首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ant invasions exert a range of effects on recipient communities, from displacement of particular species to more complex community disruption. While species loss has been recorded for a number of invasion events, a little examined aspect of these invasions is the mechanisms for coexistence with resident ant species.The yellow crazy ant, Anoplolepis gracilipes (Smith), is considered one of the world’s worst ant invaders and has recently undergone rapid population growth in Tokelau. We surveyed the ground-dwelling ant fauna in two plots on each of five invaded and three uninvaded islands across two atolls in Tokelau to examine community characteristics of the ant fauna in areas with and without yellow crazy ants. We also used three types of food bait (tuna, jam and peanut butter) to experimentally test if species are able to coexist by consuming different food resources. Anoplolepis gracilipes was found to coexist with two to six other ant species at any one site, and coexisted with a total of 11 ant species. Four species never co-occurred with A. gracilipes. Non-metric multidimensional scaling showed significant differences in community composition and the relative abundance of species between areas that had, and had not, been invaded by A. gracilipes. The number of other ant species was significantly lower in communities invaded by the yellow crazy ant, but did not decline with increasing A. gracilipes abundance, indicating that impacts were independent of population density. The yellow crazy ant dominated all tuna and jam baits, but had a low attendance on peanut butter, allowing four other ant species to access this resource. Our results demonstrate community level impacts of an ant invader on a tropical oceanic atoll and suggest that differing use of food resources can facilitate coexistence in ant communities. Received 11 September 2006; revised 15 January 2007; accepted 22 February 2007.  相似文献   

2.
Aim Invasive species frequently exhibit high temporal and spatial variation in abundance. Although ecological aspects undoubtedly affect this variation, genetic factors may also play a part. The invasive unicolonial yellow crazy ant Anoplolepis gracilipes exhibits considerable variation in abundance throughout its extensive distribution in Australia’s Northern Territory, where it was first detected in the 1980s. First, we aimed to determine whether A. gracilipes variation in abundance was associated with behavioural and genetic differentiation of the population and to determine whether one or more introductions occurred. Second, we investigated whether the A. gracilipes population was genetically and behaviourally heterogeneous to determine whether population divergence has occurred since introduction. Location Tropical monsoonal savanna in Arnhem Land, Northern Territory, Australia. Methods Ant abundances were assessed at 13 sites throughout the study region. We used mitochondrial DNA sequences and microsatellite molecular markers to determine population genetic structure, which we correlated with abundance. Behavioural differentiation was assayed using aggression trials and analysed together with genetic data to investigate population divergence. Results Although we found considerable variation in abundance, we found no association between population structure and differences in abundance. Our analyses suggest that A. gracilipes ants in Arnhem Land resulted from a single introduction. The population is not homogeneous, however, as aggression scores varied over both genetic and geographic distance. We also found a positive relationship between genetic and geographic distance. Main conclusions The variation in abundance in the Arnhem Land population of A. gracilipes is clearly not owing to invasion by ants from different sources. The genetic and behavioural differentiation we observed is suggestive of incipient genetic and behavioural divergence, which may be expected over time when an invasive species enters in a new environment.  相似文献   

3.
Many introduced species become invasive despite genetic bottlenecks that should, in theory, decrease the chances of invasion success. By contrast, population genetic bottlenecks have been hypothesized to increase the invasion success of unicolonial ants by increasing the genetic similarity between descendent populations, thus promoting co‐operation. We investigated these alternate hypotheses in the unicolonial yellow crazy ant, Anoplolepis gracilipes, which has invaded Arnhem Land in Australia's Northern Territory. We used momentary abundance as a surrogate measure of invasion success, and investigated the relationship between A. gracilipes genetic diversity and its abundance, and the effect of its abundance on species diversity and community structure. We also investigated whether selected habitat characteristics contributed to differences in A. gracilipes abundance, for which we found no evidence. Our results revealed a significant positive association between A. gracilipes genetic diversity and abundance. Invaded communities were less diverse and differed in structure from uninvaded communities, and these effects were stronger as A. gracilipes abundance increased. These results contradict the hypothesis that genetic bottlenecks may promote unicoloniality. However, our A. gracilipes study population has diverged since its introduction, which may have obscured evidence of the bottleneck that would likely have occurred on arrival. The relative importance of genetic diversity to invasion success may be context dependent, and the role of genetic diversity may be more obvious in the absence of highly favorable novel ecological conditions.  相似文献   

