首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim The effects of logging and habitat degradation on the richness and abundance of small mammals in Asian rain forests are largely unknown. This work compares the species richness, dominance and evenness of small non‐volant mammals between logged and unlogged forests, and assesses whether assemblage variability (β‐diversity) is similar between forest types. Location Southeast Asia, northern Borneo (Sabah, Malaysia), Sunda‐shelf. Methods We surveyed species‐rich assemblages of small non‐volant mammals in three unlogged and three logged forests for 2 years. At each forest site, we sampled a permanently marked transect and two additional sites in three trapping sessions. All analyses were performed at both levels to include the effects of local abundances and point estimates, separately from the relative abundances of species on a more regional scale. Results We trapped a total of 1218 individuals of 28 species. Eleven common species accounted for 95% of all captures. Species richness and diversity were significantly higher in unlogged forest (27 species) than in logged forest (17 species). This was mainly attributable to the smaller number of rarely recorded species in logged forest (five compared with 16 in unlogged forest, with a total of fewer than 10 captures). However, all common species were present in both logged and unlogged forests, and our analyses revealed similar patterns of dominance, evenness and fluctuations in abundance. Hence overall assemblage composition in multivariate space did not differ greatly between forest types. Assemblages of Muridae and Tupaiidae showed similar population fluctuations in space and time, indicating that the ecology of these taxa may be partially driven by the same environmental factors. Main conclusions Although species were distributed patchily within sites, analyses at local and regional scales revealed similar patterns in diversity and assemblage variability, suggesting that effects of forest modification did not differ extensively locally and regionally, but had a profound effect on rare species. Our results emphasize the importance and conservation value of logged forest stands that are able to hold a large proportion of the small mammals also found in unlogged forests. Rare and more specialized species are more vulnerable to forest degradation than commonly caught species, resulting in the complete loss, or a decrease in numbers, of certain groups, such as arboreal small mammals and Viverridae.  相似文献   

2.
Industrial timber plantations severely impact biodiversity in Southeast Asia. Forest fragments survive within plantations, but their conservation value in highly deforested landscapes in Southeast Asia is poorly understood. In this study, we compared bird assemblages in acacia plantations and fragmented forests in South Sumatra to evaluate each habitat’s potential conservation value. To clarify the impact of habitat change, we also analyzed the response of feeding guild composition. Five habitat types were studied: large logged forest (LLF), burnt logged forest (BLF), remnant logged forest (RLF), 4-year-old acacia plantation (AP4), and 1-year-old acacia plantation (AP1). Estimated species richness (Chao 2) was highest in LLF then AP4 and BLF, while AP1 and RLF had lower estimated species richness. Community composition was roughly divided into two groups by non-metric multidimensional scaling ordination: acacia plantation and logged forest. Sallying substrate-gleaning insectivores, such as drongos, broadbills, and some flycatchers, were restricted to LLF, whereas acacia plantation hosted many terrestrial frugivores, such as doves. Although fragmented forests in our study site lacked several common tropical forest species, these fragments provide an important habitat for some sallying and terrestrial insectivores. A network of small riparian remnant forests could be a complementary habitat for some species, while the conservation value of burnt forest might be low. In conclusion, the highly fragmented forests in plantations are suboptimal habitats for birds but are still very important, because large primary forest blocks have been nearly lost in the surrounding landscape.  相似文献   

3.
Fragmentation of natural habitats can be detrimental for species if individuals fail to cross habitat boundaries to reach new locations, thereby reducing functional connectivity. Connectivity is crucial for species shifting their ranges under climate change, making it important to understand factors that might prevent movement through human‐modified landscapes. In tropical regions, rain forests are being fragmented by agricultural expansion, potentially isolating populations of highly diverse forest‐dependent species. The likelihood of crossing habitat boundaries is an important determinant of species dispersal through fragmented landscapes, and so we examined movement across rain forest‐oil palm plantation boundaries on Borneo by using relatively mobile nymphalid butterflies as our model study taxon. We marked 1666 individuals from 65 species, and 19 percent (100/527) of recaptured individuals crossed the boundary. Boundary crossing was relatively frequent in some species, and net movement of individuals was from forest into plantation. However, boundary crossing from forest into plantation was detected in less than 50 percent (12/28) of recaptured species and was dominated by small‐sized butterfly species whose larval host plants occurred within plantations. Thus, while oil palm plantations may be relatively permeable to some species, they may act as barriers to the movement of forest‐dependent species (i.e., species that require rain forest habitat to breed), highlighting the importance of maintaining forest connectivity for conserving rain forest species.  相似文献   

