首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We used the patch clamp technique to record from taste cells in thin transverse slices of lingual epithelium from Necturus maculosus. In this preparation, the epithelial polarity and the cellular organization of the taste buds, as well as the interrelationships among cells within the taste bud, were preserved. Whole-cell recording, combined with cell identification using Lucifer yellow, allowed us to identify distinct subpopulations of taste cells based on their electrophysiological properties. Receptor cells could be divided in two groups: one group was characterized by the presence of voltage-gated Na+, K+, and Ca2+ currents; the other group was characterized by the presence of K+ currents only. Therefore, receptor cells in the first group would be expected to be capable of generating action potentials, whereas receptor cells in the second group would not. Basal taste cells could also be divided into two different groups. Some basal cells possessed voltage-gated Na+, K+, and Ca2+ conductances, whereas other basal cells only had K+ conductance. In addition to single taste cells, we were able to identify electrically coupled taste cells. We monitored cell- cell coupling by measuring membrane capacitance and by observing Lucifer yellow dye coupling. Electrical coupling in pairs of dye- coupled taste receptor cells was strong, as indicated by experiments with the uncoupling agent 1-octanol. Electrically coupled receptor cells possessed voltage-gated currents, including Na+ and K+ currents. The electrophysiological differentiation among taste cells presumably is related to functional diversifications, such as different chemosensitivities.  相似文献   

2.
The mutation W434F produces an apparently complete block of potassium current in Shaker channels expressed in Xenopus oocytes. Tandem tetrameric constructs containing one or two subunits with this mutation showed rapid inactivation, although the NH2-terminal inactivation domain was absent from these constructs. The inactivation showed a selective dependence on external cations and was slowed by external TEA; these properties are characteristic of C-type inactivation. Inactivation was, however, incompletely relieved by hyperpolarization, suggesting the presence of a voltage-independent component. The hybrid channels had near-normal conductance and ion selectivity. Single-channel recordings from patches containing many W434F channels showed occasional channel openings, consistent with open probabilities of 10−5 or less. We conclude that the W434F mutation produces a channel that is predominantly found in an inactivated state.  相似文献   

3.
The palatal region of the oral cavity in rodents houses 100-300 taste buds and is particularly sensitive to sweet and umami compounds; yet, few studies have examined the expression patterns of transduction-related molecules in this taste field. We investigated the interrelationships between members of the T1R family and between each T1R and gustducin in palatal taste buds. Similar to lingual taste buds, T1R1 and T1R2 are generally expressed in separate palatal taste cells. In contrast to lingual taste buds, however, T1R2 and T1R3-positive palatal taste cells almost always coexpress gustducin, suggesting that sweet taste transduction in the palate is almost entirely dependent on gustducin. T1R1-positive palate taste cells coexpress gustducin about half the time, suggesting that other G proteins may contribute to the transduction of umami stimuli in this taste field.  相似文献   

4.
All representatives of higher eukaryotes can probably differentially perceive nutrients and poisonous substances. Molecular mechanisms of transduction of taste information have been best studied for mammals and for the fruit fly Drosophila. Here, we consider receptor mechanisms and conjugated primary signal processes of stimulation of taste receptor cells by stimuli of various taste modalities.  相似文献   

5.
Summary The presence and regional localization of voltagegated ion channels on taste cells inNecturus maculosus were studied. Lingual epithelium was dissected from the animal and placed in a modified Ussing chamber such that individual taste cells could be impaled with intracellular microelectrodes and the chemical environment of the apical and basolateral membranes of cells could be strictly controlled. That is, solutions bathing the the mucosal and serosal surfaces of the epithelium could be exchanged independently and the effects of pharmacological agents could be tested selectively on the apical or basolateral membranes of taste cells. In the presence of amphibian physiological saline, action potentials were elicited by passing brief depolarizing current pulses through the recording electrode. Action potentials provided a convenient assay of voltage-gated ion channels. As in other excitable tissues, blocking current through Na+, K+, or Ca2+ channels had predictable and consistent effects on the shape and magnitude of the action potential. A series of experiments was conducted in which the shape and duration of regenerative action potentials were monitored when the ionic composition was altered and/or pharmacological blocking agents were added to the mucosal or to the serosal chamber. We have found the following: (1) voltage-gated K+ channels (delayed rectifier) are found predominately, if not exclusively, on the chemoreceptive apical membrane; (ii) voltage-gated Na+ and Ca2+ channels are found on the apical (chemoreceptive) and basolateral (synaptic) membrane; (iii) there is a K+ leak channel on the basolateral membrane which appears to vary seasonally in its sensitivity to TEA. The nonuniform distribution of voltage-gated K+ channels and their predominance on the apical membrane may be important in taste transduction: alterations in apical K+ conductance may underlie receptor potentials ellicted by rapid stimuli.  相似文献   

