efficient method of cross-linking DNA to protein is described. The method is based on the incorporation of photoactive 8-azidoadenine 2'-deoxyribonucleotides into DNA. We have found that 8-N3dATP is a substrate for E. coli DNA polymerase I and that 8-N3dATP can be incorporated into plasmid pBR322 by nick-translation. Subsequently we were able to cross-link a set of different proteins to 8-azido-2'-deoxyadenosine-containing pBR322 by UV irradiation (366nm). No DNA-protein photocross-linking was observed under the same conditions when the non-photoactive plasmid pBR322 was used.  相似文献   

4.
The replication pattern of the plasmid pBR322 was examined in the dnaA mutants of Escherichia coli. The rate of pBR322 DNA synthesis is markedly decreased after dnaA cells are shifted to the restrictive temperature of 42 degrees C. However, addition of rifampicin (RIF) to cultures of dnaA strains incubated at 42 degrees C after a lag of 90 min results in a burst of pBR322 synthesis. This RIF-induced pBR322 replication remains dependent on DNA polymerase I activity. Efficient plasmid pBR322 replication is observed at 42 degrees C in the double mutant dnaA46cos bearing an intragenic suppressor of dnaA46. Though replication of pBR322 in dnaA46cos growing at 42 degrees C is initially sensitive to RIF plasmid synthesis is restored after 90 min incubation in the presence of the drug. RIF-induced replication of the plasmid pBR327, lacking the rriB site implicated in RIF-resistant synthesis of the L strand of ColE1-like plasmids (Nomura and Ray 1981; Zipursky and Marians 1981), was observed also in dnaA46 at 42 degrees C.  相似文献   

5.
An unusual structural component, supercondensed pBR322 DNA, has been found in plasmid pBR322 DNA samples isolated from a DNA topoisomerase II mutant of Escherichia coli, SD108 (topA+, gyrB225). The supercondensed pBR322 DNA moved faster than supercoiled pBR322 DNA as a homogeneous band in agrose gels when the DNA samples were analysed by electrophoresis. The mobility of the supercondensed DNA was not substantially affected by chloroquine intercalation. The supercondensed pBR322 DNA migrated as a high density "third DNA band" when the samples were subjected to caesium chloride/ethidium bromide gradient equilibrium centrifugation. The unusual pBR322 DNA visualized by electron microscopy was a globoid-shaped particle. These observations suggest that the pBR322 plasmid can assume a tertiary structure other than a supercoiled or relaxed structure. DNA topoisomerases may be involved in the supercondensation of plasmid DNA and chromosomal DNA.  相似文献   

6.
Abstract The stability and the copy number of pBR322, pBR325 and pBR328 were studied during continous cultures of free and immobilized E. coli W3101 without selective pressure. In the free-cell system, it was found that pBR328 and pBR325-free E. coli cells appeared after a lag period. They rapidly overgrew the cultures and the plasmid copy number subsequently declined. On the other hand, an increase in the proportion of pBR322- carrying cells during a free continuous culture was observed. This increase correlated with that of plasmid copy number. By contrast, in the immobilized- cell system, plasmid free segregants were not detected in all the cases even after 250 generations. We have also shown that plasmid copy number remained constant and phenomena such as fluctuations or genetic modifications which occured after long term growth of bacteria in a free continuous culture could be avoided throughout cell immobilization.  相似文献   

7.
The effect of ferulic acid was studied on γ-radiation-induced relaxation of plasmid pBR322 DNA and induction of DNA strand breaks in peripheral blood leukocytes and bone marrow cells of mice exposed to whole body γ-radiation. Presence of 0.5 mM ferulic acid significantly inhibited the disappearance of supercoiled (ccc) plasmid pBR322 with a dose modifying factor (DMF) of 2.0. Intraperitoneal administration of different amounts (50, 75 and 100 mg/kg body weight) of ferulic acid 1 h prior to 4 Gy γ-radiation exposure showed dose-dependent decrease in the yield of DNA strands breaks in murine peripheral blood leukocytes and bone marrow cells as evidenced from comet assay. The dose-dependent protection was more pronounced in bone marrow cells than in the blood leukocytes. It was observed that there was a time-dependent disappearance of radiation induced strand breaks in blood leukocytes (as evidenced from comet parameters) following whole body radiation exposure commensuration with DNA repair. Administration of 50 mg/kg body weight of ferulic acid after whole body irradiation of mice resulted disappearance of DNA strand breaks at a faster rate compared to irradiated controls, suggesting enhanced DNA repair in ferulic acid treated animals. (Mol Cell Biochem xxx: 209–217, 2005)  相似文献   

