首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
B P Kopnin  A V Gudkov 《Genetika》1982,18(10):1683-1692
Small chromatin bodies (SCB) were revealed in Djungarian hamster cells resistant to colchicine. They looked like single bodies or like clusters of small particles. SCB were localized both in nucleus and cytoplasm. Similar formations were earlier observed in oocytes of insects with amplified extrachromosomal rDNA genes. DNA in the SCB was able to replicate not only during the S phase but also during other phases of the cell cycle. The restriction analysis showed that in cells with SCB DNA amplified sequences were replicated autonomously too. These data indicate that SCB in colchicine-resistant cells contain amplified genes. Besides, SCB double-minute chromosomes (DMs) were observed in some resistant sublines. In one of them, DMs were the only karyotypic alteration. The relationship between SCB, chromosomal homogeneously staining regions (HSRs) and DMs was studied. Single SCB and DMs appeared at the early stage of the development of colchicine-resistance (the level of drug resistance is 16-22). Selection of variants 170-220-fold resistant to colchicine was usually accompanied by the decrease in the cell number with SCB and DMs and by the increase in the amount of cells containing the chromosomes with HSRs. During the further enhancement of drug resistance (700-750), some decrease in the number of cells with HSRs and the appearance of the great number of cells containing large groups of SCB were found. The loss of colchicine-resistance observed during cultivation in colchicine free medium was accompanied by the disappearance of HSRs, emergence of SCB and DMs and further elimination of SCB and DMs from cells. The quantity of autonomously replicating amplified DNA fragments after digestive by HindIII was increased with the enhancement of SCB number in cultures.  相似文献   

2.
Kopnin  B. P.  Massino  J. S.  Gudkov  A. V. 《Chromosoma》1985,92(1):25-36
Chromosomal analysis of 26 Djungarian hamster cell lines obtained from 11 independent clones and possessing different levels of resistance to colchicine or adriablastin as a consequence of gene amplification revealed regular patterns in the karyotypic changes that accompanied the development of drug resistance. Usually the sequence of karyotypic changes was as follows: first an additional chromosome 4 appeared; then single unpaired small chromatin bodies (SCBs) arose; later in the middle part of the long arm of one of three chromosomes 4 long homogeneously staining regions (HSRs) and double minute chromosomes (DMs) were formed; and finally in the most resistant variants large clusters of SCBs appeared. The emergence of the clusters of the SCBs correlated well with the occurrence of autonomously replicating, amplified DNA sequences. In contrast to DNA of the HSRs the DNA of the SCBs could replicate outside the S-phase of the cell cycle. When kept in a non-selective medium, the cells gradually lost their resistance to colchicine: 1%–4% of the cells lost the capacity to form colonies in the selective medium independently of the pattern of location in them of amplified genes (in chromosomal HSRs, SCBs, or DMs). Loss of drug resistance was accompanied by disappearance of the chromosomal HSRs, SCBs, and DMs. Chromosomal analysis of the set of methotrexate-resistant Djungarian hamster cell lines indicated the following karyotypic evolution: first the additional material on the distal part of one of two chromosomes 3 appeared; then the light HSRs were formed on the distal part of one of two chromosomes 4; later clusters of SCBs and HSRs arose on the distal part of the short arm of chromosome 3. Probably the amplification of different genes is characterized by specific patterns of karyotypic alterations.  相似文献   

3.
Gene amplification is one of the major mechanisms of acquisition of drug resistance and activation of oncogenes in tumors. In mammalian cells, amplified chromosomal regions are manifested cytogenetically as extrachromosomal double minutes (DMs) and chromosomal homogeneously staining regions (HSRs). We recently demonstrated using yeast model system that hairpin-capped double strand breaks (DSBs) generated at the location of human Alu-quasipalindromes can trigger both types of gene amplification. Specifically, the dicentric chromosomes arising from replication of hairpin-capped molecules can be precursors for intrachromosomal amplicons. The formation of HSRs can be accounted for either by breakage-fusion-bridge (BFB) cycle which necessitates nonhomologous end-joining pathway (NHEJ) or by the repair event involving homologous recombination (HR). In this study, we report that intrachromosomal gene amplification mediated by hairpin-capped DSBs is independent of NHEJ machinery, however requires the functions of Rad52 and Rad51 proteins. Based on our observations, we propose a HR-dependent mechanism to explain how the breakage of dicentric chromosomes can lead to the formation of HSRs.  相似文献   