6.
7.
Single-channel patch-clamp experiments were performed on MDCK cells in order to characterize the ionic channels participating in regulatory volume decrease (RVD). Subconfluent layers of cultured cells were exposed to a hypotonic medium (150 mOsm), and the membrane currents at the single-channel level were measured in cell-attached experiments. The results indicate that MDCK cells respond to a hypotonic swelling by activating several different ionic conductances. In particular, a potassium and a chloride channel appeared in the recordings more frequently than other channels, and this allowed a more detailed study of their properties in the inside-out configuration of the patch-clamp technique. The potassium channel had a linear I/V curve with a unitary conductance of 24 +/- 4 pS in symmetrical K+ concentrations (145 mM). It was highly selective for K+ ions vs. Na+ ions: PNa/PK less than 0.04. The time course of its open probability (P0) showed that the cells responded to the hypotonic shock with a rapid activation of this channel. This state of high activity was maintained during the first minute of hypotonicity. The chloride channel participating in RVD was an outward-rectifying channel: outward slope conductance of 63.3 +/- 4.7 pS and inward slope conductance of 26.1 +/- 4.9 pS. It was permeable to both Cl- and NO3- and its maximal activation after the hypotonic shock was reached after several seconds (between 30 and 100 sec). The activity of this anionic channel did not depend on cytoplasmic calcium concentration. Quinine acted as a rapid blocker of both channels when applied to the cytoplasmic side of the membrane. In both cases, 1 mM quinine reversibly reduced single-channel current amplitudes by 20 to 30%. These results indicate that MDCK cells responded to a hypotonic swelling by an early activation of highly selective potassium conductances and a delayed activation of anionic conductances. These data are in good agreement with the changes of membrane potential measured during RVD.  相似文献   

8.
汤清波  马英  黄玲巧  王琛柱 《昆虫学报》2011,54(12):1433-1444
很多昆虫具有极其灵敏的味觉感受系统, 在其取食选择、 交配和产卵等过程中起重要作用。相对于昆虫的嗅觉机制, 对昆虫味觉感受机制的研究较少。传统的味觉感受研究主要集中在味觉感器外部形态、 味觉电生理和行为学上。近年来随着分子遗传学、 生物信息学和神经生物学技术的应用, 昆虫味觉的研究不断深入, 主要体现在下列两方面: (1)味觉受体方面, 通过分子生物信息学等手段获得了多种昆虫的味觉受体, 不同种昆虫之间受体数目差异较大, 不同受体之间氨基酸的相似性较低。通常, 根据味觉受体配体物质的性质可以把味觉受体分为取食抑制素受体和取食刺激素受体两大类。(2)味觉神经元的投射及味觉编码机制方面, 多个研究表明昆虫外围味觉神经元在中枢神经系统中的投射部位为咽下神经节和后脑, 但是不同性质的受体神经元投射的具体位置有所不同。本文对昆虫味觉感器和神经元的基本特征, 味觉受体的进化、 表达和功能, 味觉神经元在中枢神经系统中的投射, 味觉神经元的编码机制及味觉可塑性等进行了综述。  相似文献   

9.
C-type inactivation in Shaker potassium channels inhibits K+ permeation. The associated structural changes appear to involve the outer region of the pore. Recently, we have shown that C-type inactivation involves a change in the selectivity of the Shaker channel, such that C-type inactivated channels show maintained voltage-sensitive activation and deactivation of Na+ and Li+ currents in K+-free solutions, although they show no measurable ionic currents in physiological solutions. In addition, it appears that the effective block of ion conduction produced by the mutation W434F in the pore region may be associated with permanent C-type inactivation of W434F channels. These conclusions predict that permanently C-type inactivated W434F channels would also show Na+ and Li+ currents (in K+-free solutions) with kinetics similar to those seen in C-type-inactivated Shaker channels. This paper confirms that prediction and demonstrates that activation and deactivation parameters for this mutant can be obtained from macroscopic ionic current measurements. We also show that the prolonged Na+ tail currents typical of C-type inactivated channels involve an equivalent prolongation of the return of gating charge, thus demonstrating that the kinetics of gating charge return in W434F channels can be markedly altered by changes in ionic conditions.  相似文献   