4.
Populations of invasive species are often studied when their effects are perceived as a problem. Yet observing the dynamics of populations over longer time periods can highlight changes in effects on invaded communities, and assist with management decisions. In this study we revisit an invasion of the yellow crazy ant (Anoplolepis gracilipes) in the Tokelau archipelago to determine if the distribution and abundance of the ant has changed ~7 years after surveys completed in 2004. We were particularly interested in whether populations of a previously identified invasive haplotype (D) had increased in distribution and abundance, as this haplotype was implicated in negative effects on resident ant communities. Indeed, haplotype D populations have become more widespread since the initial survey, more likely owing to new introductions or movement by humans, rather than intrinsic characteristics of the haplotype. We also found that despite no significant change in the abundance of A. gracilipes overall, haplotype D populations have declined in abundance. Residents of the Tokelau atolls no longer consider the ant to be a pest as they did 7 years ago, when populations of this ant interfered with their food production and many other aspects of daily life. We observed no significant differences between A. gracilipes invaded and uninvaded communities, which suggests that the ant is at a level of abundance below which significant negative ecological effects may occur. Population declines of invasive species are not infrequent, and understanding these population dynamics, particularly the underlying mechanisms promoting population declines or stabilisation, should be a high priority for invasion ecology.  相似文献   

5.
Habitat complexity facilitates coexistence in a tropical ant community   总被引:1,自引:0,他引:1  
Sarty M  Abbott KL  Lester PJ 《Oecologia》2006,149(3):465-473
The role of habitat complexity in the coexistence of ant species is poorly understood. Here, we examine the influence of habitat complexity on coexistence patterns in ant communities of the remote Pacific atoll of Tokelau. The invasive yellow crazy ant, Anoplolepis gracilipes (Smith), exists in high densities on Tokelau, but still coexists with up to seven other epigeic ant species. The size-grain hypothesis (SGH) proposes that as the size of terrestrial walking organisms decreases, the perceived complexity of the environment increases and predicts that: (1) leg length increases allometrically with body size in ants, and (2) coexistence between ant species is facilitated by differential habitat use according to body size. Analysis of morphological variables revealed variation inconsistent with the morphological prediction of the SGH, as leg length increased allometrically with head length only. We also experimentally tested the ability of epigeic ants in the field to discover and dominate food resources in treatments of differing rugosity. A. gracilipes was consistently the first to discover food baits in low rugosity treatments, while smaller ant species were consistently the first to discover food baits in high rugosity treatments. In addition, A. gracilipes dominated food baits in planar treatments, while smaller ant species dominated baits in rugose treatments. We found that the normally predictable outcomes of exploitative competition between A. gracilipes and other ant species were reversed in the high rugosity treatments. Our results support the hypothesis that differential habitat use according to body size provides a mechanism for coexistence with the yellow crazy ant in Tokelau. The SGH may provide a mechanism for coexistence in other ant communities but also in communities of other terrestrial, walking insects that inhabit a complex landscape.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

6.
The introduced yellow crazy ant or long-legged ant Anoplolepis gracilipes was first reported in Seychelles in 1969 and now occurs on at least nine islands in the Central Seychelles. We describe the yellow crazy ant's effects on vegetation and invertebrate communities on one of these, Bird Island; in 2000, Anoplolepis (first reported in 1991) occurred there at densities at least 80 times higher than on other islands in the Central Seychelles. They were associated with high densities of coccid scale insects on foliage, especially of the native tree Pisonia grandis, in some instances causing tree death. Yellow crazy ants on Bird Island also significantly affected invertebrate communities on foliage and on the ground, both in terms of taxonomic composition and the density of specific taxa, apparently causing the local exclusion of some invertebrates.  相似文献   