4.
Primates often live in human-altered habitats; Malagasy lemurs are no exception. It is important to understand if habitat alteration affects primates’ space use patterns across multiple spatial and temporal scales, as this drives population density. We quantified the daily, seasonal, and annual space-use of seven groups of Milne-Edwards’ sifaka (Propithecus edwardsi) living in unlogged and logged rain forest in Ranomafana National Park, Madagascar between December 2002 and November 2003. Concurrent data showed that sifakas consumed higher quality foods in the unlogged than in logged forests; thus we explored how space use patterns were related to energy use strategies. Sifaka groups in the logged rain forest traveled 7–13% less per day than groups in the unlogged rain forest, despite their larger home ranges (median: 46.12 and 23.52 ha, in the logged and unlogged forests, respectively). Sifakas may thus use an energy-minimizing strategy at the scale of the individual day but an energy-maximizing strategy at the annual home range scale. Sifakas exhibited fidelity to the home range across seasons, but their core area of use shifted considerably with season. We found no difference in population density between sites. However, given the interannual variability in sifaka foods, a multiyear study is needed to assess if energy strategies observed in this study are consistent across longer time periods. Our findings suggest that lemurs may persist in logged habitats by altering spatial use patterns; future work should attempt to quantify the threshold level of forest regeneration from logging that will allow lemurs to persist at similar densities as in unlogged forest.  相似文献   

5.
Selective logging is driving the proliferation of roads throughout tropical rain forests, particularly narrow, unpaved logging roads. However, little is known about the extent of road edge effects or their influence on the movements of tropical understory animal species. Here, we used forest rats to address the following questions: (a) Does the occupancy of rats differ from road edges to forest interior within logged forests? (b) Do roads inhibit the movements of rats within these forests? We established trapping grids along a road edge‐to‐forest interior gradient at four roads and in three control sites within a logged forest in Sabah, Malaysia. To quantify the probability of road crossing, rats were captured, translocated across a road, and then recaptured on subsequent nights. We caught 216 individuals of eight species on 3,024 trap nights. Rat occupancy did not differ across the gradient from road edge to interior, and 48 percent of the 105 translocated individuals crossed the roads and were recaptured. This proportion was not significantly different from that of rats returning in control sites (38% of 60 individuals), suggesting that small roads were not barriers to rat movements within logged forests. Subadults were significantly more likely to return from translocation than adults in both road and control sites. Our results are encouraging for the ecology of small mammal communities in heavily logged forests, because small logging roads do not restrict the movements of rats and therefore are unlikely to create an edge effect or influence habitat selection.  相似文献   

6.
Previously extensive tracts of primary rain forest have been degraded by human activities, and we examined how the effects of forest disturbance arising from habitat fragmentation and commercial selective logging affected ecosystem functioning in these habitats by studying leaf litter decomposition rates in litter bags placed on the forest floor. The rain forests of Borneo are dominated by trees from the family Dipterocarpaceae, and we compared leaf litter decomposition rates of three dipterocarp species at eight forest fragment sites (area 3–3529 ha) that had different histories of disturbance pre‐fragmentation: four fragments had been selectively logged prior to fragmentation and four had been formed from previously undisturbed forest. We compared these logged and unlogged forest fragments with sites in continuous forest that had been selectively logged (two sites) and fully protected and undisturbed (two sites). After 120 d, undisturbed continuous forest sites had the fastest rates of decomposition (52% mass loss). Forest fragments formed from unlogged forest (32% mass loss) had faster decomposition rates than logged forest fragments (28% mass loss), but slower rates than continuous logged forest (39% mass loss). Leaves of a light‐demanding species (Parashorea malaanonan) decomposed faster than those of a shade‐tolerant species (Hopea nervosa), but decomposition of all three dipterocarp species that we studied responded similarly to logging and fragmentation effects. Reduced decomposition rates in logged and fragmented forest sites may affect nutrient cycling and thus have detrimental consequences for forest regeneration. Conservation management to improve forest quality should be a priority, particularly in logged forest fragments.  相似文献   