4.
Results of karyological analysis of cells CHL V-79 RJK selected for resistance to ethidium bromide (EB) causing multidrug resistance (MDR) (line Vebr-5) were compared with the data of microfluorimetric determination of DNA content in individual chromosomes of the karyotype. The analysis was performed at the 11th and 88th passages. Karyotyping of Vebr-5 has shown the presence of an additional genetic material (ADM) in the form of homogenously or differentially stained regions (HSRs and DSRs, respectively) in two chromosomes (Z1 and Z6, loci 1 p29-31 and 1q26, respectively). HSRs in Z6, in the region of localization of the wild type of gene mdr, had unstable length and structure characteristic of morphological markers of amplification of genes of the family mdr. During long cultivation of Vebr-5 in the presence of EB (88 passages), the instability of HSRs in Z6 increased. Results of microfluorimetric analysis of Vebr-5 at the 11th passage have shown an increase in the DNA content not only in chromosomes Z1 and Z6 marked by HSRs, but also in three chromosomes (Z5, Z12 and Z13) that have no visual morphological changes. The corresponding analysis at the 88th passage has also revealed non-random changes in the DNA content in four more chromosomes: an increase in Z14, while a decrease in chromosomes 8, Z7, and Z9. A decrease of the DNA content in chromosomes is considered to be a result of a partial loss of genetic material, while its increase is a result of its translocation and (or) amplification. Coefficient of variation of the DNA content changes for large chromosomes amounted to about 9%. while for small chromosomes it is about 26%, which indicates that small chromosomes have greater potential for instability than the large ones. The data obtained not only confirm, but also enlarge the concept of directions and character of destabilization of the cell genetic apparatus in the process of neoplastic transformation due to the MDR acquisition by cells.  相似文献   

5.
6.
Amplified genes are frequently localized on extrachromosomal double minutes (DMs) or in chromosomal homogeneously staining regions (HSRs). We previously showed that a plasmid bearing a mammalian replication initiation region could efficiently generate DMs and HSRs after transfection into human tumor cell lines. The Breakage-Fusion-Bridge (BFB) cycle model, a classical model that explains how HSRs form, could also be used to explain how the transfected plasmids generate HSRs. The BFB cycle model involves anaphase bridge formation due to the presence of dicentric chromosomes, followed by the breakage of the bridge. In this study, we used our plasmid-based model system to analyze how anaphase bridges break during mitosis. Dual-color fluorescence in situ hybridization analyses revealed that anaphase bridges were most frequently severed in their middle irrespective of their lengths, which suggests that a structurally fragile site exists in the middle of the anaphase bridge. Breakage of the chromosomal bridges occurred prior to nuclear membrane reformation and the completion of cytokinesis, which indicates that mechanical tension rather than cytokinesis is primarily responsible for severing anaphase bridges. Time-lapse observation of living cells revealed that the bridges rapidly shrink after being severed. If HSR length was extended too far, the bridge could no longer be resolved and became tangled depending on the tension. The unbroken bridge appeared to inhibit the completion of cytokinesis. These observations strongly suggest that anaphase bridges are highly elastic and that the length of the spindle axis determines the maximal HSR length.  相似文献   