10.
西洛他唑对人心房肌细胞瞬间外向钾电流的影响   总被引:2,自引:0,他引:2  
目的:观察西洛他唑对人心房肌细胞瞬间外向钾电流(Ito1)的影响,探讨该药抗心律失常作用的机制.方法:二步酶解法分离人单个右心房肌细胞,应用全细胞膜片钳技术记录人心房肌细胞Ito1.结果:在保持电位-50 mV和去极化脉冲为 50 mV条件下,30 μmol/L西洛他唑显著降低Ito1,使Ito1幅值由加药前(8.16±0.70)pA/pF降至(4.84±0.60)pA/pF(P<0.01).西洛他唑在1~50 μmol/L范围内呈浓度依赖性的抑制Ito1,1 μmol/L时即产生作用,50 μmol/L时达最大效应(降低51.09%±3.00%),IC50为(13.18±2.60)μmol/L.此外,该药对Ito1的电压依赖性激活和失活曲线以及恢复曲线均无显著影响.结论:本实验结果表明西洛他唑浓度依赖性地阻滞人心房肌细胞的Ito1.  相似文献   

11.
12.
Summary The nuclear envelope functions as a selective barrier between nucleus and cytoplasm. During cycles of cell division the nuclear envelope repeatedly disassembles and re-associates. Presumably, each cycle re-establishes the functional and structural integrity of the nuclear envelope. After repeated rounds of cell division, as occurs during differentiation, the selectivity and configuration of the envelope may change. We compare the ionic conductance and the nuclear pore density in four types of murine nuclei: germinal vesicles in oocytes, pronuclei in zygotes, nuclei from two-cell blastomeres, and somatic cell nuclei from the liver. A large-conductance ion channel is present in all nuclear envelopes. Liver cell nuclei have a greater number of these channels than those from earlier developmental stages, and they also have a higher density of nuclear pores. In this article we hypothesize an association between the ion channels and the nuclear pores.  相似文献   

13.
Voltage-gated proton channels were studied under voltage clamp in excised, inside-out patches of human eosinophils, at various pHi with pHo 7.5 or 6.5 pipette solutions. H+ current fluctuations were observed consistently when the membrane was depolarized to voltages that activated H+ current. At pHi < or = 5.5 the variance increased nonmonotonically with depolarization to a maximum near the midpoint of the H+ conductance-voltage relationship, gH-V, and then decreased, supporting the idea that the noise is generated by H+ channel gating. Power spectral analysis indicated Lorentzian and 1/f components, both related to H+ currents. Unitary H+ current amplitude was estimated from stationary or quasi-stationary variance, sigmaH2. We analyze sigmaH2 data obtained at various voltages on a linearized plot that provides estimates of both unitary conductance and the number of channels in the patch, without requiring knowledge of open probability. The unitary conductance averaged 38 fS at pHi 6.5, and increased nearly fourfold to 140 fS at pHi 5.5, but was independent of pHo. In contrast, the macroscopic gH was only 1.8-fold larger at pHi 5.5 than at pHi 6.5. The maximum H+ channel open probability during large depolarizations was 0.75 at pHi 6.5 and 0.95 at pHi 5.5. Because the unitary conductance increases at lower pHi more than the macroscopic gH, the number of functional channels must decrease. Single H+ channel currents were too small to record directly at physiological pH, but at pHi < or = 5.5 near Vthreshold (the voltage at which gH turns on), single channel-like current events were observed with amplitudes 7-16 fA.  相似文献   