8.
9.
The exposure of plasmid pUC18 and pBR322 DNA to high hydrostatic pressure increased the ability of plasmids to transform competent Escherichia coli cells. For pUC18 plasmid, a pressure of 400 MPa, and for pBR322, a pressure of 200 MPa was found to provide the highest transformation efficiency. The DNA duplexes of the two plasmids were found to be the most stable for melting conditions at these pressures. At pressures higher than these, both the stability of the duplex DNA and the transformation efficiency were affected. The stabilizing effect of high hydrostatic pressure on the hydrogen bond may be responsible for the observed increase in transformation efficiency of the pressure-exposed plasmid DNA. The possibility of pressure-induced changes in the structure and conformation of DNA was studied using various techniques. In agarose gel electrophoresis, pressure-treated plasmids (pUC18 at 400 MPa and pBR322 at 200 MPa) consistently showed visibly distinct higher mobility compared to untreated plasmids. Pressure-treated pUC18 as well as pBR322 DNA showed significant reduction in ethidium bromide binding as is evident from the reduced intensity of fluorescence of the dye bound pressure-treated DNA. Spectroscopic studies using circular dichroism and Fourier transform infrared (FTIR) spectroscopy also showed significant differences in the absorption profiles of pressure-treated plasmids as compared to an untreated control. These studies revealed that the pressure-induced changes in the conformation of these DNAs may be responsible for the observed increase in the transformation ability of the plasmids. On the other hand, the exposure of competent cells of E. coli to a high hydrostatic pressure of 50 MPa not only reduced their colony-forming ability but also drastically reduced their ability to take up plasmid DNA.  相似文献   

10.
The site-specific deletion in plasmid pBR322   总被引:3,自引:0,他引:3  
The formation of a deletion derivative of plasmid pBR322, designated pBR322 delta 1, was observed during cloning of various eukaryotic DNAs, when the BamHI site of the plasmid vector was used for construction of the recombinant molecules. The restriction analysis of six independently isolated pBR322 delta 1 plasmids allowed establishment of their complete identity. Similar deletion derivatives were also formed as a result of transformation of Escherichia coli cells by the linear form of vector pBR322 produced by BamHI cleavage, but not by SalI or HindIII. The endpoints of the deletion in one of the pBR322 delta 1 plasmids occurred at positions 375 and 16666 bp from the EcoRI site, as determined by sequence analysis. Formation of pBR322 delta 1 is most probably due to site-specific recombination between the sequence in the 1666-1670 bp region and the BamHI end of the linear pBR322 molecule. THe deletion was not controlled by the recA system of the host bacteria.  相似文献   

11.
The concentration of plasmid pBR322 DNA in nonculturable Escherichia coli JM83 was measured to determine whether the plasmid concentration changed during survival of E. coli in marine and estuarine water. E. coli JM83 containing the plasmid pBR322 was placed in both sterile seawater and sterile estuarine water and analyzed for survival (i.e., culturability) and plasmid maintenance. The concentration of pBR322 DNA remained stable in E. coli JM83 for 28 days in an artificial seawater microcosm, even though nonculturability was achieved within 7 days. E. coli JM83 incubated in sterile natural seawater or sterile estuarine water did not reach nonculturability within 30 days. Under all three conditions, plasmid pBR322 DNA was maintained at approximately the initial concentration. Cloning of DNA into the plasmid pUC8 did not alter the ability of E. coli to maintain vector plasmid DNA, even when the culture was in the nonculturable state, but the concentration of plasmid DNA decreased with time in the microcosm. We conclude that E. coli is able to maintain plasmid DNA while in the nonculturable state and that the concentration at which the plasmid is maintained appears to be dependent upon the copy number of the plasmid and/or the presence of foreign DNA.  相似文献   

12.
The concentration of plasmid pBR322 DNA in nonculturable Escherichia coli JM83 was measured to determine whether the plasmid concentration changed during survival of E. coli in marine and estuarine water. E. coli JM83 containing the plasmid pBR322 was placed in both sterile seawater and sterile estuarine water and analyzed for survival (i.e., culturability) and plasmid maintenance. The concentration of pBR322 DNA remained stable in E. coli JM83 for 28 days in an artificial seawater microcosm, even though nonculturability was achieved within 7 days. E. coli JM83 incubated in sterile natural seawater or sterile estuarine water did not reach nonculturability within 30 days. Under all three conditions, plasmid pBR322 DNA was maintained at approximately the initial concentration. Cloning of DNA into the plasmid pUC8 did not alter the ability of E. coli to maintain vector plasmid DNA, even when the culture was in the nonculturable state, but the concentration of plasmid DNA decreased with time in the microcosm. We conclude that E. coli is able to maintain plasmid DNA while in the nonculturable state and that the concentration at which the plasmid is maintained appears to be dependent upon the copy number of the plasmid and/or the presence of foreign DNA.  相似文献   