7.
We carried out cytogenetic studies of four Chinese hamster, mouse, and human cell lines selected for high levels of resistance (500- to 4,000-fold) to vincristine (VCR) by a multistep selection procedure. All cells examined contained gene amplification-associated metaphase chromosome abnormalities, either homogeneously staining regions (HSRs), abnormally banding regions (ABRs), or double-minute chromosomes (DMs); control actinomycin D- and daunorubicin-resistant hamster lines did not exhibit this type of chromosomal abnormality. VCR-resistant Chinese hamster sublines exhibited both increased synthesis of the protein V19 (Mr 19,000; pl = 5.7) and increased concentrations of V19 polysomal mRNA. When VCR-resistant cells were grown in drug-free medium, level of resistance, synthesis of V19, and amount of V19 mRNA declined in parallel with mean length of the HSR or mean number of DMs per cell. Cross-resistance studies indicate that VCR-resistant cells have increased resistance both to antimitotic agents and to a wide variety of agents unrelated to VCR in chemical structure and/or mechanism of action. Our studies of tubulin synthesis in Chinese hamster cells indicate no overproduction of tubulin or presence of a mutant tubulin species. Comparison with antifolate-resistant Chinese hamster cells known to contain amplified dihydrofolate reductase genes localized to HSRs or ABRs strongly suggests that the HSRs, ABRs, or DMs of the Vinca alkaloid-resistant sublines likewise represent cytological manifestations of specifically amplified genes, possibly encoding V19, involved in development of resistance to VCR.  相似文献   

8.
B P Kopnin  J J Lukas 《Genetika》1982,18(8):1320-1325
Two new Djungarian hamster cell lines which are resistant to chloramphenicol (CAP) are described. The clonal DMCAP subline was obtained by incubation of HPRT-deficient DM-15 cells for 6 months in the medium containing 50 micron/ml of CAP. Resistance to CAP is determined in DMCAP cells by the cytoplasm: cytoplasts from these cells could transmit resistance to CAP into sensitive cells, such as L or DMCH-2/1 cells by hybridization. However, after transplantation of DMCAP nuclei into L cytoplasts, the resulting hybrid cells lost resistance to CAP to a great extent. Using the capacity of DMCAP cytoplasts to transfer CAP-resistance, we obtained a line of hybrids (cyt. DMCAP X DMCH-2/1) which was resistant to 8-azaguanine, CAP and colchicine. As in the original DMCH-2/1 cell line, colchicine-resistance in the cybrid line appeared to be associated with gene amplification. Thus, chromosomal analysis showed that the karyotype of the hybrids was identical to that of DMCH-2/1 cells. Both contained marker chromosomes with homogeneously staining regions (HSRs) and, during incubation in the colchicine-free medium, lost resistance to colchicine. The loss of resistance was accompanied by a decrease in the number of cells containing chromosomes with HSRs and an increase in the number with double minutes (DMs). Many cells containing small chromatin bodies in their cytoplasm also appeared. These chromatin bodies may be DMs lost from the nucleus during mitosis. These new sublines with cytoplasmic and nuclear genetic markers may be useful in the further study of cytoplasmic-nuclear interactions, particularly, in the analysis of possible activities of the DNA fragments which appear in the cytoplasm during reversion to colchicine sensitivity.  相似文献   

9.
Cell lines (COLO 320 DM and COLO 320 HSR), established from a human neuroendocrine tumor, contain an amplified cellular oncogene (c-myc). We have previously shown that the homogeneously staining regions (HSRs) of a marker chromosome in the COLO 320 HSR cells that evolved in culture from COLO 320 DM cells contain amplified c-myc. Molecular hybridization in situ has now been used to demonstrate that the HSRs are on both arms of what was once an X chromosome. We also show that amplified c-myc copies are present in the isolated double minute chromosomes (DMs) of the COLO 320 DM cells that were characteristic of the tumor cells initially established from the patient. The results suggest that the amplified c-myc appeared first as DMs and was subsequently transposed to engender HSRs on an X chromosome. The initial COLO 320 tumor cell may have acquired two early replicating (i.e., active) X chromosomes and lost the late replicating (i.e., inactive) X.  相似文献   