7.
Introduced species can cause major disruptions to ecosystems, particularly on islands. On Christmas Island, the invasive yellow crazy ant (Anoplolepis gracilipes) has detrimental impacts on many animals ranging from the iconic red crabs (Gecarcoidea natalis) to the Christmas Island Thrush (Turdus poliocephalus erythropleurus). However, the full extent of its effects on the island's fauna is not yet known. In this study, we investigated the impact of the yellow crazy ants on the island's last native mammal: the Christmas Island flying‐fox (Pteropus natalis). This species has been described as a keystone species, but has recently experienced substantial population decline to the extent that it is now listed as Critically Endangered. We examined the impacts of the yellow crazy ants on the roosting behavior of the Christmas Island flying‐fox, and on its local and island‐wide distribution patterns. We showed that the crazy ants increased behaviors in the flying‐foxes that were associated with avoidance of noxious stimuli and decreased behaviors associated with resting. Roost tree selection and roost site location were not related to variation in the abundance of crazy ants on the island. Our results indicate that the crazy ants interfere with the activity budgets of the flying‐foxes. However, the flying‐foxes failed to relocate to ant‐free roost trees or roost sites when confronted with the noxious ant, suggesting that the flying‐foxes are either not sufficiently disturbed to override strong cultural attachment to roosts, or, are behaving maladaptively due to ecological naïveté.  相似文献   

8.
Summary. Ants have the capacity to reach unusually high densities, mostly in their introduced ranges. Numerical dominance is often cited as key to the ability of exotic ants to displace native ant species, reduce the abundance of invertebrates and negatively impact upon bird, land crab and other vertebrate populations. On Christmas Island, Indian Ocean, the yellow crazy ant, Anoplolepis gracilipes (Jerdon), forms supercolonies, where extremely high densities of foraging ants have contributed to ‘invasional meltdown’ in rainforest areas. Densities of up to 2254 foraging ants per m2 and a biomass of 1.85 g per m2 were recorded, and nest densities reached 10.5 nest entrances per m2. Populations of A. gracilipes can overcome and kill red endemic land crabs (Gecarcoidea natalis) over 100 times their own biomass. This is the highest recorded density of foraging ants, and adds another element to the definition of ‘supercolony’ of unicolonial ants. This paper documents one extreme in a continuum of densities of unicolonial, invasive ant species and highlights the need to incorporate forager densities into invasive ant research.Received 17 November 2004; revised 14 February 2005, accepted 21 February 2005.  相似文献   

9.
Aim Invasive ants can have substantial and detrimental effects on co‐occurring community members, especially other ants. However, the ecological factors that promote both their population growth and their negative influences remain elusive. Opportunistic associations between invasive ants and extrafloral nectary (EFN)‐bearing plants are common and may fuel population expansion and subsequent impacts of invasive ants on native communities. We examined three predictions of this hypothesis, compared ant assemblages between invaded and uninvaded sites and assessed the extent of this species in Samoa. Location The Samoan Archipelago (six islands and 35 sites). Methods We surveyed abundances of the invasive ant Anoplolepis gracilipes, other ant species and EFN‐bearing plants. Results Anoplolepis gracilipes was significantly more widely distributed in 2006 than in 1962, suggesting that the invasion of A. gracilipes in Samoa has progressed. Furthermore, (non‐A. gracilipes) ant assemblages differed significantly between invaded and uninvaded sites. Anoplolepis gracilipes workers were found more frequently at nectaries than other plant parts, suggesting that nectar resources were important to this species. There was a strong, positive relationship between the dominance of EFN‐bearing plants in the community and A. gracilipes abundance on plants, a relationship that co‐occurring ants did not display. High abundances of A. gracilipes at sites dominated by EFN‐bearing plants were associated with low species richness of native plant‐visiting ant species. Anoplolepis gracilipes did not display any significant relationships with the diversity of other non‐native ants. Main conclusions Together, these data suggest that EFN‐bearing plants may promote negative impacts of A. gracilipes on co‐occurring ants across broad spatial scales. This study underscores the potential importance of positive interactions in the dynamics of species invasions. Furthermore, they suggest that conservation managers may benefit from explicit considerations of potential positive interactions in predicting the identities of problematic invaders or the outcomes of species invasions.  相似文献   

10.
Ants are highly successful invaders, especially on islands, yet undisturbed mainland environments often do not contain invasive ants, and this observation is largely attributed to biotic resistance. An exception is the incursion of Yellow crazy ant Anoplolepis gracilipes within northeast Arnhem Land. The existence of A. gracilipes within this landscape’s intact environments containing highly competitive ant communities indicates that biotic resistance is not a terminally inhibitory factor mediating this ant’s distribution at the regional scale. We test whether biotic resistance may still operate at a more local scale by assessing whether ecological impacts are proportional to habitat suitability for A. gracilipes, as well as to the competitiveness of the invaded ant community. The abundance and species richness of native ants were consistently greater in uninfested than infested plots but the magnitude of the impacts did not differ between habitats. The abundance and ordinal richness of other macro-invertebrates were consistently lower in infested plots in all habitats. A significant negative relationship was found for native ant abundance and A. gracilipes abundance. No relationships were found between A. gracilipes abundance and any measure of other macro-invertebrates. The relative contribution of small ants (<2.5 mm) to total abundance and relative species richness was always greater in infested sites coinciding with a reduction of the contribution of the larger size classes. Differences in the relative abundance of ant functional groups between infested and uninfested sites reflected impacts according to ant size classes and ecology. The widespread scale of these incursions and non-differential level of impacts among the habitats, irrespective of native ant community competitiveness and abiotic suitability to A. gracilipes, does not support the biotic resistance hypothesis.  相似文献   

