首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
K G Peri  E B Waygood 《Biochemistry》1988,27(16):6054-6061
In Escherichia coli, N-acetylglucosamine (nag) metabolism is joined to glycolysis via three specific enzymes that are the products of the nag operon. The three genes of the operon, nagA, nagB, and nagE, were found to be carried by a colicin plasmid, pLC5-21, from a genomic library of E. coli [Clarke, L., & Carbon, J. (1976) Cell (Cambridge, Mass.) 9,91-99]. The nagE gene that codes for enzyme IIN-acetylglucosamine of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) was sequenced. The nagE sequence is preceded by a catabolite gene activator protein binding site and ends in a putative rho-independent termination site. The amino acid sequence determined from this DNA sequence shows 44% homology to enzymes IIglucose and IIIglucose of the PTS. Enzyme IIN-acetylglucosamine, which has 648 amino acids and a molecular weight of 68,356, contains a histidine at residue 569 which is homologous to the active site of IIIglc. Sequence homologies with enzymes IIglucose, II beta-glucoside, and IIsucrose indicate that residues His-190, His-213, and His-295 of enzyme IInag are also conserved and that His-190 is probably the second active site histidine. Other sequence homologies among these enzymes II suggest that they contain several sequence transpositions. Preliminary models of the enzymes II are proposed.  相似文献   

3.
The nag regulon located at 15.5 min on the Escherichia coli chromosome consists of two divergent operons, nagE and nagBACD, encoding genes involved in the uptake and metabolism of N-acetylglucosamine. Null mutations have been created in each of the genes by insertion of antibiotic resistance cartridges. The phenotypes of the strains carrying the insertions in nagE, B and A were consistent with the previous identification of gene products: nagE, EII(Nag), the N-acetylglucosamine specific transporter of the phosphotransferase system and nagB and nagA, the two enzymes necessary for the degradation of N-acetylglucosamine. Insertions in the nagC result in derepression of the nag genes, which is consistent with earlier observations that the nagC gene encodes the repressor of the regulon. Insertions in nagA also provoke a derepression, implying that nagA has a role in the regulation of the expression of the nag regulon as well as in the degradation of the amino-sugars. N-acetylglucosamine-6-phosphate, the intracellular product of N-acetylglucosamine transport and the substrate of the nagA gene product, is shown to be an inducer of the regulon and this suggests how nagA mutations result in derepression: the absence of N-acetylglucosamine-6-phosphate deacetylase allows N-acetylglucosamine-6-phosphate to accumulate and induce the regulon.  相似文献   

4.
5.
6.
B Erni 《Biochemistry》1986,25(2):305-312
The glucose-specific membrane permease (IIGlc) of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS) mediates active transport and concomitant phosphorylation of glucose. The purified permease has been phosphorylated in vitro and has been isolated (P-IIGlc). A phosphate to protein stoichiometry of between 0.6 and 0.8 has been measured. Phosphoryl transfer from P-IIGlc to glucose has been demonstrated. This process is, however, slow and accompanied by hydrolysis of the phosphoprotein unless IIIGlc, the cytoplasmic phosphoryl carrier protein specific to the glucose permease (IIGlc) of the PTS, is added. Addition of unphosphorylated IIIGlc resulted in rapid formation of glucose 6-phosphate with almost no hydrolysis of P-IIGlc accompanying the process. A complex of IIGlc and IIIGlc could be precipitated from bacterial cell lysates with monoclonal anti-IIGlc immunoglobulin. The molar ratio of IIGlc:IIIGlc in the immunoprecipitate was approximately 1:2. Analytical equilibrium centrifugation as well as chemical cross-linking showed that purified IIGlc itself is a dimer (106 kDa), consisting of two identical subunits. These results suggest that the functional glucose-specific permease complex comprises a membrane-spanning homodimer of IIGlc to which four molecules of IIIGlc are bound on the cytoplasmic face.  相似文献   

7.
Glucose is taken up in Bacillus subtilis via the phosphoenolpyruvate:glucose phosphotransferase system (glucose PTS). Two genes, orfG and ptsX, have been implied in the glucose-specific part of this PTS, encoding an Enzyme IIGlc and an Enzyme IIIGlc, respectively. We now show that the glucose permease consists of a single, membrane-bound, polypeptide with an apparent molecular weight of 80,000, encoded by a single gene which will be designated ptsG. The glucose permease contains domains that are 40-50% identical to the IIGlc and IIIGlc proteins of Escherichia coli. The B. subtilis IIIGlc domain can replace IIIGlc in E. coli crr mutants in supporting growth on glucose and transport of methyl alpha-glucoside. Mutations in the IIGlc and IIIGlc domains of the B. subtilis ptsG gene impaired growth on glucose and in some cases on sucrose. ptsG mutants lost all methyl alpha-glucoside transport but retained part of the glucose-transport capacity. Residual growth on glucose and transport of glucose in these ptsG mutants suggested that yet another uptake system for glucose existed, which is either another PT system or regulated by the PTS. The glucose PTS did not seem to be involved in the regulation of the uptake or metabolism of non-PTS compounds like glycerol. In contrast to ptsl mutants in members of the Enterobacteriaceae, the defective growth of B. subtilis ptsl mutants on glycerol was not restored by an insertion in the ptsG gene which eliminated IIGlc. Growth of B. subtilis ptsG mutants, lacking IIGlc, was not impaired on glycerol. From this we concluded that neither non-phosphorylated nor phosphorylated IIGlc was acting as an inhibitor or an activator, respectively, of glycerol uptake and metabolism.  相似文献   