10.
The c-myc gene is amplified in the human breast carcinoma cell line SW 613-S. At early in vitro passages, the extra copies of the gene were mainly localized in double minute chromosomes (DMs), as shown by in situ hybridization with a biotinylated c-myc probe. However, cells without DMs were also present in which the c-myc genes were found integrated into any of several distinct chromosomes (mainly 7q+, 4 and 4q+, and 1). When this cell line was propagated in vitro, the level of c-myc amplification decreased because cells with DMs and a high amplification level were lost and replaced by cells without DMs and having a low amplification level. On the contrary, when early passage SW 613-S cells were grown in vivo, as subcutaneous tumours in nude mice, cells with numerous DMs and a high level of c-myc amplification were selected for. In one cell line (SW 613-Tu1) established from such a tumour, the DM-containing cells were substituted at late passages for cells with a high number of c-myc copies integrated within an abnormally banded region, at band 17q24 of a 17q+ chromosome. When only cells with integrated genes were present, this cell line was still highly tumorigenic indicating that the localization of the c-myc genes in DMs was not required for these cells to be tumorigenic in nude mice. Furthermore, cells of the secondary tumours induced by SW 613-Tu1 did not contain any DMs showing that in vivo growth did not promote the release of integrated c-myc copies into DMs.  相似文献   

11.
Molecular cloning of genomic sequences altered in cancer cells is believed to lead to the identification of new genes involved in the initiation and progression of the malignant phenotype. DNA amplification is a frequent molecular alteration in tumor cells, and is a mode of proto-oncogene activation. The cytologic manifestation of this phenomenon is the appearance of chromosomal homogeneously staining regions (HSRs) or double minute bodies (DMs). The gastric carcinoma cell line KATO III is characterized by a large HSR on chromosome 11. In-gel renaturation analysis confirmed the amplification of DNA sequences in this cell line, yet none of 42 proto-oncogenes that we tested is amplified in KATO III DNA. We employed the phenol-enhanced reassociation technique (PERT) to isolate 21 random DNA fragments from the amplified domain, and used 6 of them to further clone some 150 kb from that genomic region. While in situ hybridization performed with some of these sequences indicated that in KATO III they are indeed amplified within the HSR on chromosome 11, somatic cell hybrid analysis and in situ hybridization to normal lymphocyte chromosomes showed that they are derived from chromosome 10, band q26. The same sequences were found to be amplified in another gastric carcinoma cell line, SNU-16, which contains DMs, but were not amplified in other 70 cell lines representing a wide variety of human neoplasms. One of these sequences was highly expressed in both KATO III and SNU-16. Thus, the cloned sequences supply a starting point for identification of novel genes which might be involved in the pathogenesis of gastric cancers, and are located in a relatively unexplored domain of the human genome.  相似文献   

12.
13.
Amplified genes in cancer cells reside on extrachromosomal double minutes (DMs) or chromosomal homogeneously staining regions (HSRs). We used a plasmid bearing a mammalian replication initiation region to model gene amplification. Recombination junctions in the amplified region were comprehensively identified and sequenced. The junctions consisted of truncated direct repeats (type 1) or inverted repeats (type 2) with or without spacing. All of these junctions were frequently detected in HSRs, whereas there were few type 1 or a unique type 2 flanked by a short inverted repeat in DMs. The junction sequences suggested a model in which the inverted repeats were generated by sister chromatid fusion. We were consistently able to detect anaphase chromatin bridges connected by the plasmid repeat, which were severed in the middle during mitosis. De novo HSR generation was observed in live cells, and each HSR was lengthened more rapidly than expected from the classical breakage/fusion/bridge model. Importantly, we found massive DNA synthesis at the broken anaphase bridge during the G1 to S phase, which could explain the rapid lengthening of the HSR. This mechanism may not operate in acentric DMs, where most of the junctions are eliminated and only those junctions produced through stable intermediates remain.  相似文献   