7.
Lowland rainforests on Borneo are being degraded and lost at an alarming rate. Studies on mammals report species responding in various ways to habitat changes that occur in commercial forestry concessions. Here we draw together information on the relationship between the ecological, evolutionary, and biogeographic characteristics of selected Bornean non-volant mammals, and their response to timber harvesting and related impacts. Only a minority of species show markedly reduced densities after timber harvesting. Nonetheless there are many grounds for concern as various processes can, and often do, reduce the viability of wildlife populations. Our review of what we know, and of current understanding, helps predict mammalian dynamics and subsequent mammal-induced ecosystem changes in logged forests. We identify groups of mammal species that, although largely unstudied, are unlikely to tolerate the impacts associated with timber harvesting. On a positive note we find and suggest many relatively simple and low-cost ways in which concession management practices might be modified so as to improve the value of managed forests for wildlife conservation. Improving forest management can play a vital role in maintaining the rich biodiversity of Borneo’s tropical rain forests.  相似文献   

8.
Invasive species pose one of the greatest threats to biodiversity. This study investigates the extent to which human disturbance to natural ecosystems facilitates the spread of non‐native species, focusing on a small mammal community in selectively logged rain forest, Sabah, Borneo. The microhabitat preferences of the invasive Rattus rattus and three native species of small mammal were examined in three‐dimensional space by combining the spool‐and‐line technique with a novel method for quantifying fine‐scale habitat selection. These methods allowed the detection of significant differences for each species between the microhabitats used compared with alternative, available microhabitats that were avoided. Rattus rattus showed the greatest preference for heavily disturbed habitats, and in contrast to two native small mammals of the genus Maxomys, R. rattus showed high levels of arboreal behavior, frequently leaving the forest floor and traveling through the understory and midstory forest strata. This behavior may enable R. rattus to effectively utilize the complex three‐dimensional space of the lower strata in degraded forests, which is characterized by dense vegetation. The behavioral flexibility of R. rattus to operate in both terrestrial and arboreal space may facilitate its invasion into degraded forests. Human activities that generate heavily disturbed habitats preferred by R. rattus may promote the establishment of this invasive species in tropical forests in Borneo, and possibly elsewhere. We present this as an example of a synergistic effect, whereby forest disturbance directly threatens biodiversity and indirectly increases the threat posed by invasive species, creating habitat conditions that facilitate the establishment of non‐native fauna.  相似文献   

9.
The value of secondary forest for rain forest species remains an important question for conservation in the 21st century. Here, we describe the spatial behavior of understory mixed‐species flocks in a heterogeneous landscape in central Amazonia. Understory mixed‐species flocks represent a diverse, highly organized component of the rich Amazonian avifauna. We recorded movements within 26 flock home ranges in primary forest, secondary forest, interfaces between forest types, and forest fragments. We describe frequency and movement orientation in relation to forest edges, movement patterns and proportion of use between secondary and primary forest, the relation between home range sizes and vegetation height, and home range configuration. Flocks visited only a small portion of forest edges, and showed a tendency for moving parallel to edges next to less‐developed secondary forest. Movement patterns in secondary forests did not show significant differences compared to primary forests. Time spent in secondary forests increased in proportion to mean canopy height. Flocks were consistently present in secondary forests where vegetation height averaged over 15 m, but home ranges were nearly twice as large compared to primary forest. Home range limits tended to be aligned with disturbed vegetation, essentially rearranging a territorial configuration normally adjusted by topography. The spatial behavior of this important subset of the Amazonian avifauna shows that secondary forests are tolerated above a certain development threshold, but perceived as suboptimal habitat until canopy height closely matches primary forests.  相似文献   