14.
Effects of internal Sr2+ on the activity of large-conductance Ca2+-activated K+ channels were studied in inside-out membrane patches from goldfish saccular hair cells. Sr2+ was approximately one-fourth as potent as Ca2+ in activating these channels. Although the Hill coefficient for Sr2+ was smaller than that for Ca2+, maximum open-state probability, voltage dependence, steady state gating kinetics, and time courses of activation and deactivation of the channel were very similar under the presence of equipotent concentrations of Ca2+ and Sr2+. This suggests that voltage-dependent activation is partially independent of the ligand. Internal Sr2+ at higher concentrations (>100 μM) produced fast and slow blockade both concentration and voltage dependently. The reduction in single-channel amplitude (fast blockade) could be fitted with a modified Woodhull equation that incorporated the Hill coefficient. The dissociation constant at 0 mV, the Hill coefficient, and zd (a product of the charge of the blocking ion and the fraction of the voltage difference at the binding site from the inside) in this equation were 58–209 mM, 0.69–0.75, 0.45–0.51, respectively (n = 4). Long shut events (slow blockade) produced by Sr2+ lasted ∼10–200 ms and could be fitted with single-exponential curves (time constant, τl−s) in shut-time histograms. Durations of burst events, periods intercalated by long shut events, could also be fitted with single exponentials (time constant, τb). A significant decrease in τb and no large changes in τl−s were observed with increased Sr2+ concentration and voltage. These findings on slow blockade could be approximated by a model in which single Sr2+ ions bind to a blocking site within the channel pore beyond the energy barrier from the inside, as proposed for Ba2+ blockade. The dissociation constant at 0 mV and zd in the Woodhull equation for this model were 36–150 mM and 1–1.8, respectively (n = 3).  相似文献   

15.
Experiments were performed to compare the mechanism of block of voltage-dependent K channels by various short and long alkyl chain tetraalkylammonium (TAA) ions at internal and external sites. Current through single channels was recorded from excised membrane patches of cultured neuroblastoma cells using the patch-clamp technique. All of the TAA derivatives tested blocked the open channel when applied to either side of the membrane. Tetraethylammonium (TEA) reduced the amplitude of current through the open channel. Tetrabutylammonium (TBA) and tetrapentylammonium (TPeA) reduced the open time as a function of the concentration. An additional nonconducting state was observed when TBA or TPeA was applied internally or externally, due to the presence of a drug-bound and blocked state of the channel. The closing rate under control conditions was similar to that in the presence of external tetramethylammonium (TMA), suggesting that channel closing is independent of external drug binding. The concentration for half maximal block of the channel by external TEA was 80 microM. The channel was less sensitive to internal TEA, which half blocked the channel at 27 mM. The dissociation rate of long alkyl chain TAA ions from the channel was slower when applied to the inside, compared to external application, suggesting the presence of distinct internal and external receptors. Long alkyl chain TAA derivatives, such as TBA had a faster association rate with the open channel when applied to the inside of the membrane than when applied to the outside.  相似文献   

16.
Summary The present study investigates the role of cytoskeletal elements, microtubules and microfilaments, on ion transport systems activated during volume regulatory processes in PC12 pheochromocytoma cells. Disruption of microtubule network by colchicine (0.1 mm) or vinblastine sulfate (10 m) has no significant effect on PC12 cell hydration or on changes of the intracellular K+, Cl and Na+ content observed in hypo-osmotic conditions. Disruption of microfilament network by cytochalasin B strongly affects volume regulation in a dose-dependent manner. Cytochalasin B leads to a potentiation of the initial cell swelling and the regulatory volume decrease is suppressed. Although, the internal K+ and Cl level decreases significantly, as demonstrated by measurements of intracellular ion content and 86Rb fluxes. Using the patch-clamp technique, we could demonstrate in PC12 cell membranes an ion channel whose gating is affected by application of a negative hydrostatic pressure (mechanical stress) to the membrane patch, by exposure of the cell to hypoosmotic medium (osmotic stress), or by disruption of the microfilament network with cytochalasin B.Water and ion content measurements, as well as 86Rb fluxes have been carried out in the Laboratory of Animal Physiology from Professor R. Gilles, University of Liège, Belgium. M. Cornet was supported by the F.N.R.S., Belgium.  相似文献   