8.
The overall stereochemical course of the reactions leading to the phosphorylation of methyl alpha-D-glucopyranoside by the glucose-specific enzyme II (enzyme IIGlc) of the Escherichia coli phosphotransferase system has been investigated. With [(R)-16O,17O,18O]phosphoenolpyruvate as the phosphoryl donor and in the presence of enzyme I, HPr, and enzyme IIIGlc of the phosphotransferase system, membranes from E. coli containing enzyme IIGlc catalyzed the formation of methyl alpha-D-glucopyranoside 6-phosphate with overall inversion of the configuration at phosphorus (with respect to phosphoenolpyruvate). It has previously been shown that sequential covalent transfer of the phosphoryl group of phosphoenolpyruvate to enzyme I, to HPr, and to enzyme IIIGlc occurs before the final transfer from phospho-enzyme IIIGlc to the sugar, catalyzed by enzyme IIGlc. Because overall inversion of the configuration of the chiral phospho group of phosphoenolpyruvate implies an odd number of transfer steps, the phospho group has been transferred at least five times, and transfer from phospho-enzyme IIIGlc to the sugar must occur in two steps (or a multiple thereof). On the basis that no membrane protein other than enzyme IIGlc is directly involved in the final phospho transfer steps, our results imply that a covalent phospho-enzyme IIGlc is an intermediate during transport and phosphorylation of glucose by the E. coli phosphotransferase system.  相似文献   

9.
Wild-type Escherichia coli grows more slowly on glucosamine (GlcN) than on N-acetylglucosamine (GlcNAc) as a sole source of carbon. Both sugars are transported by the phosphotransferase system, and their 6-phospho derivatives are produced. The subsequent catabolism of the sugars requires the allosteric enzyme glucosamine-6-phosphate (GlcN6P) deaminase, which is encoded by nagB, and degradation of GlcNAc also requires the nagA-encoded enzyme, N-acetylglucosamine-6-phosphate (GlcNAc6P) deacetylase. We investigated various factors which could affect growth on GlcN and GlcNAc, including the rate of GlcN uptake, the level of induction of the nag operon, and differential allosteric activation of GlcN6P deaminase. We found that for strains carrying a wild-type deaminase (nagB) gene, increasing the level of the NagB protein or the rate of GlcN uptake increased the growth rate, which showed that both enzyme induction and sugar transport were limiting. A set of point mutations in nagB that are known to affect the allosteric behavior of GlcN6P deaminase in vitro were transferred to the nagB gene on the Escherichia coli chromosome, and their effects on the growth rates were measured. Mutants in which the substrate-induced positive cooperativity of NagB was reduced or abolished grew even more slowly on GlcN than on GlcNAc or did not grow at all on GlcN. Increasing the amount of the deaminase by using a nagC or nagA mutation to derepress the nag operon improved growth. For some mutants, a nagA mutation, which caused the accumulation of the allosteric activator GlcNAc6P and permitted allosteric activation, had a stronger effect than nagC. The effects of the mutations on growth in vivo are discussed in light of their in vitro kinetics.  相似文献   

10.
The Enzymes II of the PEP:carbohydrate phosphotransferase system (PTS) specific for N-acetylglucosamine (IINag) and beta-glucosides (IIBgl) contain C-terminal domains that show homology with Enzyme IIIGlc of the PTS. We investigated whether one or both of the Enzymes II could substitute functionally for IIIGlc. The following results were obtained: (i) Enzyme IINag, synthesized from either a chromosomal or a plasmid-encoded nagE+ gene could replace IIIGlc in glucose, methyl alpha-glucoside and sucrose transport via the corresponding Enzymes II. An Enzyme IINag with a large deletion in the N-terminal domain but with an intact C-terminal domain could also replace IIIGlc in IIGlc-dependent glucose transport. (ii) After decryptification of the Escherichia coli bgl operon, Enzyme IIBgl could substitute for IIIGlc. (iii) Phospho-HPr-dependent phosphorylation of methyl alpha-glucoside via IINag/IIGlc is inhibited by antiserum against IIIGlc as is N-acetylglucosamine phosphorylation via IINag. (iv) In strains that contained the plasmid which coded for IINag, a protein band with a molecular weight of 62,000 D could be detected with antiserum against IIIGlc. We conclude from these results that the IIIGlc-like domain of Enzyme IINag and IIBgl can replace IIIGlc in IIIGlc-dependent carbohydrate transport and phosphorylation.  相似文献   