10.
The inclusion of carbon stock enhancements under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) framework will likely drive a rapid increase in biosequestration projects that remove carbon from the atmosphere through rehabilitation of degraded primary rain forests. Such projects could also present an important opportunity to reverse losses of biodiversity from degraded rain forests, but concern has recently been expressed that management interventions to increase carbon stocks may conflict with biodiversity conservation. Focusing on a large‐scale rain forest rehabilitation project in northern Borneo, we examine: (i) how intensive rehabilitation of selectively logged forests affected patterns of bird community composition and (ii) whether changes in vegetation structure explain observed shifts in avian guild structure and species composition. Bird composition differed between unlogged, naturally regenerating logged, and rehabilitated logged habitats, with the avifauna of rehabilitated forest more similar to that of naturally regenerating forest. Crucially, rehabilitation did not adversely affect either those species that declined after logging or those species that are IUCN Red Listed. Rehabilitation reduced the prevalence of vines and shrubs within regenerating forest, and across all habitats, the abundance and species richness of all birds and of obligate frugivores were positively related to vine prevalence. In contrast, the abundance and richness of frugivore–insectivore generalists and of salliers were negatively related to vines, suggesting that avifaunal responses to forest rehabilitation were attributable to liberation cutting of vines. Management intervention to increase carbon stocks had little adverse effect on avian biodiversity and we therefore argue that rain forest rehabilitation should play a strong role in future REDD+ agreements.  相似文献   

11.
Processes of forest regeneration in two unlogged areas and in three areas that were logged nearly 25 years ago were quantified in Kibale National Park, Uganda. For forests to recover from logging, one would predict recruitment and growth processes to be accelerated in logged areas relative to unlogged areas, facilitating increased recruitment of trees into the adult size classes. We examined this prediction first by determining the growth of 4733 trees over a 51 to 56 month period and found that growth rates in the most heavily logged area were consistently slower than in the two unlogged areas. In contrast, the lightly logged forest had similar growth rates to unlogged areas in the small size classes, but trees in the 30 to 50 cm DBH size cohort exhibited elevated growth rates relative to the unlogged areas. Mortality was highest in the heavily logged areas, with many deaths occurring when healthy trees were knocked over by neighboring treefalls. We found no difference in the density or species richness of seedlings in the logged and unlogged forests. The number of seedlings that emerged from the disturbed soil (seed bank+seed rain) and initially seed-free soil (seed rain) was greater in the logged forest than in the unlogged forest. However, sapling density was lower in the heavily logged areas, suggesting that there is a high level of seedling mortality in logged areas. We suggest that the level of canopy opening created during logging, the lack of aggressive colonizing tree species, elephant activity that is concentrated in logged areas, and an aggressive herb community, all combine to delay vegetation recovery in Kibale Forest.  相似文献   

12.
K. S. Seshadri 《Biotropica》2014,46(5):615-623
Vast areas of tropical evergreen forests have been selectively logged in the past, and many areas continue to be logged. The impacts of such logging on amphibians are poorly understood. I examined the response of anuran communities to historical selective logging in a wet evergreen forest in south India. Anuran assemblages in unlogged forest were compared with assemblages in selectively logged forest. Forty 10 m × 10 m quadrats in forest, riparian zones, and streams of unlogged and selectively logged forests were searched at night for anurans. Species richness did not appear to be affected by logging. However, anuran density varied significantly and was 42 percent lower in selectively logged forests compared to unlogged forests. Anuran densities also varied significantly across microhabitats, with highest densities in streams of both selectively logged and unlogged forests. Patterns of niche overlap varied with selective logging as niche breadth either expanded, contracted, or remained neutral for different species. Ordination analysis explained 95 percent of the variation in species assemblage across selectively logged and unlogged forests. The assemblage in selectively logged forest was nested within unlogged forest. Among the habitat characteristics, litter thickness and water depth had the highest influence on the assemblage. This was followed by litter/water temperature, air temperature, and lastly relative humidity. It appears that species richness and composition of anurans in selectively logged forests is converging with unlogged forests, but the effects of historical logging seem to persist on anuran densities and their niche characteristics even ca 40 yr since logging ceased.  相似文献   