13.
We describe here simple techniques for increasing the frequency of UV-induced mutations in a DNA fragment cloned in plasmid pBR322. Irradiation of both the host and the plasmid DNA before transformation is necessary to produce new mutations in the plasmid DNA, presumably because the UV-damaged pBR322 replicon cannot efficiently induce the error-prone repair pathway of Escherichia coli. In contrast, U V irradiation of the plasmid DNA alone before transformation primarily causes the transfer of preexisting mutations from the host chromosome to homologous DNA present in the plasmid. The only other kind of mutants obtained were large deletions of the plasmid DNA. Two chromosomal mutations from the host galK gene and one from the lacZ gene have been transferred to the plasmid by UV irradiation of the plasmid DNA alone. The technique can thus be of general use.  相似文献   

14.
pBR322 plasmid DNA was treated with methylene blue plus visible light (MB-light) and tested for transformation efficiency in Escherichia coli mutants defective in either formamidopyrimidine-DNA glycosylase (Fpg protein) and/or UvrABC endonuclease. The survival of pBR322 DNA treated with MB-light was not significantly reduced when transformed into either fpg-1 or uvrA single mutants compared with that in the wild-type strain. In contrast, the survival of MB-light-treated pBR322 DNA was greatly reduced in the fpg-1 uvrA double mutant. The synergistic effect of these two mutations was not observed in transformation experiments using pBR322 DNA treated with methyl methanesulfonate, UV light at 254 nm, or ionizing radiation. In vitro experiments showed that MB-light-treated pBR322 DNA is a substrate for the Fpg protein and UvrABC endonuclease. The number of sites sensitive to cleavage by either Fpg protein or UvrABC endonuclease was 10-fold greater than the number of apurinic-apyrimidinic sites indicated as Nfo protein (endonuclease IR)-sensitive sites. Seven Fpg protein-sensitive sites per PBR322 molecule were required to produce a lethal hit when transformed into the uvrA fpg-1 mutant. These results suggest that MB-light induces DNA base modifications which are lethal and that these modifications are repaired by Fpg protein and UvrABC endonuclease in vivo and in vitro. Therefore, one of the physiological functions of Fpg protein might be to repair DNA base damage induced by photosensitizers and light.  相似文献   

15.
Abstract The stability of plasmid pBR322 and a number of close derivatives was examined by continuous culture of Escherichia coli . Cultures were subjected to either glucose, phosphate or magnesium limitation in non-selective medium at a dilution rate of 0.1/h. Under these conditions pBR322 was eventually lost from the population, but only after a distinct lag period. The closely related plasmids pBR325 and especially pBR327 and pBR328, but not pAT153, were lost more rapidly. Three cosmids pHC79, pSJ55 and pJB8 were generally found to be less stable than the pBR322-type plasmids from which they were derived. Chimaeric plasmids containing DNA from yeast and from a thermophilic bacillus were also unstable in E. coli .  相似文献   

16.
The effect of berenil on plasmid DNA replication was studied on pBR322-derived plasmids containing poly(dA)poly(dT) sequences. In comparison to the parental plasmid pBR322, plasmid pKH47 harboring 100 bp of poly(dA)poly(dT) at the PvuII site showed a decrease in plasmid yield in the presence of berenil. This effect was also observed in pVL26, a related plasmid in which the location of the poly(dA)poly(dT) region had been shifted to the EcoRV site in pBR322. [(3)H]Thymidine incorporation experiments indicated that DNA synthesis may be affected in these plasmids in the presence of the drug. Bromodeoxyuridine incorporation experiments coupled to Cs(2)SO(4) equilibrium density gradient centrifugation indicated that the lower plasmid yield was due to an inhibition of DNA replication by berenil. We have also found that berenil induces DNA degradation in plasmids containing the homopolymer. Our studies strongly suggest that the effect of berenil on plasmid replication and DNA stability results from its binding to the poly(dA)poly(dT) region present in these plasmids. Moreover, we have found a correlation between the position of the poly(dA)poly(dT) region and this inhibitory effect. Thus, plasmid pKH47, containing the poly(dA)poly(dT) region most proximal to the origin of pBR322 replication, was most severely affected.  相似文献   