17.
Planar patch clamp has revolutionized characterization of ion channel behavior in drug discovery primarily via advancement in high throughput. Lab use of planar technology, however, addresses different requirements and suffers from inflexibility to enable wide range of interrogation via a single cell. This work presents integration of planar patch clamp with microfluidics, achieving multiple solution exchanges for tailor-specific measurement and allowing rapid replacement of the cell-contacting aperture. Studies via endogenously expressed ion channels in HEK 293T cells were commenced to characterize the device. Results reveal the microfluidic concentration generator produces distinct solution/drug combination/concentrations on-demand. Volume-regulated chloride channel and voltage-gated potassium channels in HEK 293T cells immersed in generated solutions under various osmolarities or drug concentrations show unique channel signature under specific condition. Excitation and blockage of ion channels in a single cell was demonstrated via serial solution exchange. Robustness of the reversible bonding and ease of glass substrate replacement were proven via repeated usage of the integrated device. The present approach reveals the capability and flexibility of integrated microfluidic planar patch-clamp system for ion channel assays.  相似文献   

18.
Insects detect sugars and amino acids by a specialized taste cell, the sugar receptor cell, in the taste hairs located on their labela and tarsi. We patch-clamped sensory processes of taste cells regenerated from the cut end of the taste hairs on the labelum of the flashfly isolated from the pupa approximately 20 h before emergence. We recorded both single channel and ensemble currents of novel ion channels located on the distal membrane of the sensory process of the sugar receptor cell. In the stable outside-out patch membrane excised from the sensory processes, we could repeatedly record sucrose-induced currents for tens of minutes without appreciable decrease. An inhibitor of G-protein activation, GDP-beta-S, did not significantly decrease the sucrose response. These results strongly suggested that the channel is an ionotropic receptor (a receptor/channel complex), activated directly by sucrose without mediation by second messengers or G protein. The channel was shown to be a nonselective cation channel. Analyses of single channel currents showed that the sucrose-gated channel has a single channel conductance of approximately 30 pS and has a very short mean open time of approximately 0.23 ms. It is inhibited by external Ca(2+) and the dose-current amplitude relation could be described by a Michaelis-Menten curve with an apparent dissociation constant of approximately 270 mM. We also report transduction ion channels of the receptor/channel complex type directly gated by fructose and those gated by L-valine located on the sensory process.  相似文献   

19.
Gong SS  Chang Q  Ding J 《生理学报》2004,56(4):531-538
为探讨KCNQ家族钾通道在耳蜗外毛细胞和Deiters细胞的功能性表达,我们观察并记录了KCNQ家族钾通道阻滞剂利诺吡啶对豚鼠耳蜗单离外毛细胞(outer hair cells,OHCs)和Deiters细胞总钾电流的影响。采用酶孵育加机械分离法分离豚鼠耳蜗单个OHCs和Deiters细胞:运用膜片钳技术,在全细胞模式下记录正常细胞外液中8个外毛细胞和5个Deiters细胞的总钾电流,并观察100μmol/L和200μmol/L利诺吡啶对外毛细胞和Deiters细胞总钾电流的影响。结果观察到,在正常细胞外液中的单离外毛细胞,可记录到四乙基二乙胺敏感的外向性钾电流和静息膜电位附近激活的内向性钾电流(the K^ current activated at negative potential,IKa)两种钾电流,而在单离Deiters细胞中只记录到外向整流性钾电流。在细胞外液中,加入100μmol/L利诺吡啶后,OHCs中的四乙基二乙胺敏感的钾电流峰电流成分被抑制,稳态电流幅值减小,且电流的失活时问常数明显延长;在细胞外液中加入100μmol/L和200μmol/L利诺吡啶后,OHCs的内向性钾电流IKa被完全抑制;而细胞外液中利诺吡啶终浓度为200μmol/L时,Deiters细胞的外向整流性钾电流幅值无明显变化。由此我们推测,KCNQ家族钾通道存在于豚鼠耳蜗外毛细胞,其介导的钾电流是四乙基二乙胺敏感的钾电流的组成部分,并构成全部的IKn,其功能是介导细胞内K^ 外流和防止细胞过度去极化;KCNQ家族钾通道不存在于豚鼠耳蜗Dciters细胞。  相似文献   

20.
In cells of different types outward voltage-gated (VG) ion currents are generally carried by potassium ions. However, in mouse type II taste cells these currents persist when K+-selective ion channels are inhibited. In this study, we examined the ion channels that provide a pathway for atypical VG outward currents in type II taste cells. These channels are found to be weakly selective and permeabile to large molecules such as NMDG, gluconate, and ATP. According to non-stationary fluctuation analysis, single channel conductance is about 200 pS. The data obtained suggest that the nonselective ion channels are similar to hemichannels formed by connexins, the gap-junction proteins, in the plasma membrane of vertebrate cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号