13.
Xishuangbanna, situated in the northern margin of the tropical zone in Southeast Asia, maintains large areas of tropical rain forest and contains rich biodiversity. However, tropical rain forests are being rapidly destroyed in this region. This paper analyzed spatial and temporal changes of forest cover and the patterns of forests fragmentation in Xishuangbanna by comparing classified satellite images from 1976, 1988 and 2003 using GIS analyses. The patterns of fragmentation and the effects of edge width were examined using selected landscape indices. The results show that forest cover declined from 69% in 1976 to less than 50% in 2003, the number of forests fragments increased from 6,096 to 8,324, and the mean patch size declined from 217 to 115 ha. It was found that fragment size distribution was strongly skewed towards small values, and fragment size and internal habitat differ strongly among forest types: less fragmented in subtropical evergreen broadleaf forest, but severe in forests that are suitable for agriculture (such as tropical seasonal rain forest and mountain rain forest). Due to fragmentation, the edge width was smaller in 2003 than that in 1976 when the total area of edge habitat exceeded core habitat in different forest types. The core area of tropical seasonal rain forest was smallest among main forest types at any edge width. Fragmentation was severe within 12.5-km buffers around roads. The current forest cover within reserves in Xishuangbanna was comparatively large and less fragmented. However, the tropical rain forest has been degraded inside reserves. For conservation purposes, the approaches to establish forest fragments networks by corridors and stepping stone fragments are proposed. The conservation efforts should be directed first toward the conservation of remaining tropical rain forests.  相似文献   

14.
In the face of the continuing destruction of tropical rainforests, a major challenge is to understand the consequences of these habitat changes for biodiversity and the time scale at which biodiversity can recover after such disturbances. In this study, we assessed the patterns in communities of birds among forests of varying age consisting of clear-cuts of former coniferous plantations, selectively logged compartments and primary forests in Kibale National Park, Uganda. Birds were surveyed by 10-minute point counts at 174 randomly located points in nine forest areas during September–October 2011. A total of 2 688 birds representing 115 species were recorded. The species density, diversity and dominance of all birds, and dominance of forest specialists showed no differences between forest areas, whereas the species density and diversity of forest specialists differed significantly between forest areas. The composition of communities of all birds and of forest specialists varied significantly among the forest areas. Our results show that even after 19 and 43 years, respectively, communities of birds in clear-cuts of former coniferous plantations and selectively logged forests have not fully recovered from the disturbances of logging, highlighting the need to preserve primary forests for conservation of birds.  相似文献   

15.
In the winter of 1981, 9 months after an intense fire in November 1980 in the recently logged Mumbulla State Forest, the numbers of a small population of Sminthopsis leucopus had slightly increased, while the common species of small mammals had declined sharply from the previous winter. The study reported in this paper aimed to identify the habitat of S. leucopus. Ninety study plots were divided equally among three classes of forest (unlogged forest, and forest logged in 1979 and 1980), between two aspects (north- and south-facing slopes), and among three topographic positions (ridge, midslope and gully). Plots were assessed on the basis of both floristic data and the structural components of ground, shrub and tree cover. The primary finding was that the habitat of S. leucopus was the treeless ridges and mid-slopes with less than 51% ground cover in the logged areas of burnt forest. The floristic analysis showed that the vegetation subcommunities restricted to gullies, or carrying a ferny ground layer of vegetation, were not selected by S. leucopus. An analysis of movements of male S. leucopus identified two classes. ‘Resident’ males occurred on logged ridges and midslopes characterized by a floristic subcommunity of open forest with a grassy understorey.‘Explorer’ males moved through a variety of ridge habitats, including unlogged forest, and were spread more widely through the floristic communities. The pattern of habitat selection identified in this study shows S. leucopus to be ecologically distinct from the other species of small mammals in the forest and thus in need of special consideration in management programmes if it is to be conserved. Under the current regime, the uniform treatment of the forest leads to widespread stands of dense regrowth to the exclusion of the species and is inimical to its survival.  相似文献   