11.
Yellow crazy ants (Anoplolepis gracilipes) threaten invertebrates on many tropical islands, but little work has been done in continental ecosystems. We found 4.4–16.0 times more cruiser butterfly caterpillars were attacked in Australian rain forest sites with A. gracilipes than in native ant sites, and extrafloral nectar had little influence.  相似文献   

12.
The crazy ant (Anoplolepis gracilipes) invaded Bird island, Seychelles, in the 1980s. In 1997, its range expanded and population densities increased. The impacts of this change were studied in 2001 using a combination of arthropod collecting methods. The ant population excluded larger invertebrates (principally the large ant Odontomachus simillimus and the crabs, principally Ocypode spp.). Cockroaches, however, remained abundant in ant-infested areas and tree-nesting birds (Lesser Noddy Anous tenuirostris) appear to be able to breed successfully in the presence of the crazy ant. The ants are only abundant in areas of deep shade which provide cool nesting areas, yet enabling them to forage in the open when ground temperatures fall. The expansion of the ants was correlated with the regeneration of woodland on the island. Recommendations are made for the management of the woodland which may reduce the impacts of the crazy ant.  相似文献   

13.
Lack of biological knowledge of invasive species is recognised as a major factor contributing to eradication failure. Management needs to be informed by a site-specific understanding of the invasion system. Here, we describe targeted research designed to inform the potential eradication of the invasive yellow crazy ant Anoplolepis gracilipes on Nu’utele island, Samoa. First, we assessed the ant’s impacts on invertebrate biodiversity by comparing invertebrate communities between infested and uninfested sites. Second, we investigated the timing of production of sexuals and seasonal variation of worker abundance and nest density. Third, we investigated whether an association existed between A. gracilipes and carbohydrate sources. Within the infested area there were few other ants larger than A. gracilipes, as well as fewer spiders and crabs, indicating that A. gracilipes is indeed a significant conservation concern. The timing of male reproduction appears to be consistent with places elsewhere in the world, but queen reproduction was outside of the known reproductive period for this species in the region, indicating that the timing of treatment regimes used elsewhere are not appropriate for Samoa. Worker abundance and nest density were among the highest recorded in the world, being greater in May than in October. These abundance and nest density data form baselines for quantifying treatment efficacy and set sampling densities for post-treatment assessments. The number of plants and insects capable of providing a carbohydrate supply to ants were greatest where A. gracilipes was present, but it is not clear if this association is causal. Regardless, indirectly controlling ant abundance by controlling carbohydrate supply appears to be promising avenue for research. The type of targeted, site-specific research such as that described here should be an integral part of any eradication program for invasive species to design knowledge-based treatment protocols and determine assessment benchmarks to achieve eradication.  相似文献   