14.
Double minute chromosomes (DMs) are acentric, autonomously replicating extra-chromosomes and frequently mediate gene amplification in tumor and drug resistant cells. Atomic force microscopy (AFM) is a powerful tool in microbiology. We used AFM to explore the ultrastructure of DMs in mouse fibroblasts 3T3R500. DMs in various phases of cell cycle were also studied in order to elucidate the mechanisms of their duplication and separation. Metaphase spread and induced premature condensed chromosomes (PCCs) were observed under the AFM. DMs were detected to be composed of two compact spheres linked by fibers. The fibers of DMs directly connected with metaphase chromosomes were observed. Many single-minutes and few DMs were detected in G1 PCCs, while more DMs were detected in S PCCs than in G1 PCCs. Besides, all of the DMs in G2 PCCs were coupled. Our present results suggested that DMs might divide into single-minutes during or before G1-phase, followed by duplication of the single-minutes in S-phase. Moreover, we introduced a new powerful tool to study DMs and got some ideal results.  相似文献   

15.
B P Kopnin  A V Godkov 《Genetika》1982,18(9):1513-1523
The series of sublines 170-750 times more resistant to colchicine were obtained from 10 independent clones of Djungarian hamster cells possessing 16-22-fold resistance to the drug. From each clone, several sublines with different levels of colchicine-resistance were developed. The drug resistance was unstable. 2,7-4,0% of cells per population doubling lost resistance to selective dosages of colchicine. The loss of resistance was stepwise. The chromosomes stained by trypsin G-banding technique were studied in 17 sublines. 15 sublines derived from 9 independent clones contained chromosomes with long homogeneously staining regions (HSRs). These were, as a rule, primarily localized in the long arm of chromosome 4. During cultivation, HSRs were transferred from chromosome 4 into other chromosomes. Evidently, transposition of HSRs was due to translocations of different chromosomes of HSRs in the chromosome 4 and to subsequent breakages of the resulting dicentrics within HSRs. A great number of different chromosomal rearrangements was also found in the cells containing HSRs. Possibly, formation of HSR leads to destabilization of the karyotype and to the variability of the genome. The length of HSRs varied in different cells of each subline. The levels of colchicine-resistance in different sublines did not correlate with the average length of HSRs in their cells. The lack of connection between the lengths of HSRs and the levels of drug resistance as well as the existence of highly resistant sublines with gene amplification, but without HSRs, suggest that amplified genes are localized in Djungarian hamster colchicine-resistant cells both in chromosomes and extrachromosomally.  相似文献   

16.
Two independently selected series of rat hepatoma cell lines resistant to the drug deoxycoformycin (dCF) were analyzed karyotypically. Several forms of homogeneously staining regions (HSRs) were present on metaphase chromosomes of these cells. In some instances HSRs comprised nearly an entire chromosome, which are among the largest chromosomes in the karyotype. Stable resistance to dCF is acquired in rat cells by overproduction of the enzyme adenosine deaminase (ADA) as a result of amplification of ADA gene sequences. We have localized the amplified ADA gene sequences to HSRs on metaphase chromosomes from both series of dCF-resistant cell lines by in situ hybridization. Based upon the number of ADA gene sequences present and the lengths of the HSRs, we have estimated the size of the amplified unit to range from 450 to 1,000 kb.  相似文献   

17.
Gene amplification chiefly manifests as homogeneously stained regions (HSRs) or double minutes (DMs) in cytogenetically and extrachromosomal DNA (ecDNA) in molecular genetics. Evidence suggests that gene amplification is becoming a hotspot for cancer research, which may be a new treatment strategy for cancer. DMs usually carry oncogenes or chemoresistant genes that are associated with cancer progression, occurrence and prognosis. Defining the molecular structure of DMs will facilitate understanding of the molecular mechanism of tumorigenesis. In this study, we re‐identified the origin and integral sequence of DMs in human colorectal adenocarcinoma cell line NCI‐H716 by genetic mapping and sequencing strategy, employing high‐resolution array‐based comparative genomic hybridization, high‐throughput sequencing, multiplex‐fluorescence in situ hybridization and chromosome walking techniques. We identified two distinct populations of DMs in NCI‐H716, confirming their heterogeneity in cancer cells, and managed to construct their molecular structure, which were not investigated before. Research evidence of amplicons distribution in two different populations of DMs suggested that a multi‐step evolutionary model could fit the module of DM genesis better in NCI‐H716 cell line. In conclusion, our data implicated that DMs play a very important role in cancer progression and further investigation is necessary to uncover the role of the DMs.  相似文献   