16.
Forested tropical landscapes around the world are being extensively logged and converted to agriculture, with serious consequences for biodiversity and potentially ecosystem functioning. Here we investigate associations between habitat disturbance and functional diversity of ants and termites—two numerically dominant and functionally important taxa in tropical rain forests that perform key roles in predation, decomposition, nutrient cycling and seed dispersal. We compared ant and termite occurrence and composition within standardised volumes of soil and dead wood in old growth forest, logged forest and oil palm plantation in Sabah, Malaysian Borneo. Termites occurred substantially less frequently in converted habitats than in old growth forest, whereas ant occurrences were highest in logged forest and lowest in old growth forest. All termite feeding groups had low occurrence in disturbed habitats, with soil feeders occurring even less frequently than wood feeders. Ant functional groups showed more variable associations, with some opportunist and behaviourally dominant groups being more abundant in degraded habitats. The importance of ants and termites in tropical ecosystems and such differing patterns of assemblage variation suggest that ecosystem functioning may be significantly altered in converted habitats.  相似文献   

17.
The impact of logging on plant communities was studied in forest that has been logged selectively 1, 5 and 10 years previously (following a certified procedure): diversity was compared with that of primary rain forest in the Berau region of East Kalimantan, Indonesia. Four sets of 20 transects located within an area of 6 ha were sampled for all trees, saplings and seedlings, and records were made of topographic position, structure, composition and species diversity. There was a high level of floristic similarity between primary forests at the study sites compared to primary forest elsewhere in Kalimantan. The impact of logging is therefore likely to be the most important factor determining any differences between the plant communities of the selectively logged and primary forest sites. We found differences in species composition and abundance of most plants between selectively logged and primary forest. Overall, stem densities of trees in the primary forest were higher than in the three selectively logged forest sites. Stem densities of saplings were equivalent in all four forests. Seedling stem densities were higher in the forest site logged 10 years previously than in primary forest. Our results showed that the forests logged selectively under certified regimes still have a high plant diversity, possibly indicating that biodiversity values may be conserved by following certification procedures.  相似文献   

18.
ABSTRACT Population-level responses of amphibians to forest management regimes are partly dictated by individual behavioral responses to habitat alteration. We examined the short-term (i.e., 24-hr) habitat choices and movement patterns of 3 amphibian species—southern leopard frogs (Rana sphenocephala), marbled salamanders (Ambystoma opacum), and southern toads (Bufo terrestris)—released on edges between forest habitats and recent clear-cuts in the Upper Coastal Plain of South Carolina, USA. We predicted that adult frogs and salamanders would preferentially select forest using environmental cues as indicators of habitat suitability. We also predicted that movement patterns would differ in clear-cuts relative to forests, resulting in lower habitat permeability of clear-cuts for some or all of the species. Using fluorescent powder tracking, we determined that marbled salamanders selected habitat at random, southern toads preferred clear-cuts, and southern leopard frogs initially selected clear-cuts but ultimately preferred forests. Frogs exhibited long-distance, directional movement with few turns. In contrast, toads exhibited wandering behavior and salamanders moved relatively short distances before locating cover. Southern toads and southern leopard frogs moved farther in forests, and all 3 species made more turns in clear-cuts than in forests. Habitat selection by southern toads did not vary according to body size, sex, or the environmental cues we measured. However, marbled salamanders were more likely to enter clear-cuts when soil moisture was high, and southern leopard frogs were more likely to enter clear-cuts when relative humidity and air temperature were higher in the clear-cut than in adjacent forest. Although we found evidence of reduced habitat permeability of clear-cuts for southern leopard frogs and southern toads, none of the species exhibited strong behavioral avoidance of the small (4-ha) clear-cuts in our study. Further studies of long-term habitat use and the potential physiological and other costs to individuals in altered forests are needed to understand the effects of forest management on population persistence. To reduce potentially detrimental effects of clear-cutting on amphibians in the Southeast, wildlife managers should consider the vagility and behavior of species of concern, especially in relation to the size of planned harvests adjacent to breeding sites.  相似文献   