14.
Invasive species can dramatically alter trophic interactions. Predation is the predominant trophic interaction generally considered to be responsible for ecological change after invasion. In contrast, how frequently competition from invasive species contributes to the decline of native species remains controversial. Here, we demonstrate how the trophic ecology of the remote atoll nation of Tokelau is changing due to competition between invasive ants (Anoplolepis gracilipes) and native terrestrial hermit crabs (Coenobita spp.) for carrion. A significant negative correlation was observed between A. gracilipes and hermit crab abundance. On islands with A. gracilipes, crabs were generally restricted to the periphery of invaded islands. Very few hermit crabs were found in central areas of these islands where A. gracilipes abundances were highest. Ant exclusion experiments demonstrated that changes in the abundance and distribution of hermit crabs on Tokelau are a result of competition. The ants did not kill the hermit crabs. Rather, when highly abundant, A. gracilipes attacked crabs by spraying acid and drove crabs away from carrion resources. Analysis of naturally occurring N and C isotopes suggests that the ants are effectively lowering the trophic level of crabs. According to δ15 N values, hermit crabs have a relatively high trophic level on islands where A. gracilipes have not invaded. In contrast, where these ants have invaded we observed a significant decrease in δ15 N for all crab species. This result concurs with our experiment in suggesting long-term exclusion from carrion resources, driving co-occurring crabs towards a more herbivorous diet. Changes in hermit crab abundance or distribution may have major ramifications for the stability of plant communities. Because A. gracilipes have invaded many tropical islands where the predominant scavengers are hermit crabs, we consider that their competitive effects are likely to be more prominent in structuring communities than predation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The abundance of many invasive species can vary substantially over time, with dramatic population declines and local extinctions frequently observed in a wide range of taxa. We highlight population crashes of invasive ants, which are some of the most widespread and damaging invasive animals. Population collapse or substantial declines have been observed in nearly all of the major invasive ant species including the yellow crazy ant (Anoplolepis gracilipes), Argentine ants (Linepithema humile), big-headed or coastal brown ant (Pheidole megacephala), the tropical fire ant (Solenopsis geminata), red imported fire ants (Solenopsis invicta), and the little fire ant or electric ant (Wasmannia auropunctata). These declines frequently attract little attention, especially compared with their initial invasion phase. Suggested mechanisms for population collapse include pathogens or parasites, changes in the food availability, or even long-term effects of the reproductive biology of invasive ants. A critical component of the collapses may be a reduction in the densities of the invasive ant species, which are often competitively weak in low abundance. We propose that mechanisms causing a reduction in invasive ant abundance may initiate a local extinction vortex. Declines in abundance likely reduce the invasive ant’s competitive ability, resource acquisition and defense capability. These reductions could further reduce the abundance of an invasive ant species, and so on. Management of invasive ants through the use of pesticides is expensive, potentially ecologically harmful, and can be ineffective. We argue that pesticide use may even have the potential to forestall natural population declines and collapses. We propose that in order to better manage these invasive ants, we need to understand and capitalize on features of their population dynamics that promote population collapse.  相似文献   

16.
Asexual reproduction and hybridisation are often found among highly invasive plants and marine invertebrates. Recently, it has been suggested that clonality may enhance the success of invasive ants. In contrast, obligate hybridisation (dependent lineage genetic caste determination or DL GCD in ants) may decrease the chances of population persistence if one lineage is less prevalent than the other (asymmetry in lineage ratio). Genetic data available for the invasive yellow crazy ant (Anoplolepis gracilipes) suggest that it has an unconventional mode of reproduction that may involve asexual reproduction by workers or queens, or a form of genetic caste determination. Here, we investigated whether A. gracilipes reproduction involved DL GCD. The potential for worker reproduction was also assessed. We used microsatellite markers to assess the population structure of A. gracilipes workers, males, queens and sperm in queen spermathecae, from field collections in Arnhem Land. We found that a single queen lineage is present in Arnhem Land. The presence of a single lineage of queens discounts the possibility of DL GCD. Population structure separated queens and workers into different lineages, suggesting that these castes are determined genetically in A. gracilipes, or the mode of reproduction differs between workers and queens. Evidence for worker reproduction was weak. We conclude that the reproductive mode of A. gracilipes does not involve DL GCD. The resolution of the reproductive mode of A. gracilipes is complicated by a high prevalence of diploid males. The determination of the A. gracilipes reproductive mode remains a fascinating research question, and its resolution will improve our understanding of the contribution of the reproductive system to invasion success.  相似文献   

17.
L. Lach 《Insectes Sociaux》2005,52(3):257-262
Summary. Plant and insect exudates are known to play a key role in structuring tropical ant communities, but less is known about the utilization of these resources in communities dominated by invasive ants. Invasive ants are thought to require large amounts of carbohydrates such as honeydew or nectar to maintain their high abundances. Invasive ants that consume floral nectar may compete with legitimate floral visitors through interference or exploitation competition. I compared the nectar-thieving behavior of three widespread invasive ant species: long-legged ants (Anoplolepis gracilipes), Argentine ants (Linepithema humile), and big-headed ants (Pheidole megacephala) in inflorescences of the native Hawaiian ‘ōhi’a tree, an important food source for native fauna. A. gracilipes was least likely to leave inflorescences unvisited and visited inflorescences in higher numbers than both L. humile and P. megacephala. A. gracilipes and L. humile visited more flowers in an inflorescence and were less likely to retreat from a flower with a competitor than P. megacephala. A. gracilipes was able to take 5.5 and 11.3 times the amount of nectar than L. humile and P. megacephala, respectively. Thus, A. gracilipes may be effective at both interference and exploitation competition against other nectarivores, L. humile may be effective at interference competition, and P. megacephala may be relatively weak at both types of competition against other nectarivores. Ascertaining the competitive abilities of invasive ants against legitimate floral visitors will be especially important in agricultural and other systems that are nectar or pollinator limited.Received 6 December 2004; revised 13 January 2005; accepted 14 January 2005.  相似文献   