11.
12.
The divergent nag regulon located at 15.5 min on the Escherichia coli map encodes genes necessary for growth on N-acetylglucosamine and glucosamine. Full induction of the regulon requires both the presence of N-acetylglucosamine and a functional cyclic AMP (cAMP)-catabolite activator protein (CAP) complex. Glucosamine produces a lower level of induction of the regulon. A nearly symmetric consensus CAP-binding site is located in the intergenic region between nagE (encoding EIINag) and nagB (encoding glucosamine-6-phosphate deaminase). Expression of both nagE and nagB genes is stimulated by cAMP-CAP, but the effect is more pronounced for nagE. In fact, very little expression of nagE is observed in the absence of cAMP-CAP, whereas 50% maximum expression of nagB is observed with N-acetylglucosamine in the absence of cAMP-CAP. Two mRNA 5' ends separated by about 100 nucleotides were located before nagB, and both seem to be similarly subject to N-acetylglucosamine induction and cAMP-CAP stimulation. To induce the regulon, N-acetylglucosamine or glucosamine must enter the cell, but the particular transport mechanism used is not important.  相似文献   

13.
Summary Analysis of bacteriophage DNA and of subcloned plasmid DNA has allowed the localisation of the following genes, located at 16 min on the Escherichia coli chromosome, within a restriction map of the region: glnS, nagE, nagB, nagA, asnB, metT, leuW, glnU, glnU, metT, glnV, glnV.  相似文献   

14.
15.
Among the 67 predicted TonB-dependent outer membrane transporters of Caulobacter crescentus, NagA was found to be essential for growth on N-acetyl-beta-D-glucosamine (GlcNAc) and larger chitin oligosaccharides. NagA (93 kDa) has a predicted typical domain structure of an outer membrane transport protein: a signal sequence, the TonB box EQVVIT, a hatch domain of 147 residues, and a beta-barrel composed of 22 antiparallel beta-strands linked by large surface loops and very short periplasmic turns. Mutations in tonB1 and exbBD, known to be required for maltose transport via MalA in C. crescentus, and in two additional predicted tonB genes (open reading frames cc2327 and cc3508) did not affect NagA-mediated GlcNAc uptake. nagA is located in a gene cluster that encodes a predicted PTS sugar transport system and two enzymes that convert GlcNAc-6-P to fructose-6-P. Since a nagA insertion mutant did not grow on and transport GlcNAc, diffusion of GlcNAc through unspecific porins in the outer membrane is excluded. Uptake of GlcNAc into tonB and exbBD mutants and reduction but not abolishment of GlcNAc transport by agents which dissipate the electrochemical potential of the cytoplasmic membrane (0.1 mM carbonyl cyanide 3-chlorophenylhydrazone and 1 mM 2,4-dinitrophenol) suggest diffusion of GlcNAc through a permanently open pore of NagA. Growth on (GlcNAc)(3) and (GlcNAc)(5) requires ExbB and ExbD, indicating energy-coupled transport by NagA. We propose that NagA forms a small pore through which GlcNAc specifically diffuses into the periplasm and functions as an energy-coupled transporter for the larger chitin oligosaccharides.  相似文献   

16.
17.
18.
Biochemical, immunological, and sequence analyses demonstrated that the glucose permease of Bacillus subtilis, the glucose-specific Enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system, is a single polypeptide chain with a C-terminal Enzyme III-like domain. A flexible hydrophilic linker, similar in length and amino acid composition to linkers previously identified in other regulatory or sensory transducing proteins, functions to tether the Enzyme IIIGlc-like domain of the protein to the membrane-embedded Enzyme IIGlc. Evidence is presented demonstrating that the Enzyme IIIGlc-like domain of the glucose permease plays a dual role and functions in the transport and phosphorylation of both glucose and sucrose. The sucrose permease appears to lack a sucrose-specific Enzyme III-like domain or a separate, soluble IIIScr protein. Enzyme IIScr was capable of utilizing the IIIGlc-like domain of the glucose permease regardless of whether the IIIGlc polypeptide was provided as a purified, soluble protein, as a membrane-bound protein within the same membrane as Enzyme IIScr, or as a membrane-bound protein within membrane fragments different from those bearing Enzyme IIScr. These observations suggest that the IIIGlc-like domain is an autonomous structural unit that assumes a conformation independent of the hydrophobic, N-terminal intramembranal domain of Enzyme IIGlc. Preferential uptake and phosphorylation of glucose over sucrose has been demonstrated by both in vivo transport studies and in vitro phosphorylation assays. Addition of the purified IIIGlc-like domain strongly stimulated the phosphorylation of sucrose, but not that of glucose, in phosphorylation assays that contained the two sugars simultaneously. The results suggest that the preferential uptake of glucose over sucrose is determined by competition of the corresponding sugar-specific permeases for the common P approximately IIIGlc/Scr domain.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号