19.
Abstract Aim To examine how the genetic diversity of selected taxa of forest‐dwelling small mammals is distributed between and within the major rain forest domains of Amazonia and Atlantic Forest and the intervening interior forests of Brazil, as inferred by the relationships between gene genealogies and geography. I also addressed the historical importance of the central Brazilian forests in connecting Amazon and Atlantic Forest populations of rodents and marsupials. Methods I evaluated variation in the mitochondrial cytochrome b gene to estimate the levels of sequence divergence between those taxa occurring throughout the Amazon, Atlantic Forest, and forests in the Cerrado and Caatinga regions. I inferred the hierarchical relationships between haplotypes, populations and formal taxa using the cladistic approach of maximum parsimony. I compared areas and the clades identified by superimposing cladograms on the geographical distribution of samples. The degree of concordance both in phylogeny and the depth of the nodes in these phylogenies, in addition to patterns of geographical distribution of clades, permitted me to make inferences on how, when and where the taxa differentiated. Results Sequence similarity is often greater between samples from the Atlantic Forest and either Amazon or central Brazilian forests than it is within each of the two rain forest domains. The Atlantic Forest clades are either not reciprocally monophyletic or are the sister group to all the other clades. There is some indication of northern and southern components in the Atlantic Forest. Given the geographical distribution of clades and the relatively deep levels of divergence, the central Brazilian area does not behave as a separate region but is complementary to either Amazon or Atlantic Forest. Patterns of area relationships differ across taxa, suggesting that different processes and/or historic events affected the diversification within each lineage. Main conclusions The Amazon and the Atlantic forests are not exclusive in terms of their small mammal faunas; both overlap broadly with taxa occurring in gallery forests and dry forests in central Brazil. Central Brazilian forests are an integral part of the evolutionary scenario of lowland small mammals, playing an important role as present and past habitats for rain forest species. Therefore, representatives from this area should always be included in analyses of the evolutionary history of lowland rain forest faunas. The incongruence of branching patterns among areas is in agreement with recent results presented for Neotropical passerine birds and indicates that a single hypothesis of Neotropical area relationships is unlikely. These findings reinforce the idea that speciation in the Neotropics will not be explained by any single model of vicariance or climatic changes.  相似文献   

20.
Tropical forests across the world provide important habitats for a diverse number of conservation priority species, yet are under threat from a range of anthropogenic impacts including logging. This study aims to quantify mammalian biodiversity in unlogged and logged forests in the adjoining Tembat and Petuang Forest Reserves, Terengganu, on the East Coast of Peninsular Malaysia. Data was collected over a series of surveys using direct and indirect observation methods from 2008 to 2014. A total of 30 medium and large sized mammals species were identified, with 27 of those species found in unlogged forests and 22 species in logged forests. Carnivores encompassed 11 species from 67 observations representing 15% of the total number of observations. The family Felidae had the highest number of species (six species), followed by Hylobatidae, Cercopithecidae and Suidae with three species each. A total of 17 species contributed to more than 90% of the mammal community in the unlogged and logged forests, while six species were uncommon and only observed once during the entire survey. Species abundance in the unlogged forest was significantly greater than the logged forests, but the difference was not significant for species richness. This study provides critical baseline information on the impact of unlogged and logged forests and the identification of threatened species warrant the establishment of conservation measures such as anti-poaching patrol and ranger stations in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号