18.
Throughout the tropics, agroforests are often the only remaining habitat with a considerable tree cover. Agroforestry systems can support high numbers of species and are therefore frequently heralded as the future for tropical biodiversity conservation. However, anthropogenic habitat modification can facilitate species invasions that may suppress native fauna. We compared the ant fauna of lower canopy trees in natural rainforest sites with that of cacao trees in agroforests in Central Sulawesi, Indonesia in order to assess the effects of agroforestry on occurrence of the Yellow Crazy Ant Anoplolepis gracilipes, a common invasive species in the area, and its effects on overall ant richness. The agroforests differed in the type of shade-tree composition, tree density, canopy cover, and distance to the village. On average, 43% of the species in agroforests also occurred in the lower canopy of nearby primary forest and the number of forest ant species that occurred on cacao trees was not related to agroforestry characteristics. However, A. gracilipes was the most common non-forest ant species, and forest ant richness decreased significantly with the presence of this species. Our results indicate that agroforestry may have promoted the occurrence of A. gracilipes, possibly because tree management in agroforests negatively affects ant species that depend on trees for nesting and foraging, whereas A. gracilipes is a generalist when it comes to nesting sites and food preference. Thus, agroforestry management that includes the thinning of tree stands can facilitate ant invasions, thereby threatening the potential of cultivated land for the conservation of tropical ant diversity.  相似文献   

19.
Honeydew collection performed by the invasive ant Lasius neglectus and by the native ant L. grandis was compared. The invasive ant collected 2.09 kg of honeydew per tree while the native ant collected 0.82 kg. The aphid Lachnus roboris was visited by both ant species. In holm oaks colonized by L. neglectus, aphid abundance tended to increase and its honeydew production increased twofold. The percentage of untended aphids was lower in holm trees occupied by L. neglectus. As tending ants also prey on insects, we estimated the percentage of carried insects. The native ant workers carried more insects than the invasive ant. Both ant species preyed mainly on Psocoptera and the rarely tended aphid, Hoplocallis picta. We conclude that the higher honeydew collection achieved by L. neglectus was the consequence of (1) its greater abundance, which enabled this ant to tend more Lachnus roboris and (2) its greater level of attention towards promoting an increase of honeydew production. Handling editor: Heikki Hokkanen  相似文献   

20.
Invasions by introduced ant species can be ecologically destructive and affect a wide range of taxa, particularly native ants. Invasive ant species often numerically dominate ant communities and outperform native ant species in effective resource acquisition. Here, we describe interactions between the invasive ant Anoplolepis gracilipes (Smith) and resident ant species in disturbed habitats in NE Borneo. We measured interference competition abilities of A. gracilipes by performing arena bioassays between two A. gracilipes colonies and seven local ant species, and measured its effective resource competition at baits within supercolonies and at supercolony boundaries. Furthermore, we compared ant species diversity and composition at baits among (A) core areas of A. gracilipes supercolonies, (B) supercolony boundaries and (C) outside supercolonies. Anoplolepis gracilipes was behaviorally dominant over most ant species except Oecophylla smaragdina. Within supercolonies, A. gracilipes discovered all food baits first, and monopolized the vast majority throughout the course of the experiment. At supercolony boundaries, A. gracilipes discovered baits later than resident ant species, but subsequently monopolized half of the baits. Furthermore, the activity and diversity of the ant community within A. gracilipes supercolonies was lower than at its boundaries and outside supercolonies, and the ant communities differed significantly between infested and noninfested areas. Our study supports the hypothesis that successful establishment of A. gracilipes in anthropogenically disturbed habitats may negatively affect resident ant communities through high levels of direct interspecific aggression and almost complete monopolization of resources within high‐density supercolonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号