17.
A method is suggested for chemical modification of preselected regions of plasmid DNA by complementary single-stranded restriction fragments of DNA (srf DNA), carrying alkylating reagents. The gene coding for tetracycline resistance of plasmid pBR322 was used as a target. Srf DNA was prepared by a partial digestion of a double-stranded EcoRI-BamHI restriction fragment (377 base pairs) from Tcr by E. coli exonuclease III. The residues of an alkylating reagent N,N,N'-tri(beta-chlorethyl)-N'-(p-formylphenyl) propylenediamine 1,3 (TFP) were attached covalently to 4-5% of sfr DNA bases. The alkylating derivative of the sfr DNA was hybridized with supercoiled pBR322 plasmid DNA. The hybridization conditions (37 degrees C, 40% formamide, 0,2 M NaCl, 0,1 M Tris-HCl pH 7,5, 0,001 M EDTA) under which the bases carrying TFP residues are not eliminated from the sfr DNA, and transforming activity of pBR322 DNA does not decrease were established. It was shown that about 20% of plasmid pBR322 molecules form D-loops with alkylating sfr DNA under these conditions. It was shown that sfr DNA, carrying TFP can alkylate the complementary region of plasmid DNA, forming cross-linked D-loops. A method for the site-directed mutagenesis of switching off the preselected genes or non-transcribed DNA functional regions (promotors, introns etc) integrated into plasmids of other vectors is suggested.  相似文献   

18.
The curves of UV (254 nm)-inactivation and inactivation by furocoumarin derivatives + UVA radiation (PUVA) of bacteriophage lambda and biologically active plasmid pBR322 were measured using Escherichia coli K12 bacteria with different defects of DNA repair system as a ghost. The ratio of mono- and diadducts (interstrand cross-links) of 8-methoxypsoralen was determined that are formed after treating the DNA of pBR322 and bacteriophage lambda with PUVA. It is shown that, on the average, about five monoadducts per one diadduct are formed in DNA of pBR322, and about 0.9 monoadducts per one diadduct are formed in lambda phage DNA. An increased (up to 50%) efficiency of SOS-repair of monoadducts of 8-methoxypsoralen in DNA of pBR322 and lambda in the presence of plasmid pKM101 muc+ (incN) was found.  相似文献   

19.
We have observed, by Southern blot hybridization, numerous episomes in DNA prepared from tumors grown as athymic mouse xenografts. These extrachromosomal DNAs were present in multiple copies and existed as relaxed and supercoiled conformational isomers. The episomes were readily detected with pBR322 plasmid probes, but not with purified plasmid inserts. Subsequently, four species of bacteria were isolated from tumor xenografts, suggesting that the pBR322 related episomes which we observed were bacterial DNAs, copurified during the isolation of xenograft DNA. This finding illustrates a potential problem which may be encountered in blot hybridizations utilizing nucleic acids from primary tissue preparations.  相似文献   

20.
Effects of irradiation and heating on survival of Salmonella typhimurium ATCC 14028 were examined by measuring DNA damage and the integrity of the cytoplasmic membrane. S. typhimurium cells fell into two distinct groups following heating: (i) heat-sensitive cells, which were rapidly inactivated at 65 degrees C and (ii) heat-resistant cells, which were only slowly inactivated at 65 degrees C. Radiation sensitivity of S. typhimurium was greater in the presence of air than in the presence of N2 gas (radiation doses required to inactivate 90% of the cells, 0.394 +/- 0.029 in air and 0.561 +/- 0.035 in N2). Recovery of the covalently closed circular form of plasmid pBR322 from S. typhimurium transformants (Ampr Tetr) was decreased by irradiation but not by heating. Heating prior to irradiation significantly decreased the recovery of plasmid DNA without affecting survival of S. typhimurium. Transformability of the recovered plasmid pBR322 was affected by neither irradiation nor heating, and mutation of antibiotic resistance genes was not detected in S. typhimurium. Heating, but not irradiation, caused destabilization of the cytoplasmic membrane, allowing penetration of hydrophobic dye. These results suggest that lethality of heating followed by irradiation for S. typhimurium was additive, reflecting irradiation-induced DNA damage and heat-induced membrane destabilization. When irradiation preceded heating in the absence of air, more cells were inactivated than was expected, because of heat-inactivating radiation-damaged DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号