18.
原子力显微镜在双微体形态学研究中的应用   总被引:2,自引:0,他引:2  
原子力显微术(atomic force microscopy,AFM)是一种新型的纳米显微技术,由于其拥有标本制备简单、分辨率高等优点,因此常用于细胞超微结构的观察。双微体(double minute chromosomes,DMs)是基因扩增的主要表现形式,经常出现在肿瘤细胞及耐药细胞中,可使肿瘤细胞获得生存优势或产生耐药性,因此对双微体进行研究可使人类了解肿瘤的生长特性及其抗药性的产生机理。为寻找一种研究双微体的有效方法,本实验利用原子力显微镜对小鼠耐氨甲喋呤细胞3T3R500中的双微体进行观察,在获得双微体高分辨AFM形态图的同时,还对双微体的大小进行了测量,发现细胞中双微体大小存在差异。此外,就原子力显微镜在双微体研究中的一些技术细节进行了探讨。实验结果表明原子力显微术是研究双微体的一种有效手段。  相似文献   

19.
For several years the SEWA mouse ascites tumor has been a carrier of double minute chromosomes (DMs), some 90% of its cells containing from one to several hundred DMs. In one specific subline of this tumor, the cells with DMs had decreased in frequency to less than 5% of the cells. At the same time, the stemline chromosome number had increased from 43 to around 50. This was due to the presence, in addition to the ordinary telocentric chromosomes, of a varying number of medium-sized metacentrics. The fact that these chromosomes deviated from ordinary mouse chromosomes in special features, such as median centromeric position, early DNA replication, and complete lack of centromeric heterochromatin, indicates that they represent a new type of chromosome. Their striking agreement with the DMs in many properties makes it tempting to associate their origin with the disappearance of the DMs.  相似文献   

20.
Fan Y  Mao R  Lv H  Xu J  Yan L  Liu Y  Shi M  Ji G  Yu Y  Bai J  Jin Y  Fu S 《Journal of applied genetics》2011,52(1):53-59
Double minute chromosomes (DMs) are the cytogenetic hallmark of extra-chromosomal genomic amplification. The frequency of DMs in primary cancer and the cytogenetic features of DMs-positive primary cancer cases are largely unknown. To unravel these issues, we retrieved the Mitelman database and analyzed all DMs-positive primary cancerous karyotypes (787 karyotypes). The overall frequency of DMs is 1.4% (787 DMs-positive cases; total 54,398 cases). We found that DMs have the highest frequency in adrenal carcinoma (28.6%, topography) and neuroblastoma (31.7%, morphology). The frequencies of DMs in each tumor were much lower than in previous reports. The frequency of DMs in malignant cancers is significantly higher than in benign cancers, which confirms that DMs are malignant cytogenetic markers. DMs combined cytogenetic abnormalities are identified and sorted into two groups by principal component analysis (PCA), with one group containing -4, -5, -8, -9, -10, -13, -14, -15, -16, -17, -18, -20, -21, and -22, and the other containing -1p, -5q, +7, and +20. The prominent imbalance in DMs-positive cancer cases is chromosome loss. However, DMs-positive cancer cases, deriving from different morphologic cancers, cannot be clearly divided into subgroups. Our large database analysis provides novel knowledge of DMs and their combined cytogenetic abnormalities in primary cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号