首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examined the effect of the pharmacological manipulation of adrenal renin-angiotensin system (RAS) on aldosterone secretion from in situ perfused adrenals of rats kept on a normal diet and sodium restricted for 14 days. Neither the angiotensin-converting enzyme inhibitor captopril nor the nonselective angiotensin II receptor antagonist saralasin and the AT(1) receptor-selective antagonist losartan affected basal aldosterone output in normally fed rats. In contrast, they concentration dependently decreased aldosterone secretion in sodium-restricted animals, with maximal effective concentration ranging from 10(-7) to 10(-6) M. Captopril (10(-6) M), saralasin (10(-6) M), and losartan (10(-7) M) counteracted aldosterone response to 10 mM K(+) in sodium-restricted rats but not in normally fed animals. Collectively, these findings provide evidence that adrenal RAS plays a role in the regulation of aldosterone secretion, but only under conditions of prolonged stimulation of zona glomerulosa probably leading to overexpression of adrenal RAS.  相似文献   

2.
Transgenic rats for the murine Ren-2 gene display high blood pressure, low circulating levels of angiotensin II, and high renin content in the adrenal glands. Moreover, transgenic rats possess and increased aldosterone secretion (maximal from 6 to 18 weeks of age), paralleling the development of hypertension. To investigate further the cytophysiology of the adrenal glands of this strain of rats, we performed a combined morphometric and functional study of the zona glomerulosa of 10-week-old female transgenic rats. Morphometry did not reveal notable differences between zona glomerulosa cells of transgenic and age- and sex-matched Sprague-Dawley rats, with the exception of a marked accumulation of lipid droplets, in which cholesterol and cholesterol esters are stored. The volume of the lipid-droplet compartment underwent a significant decrease when transgenic rats were previously injected with angiotensin II or ACTH. Dispersed zona glomerulosa cells of transgenic rats showed a significantly higher basal aldosterone secretion, but their response to angiotensin II and ACTH was similar to that of Sprague-Dawley animals. Angiotensin II-receptor number and affinity were not dissimilar in zona glomerulosa cells of transgenic and Sprague-Dawley rats. These data suggest that the sustained stimulation of the adrenal renin-angiotensin system in transgenic animals causes an increase in the accumulation in zona glomerulosa cells of cholesterol available for steroidogenesis, as indicated by the expanded volume of the lipid-droplet compartment and the elevated basal steroidogenesis. However, the basal hyperfunction of the zona glomerulosa in transgenic animals does not appear to be coupled with an enhanced responsivity to its main secretagogues, at least in terms of aldosterone secretion.  相似文献   

3.
In the present study we investigated the ontogeny of the expression of the type 1 angiotensin receptor (AT(1)R mRNA) and the zonal localization of AT(1)R immunoreactivity (AT(1)R-ir) and cytochrome P450(c11) (CYP11B-ir) in the sheep adrenal gland. In the adult sheep and in the fetus from as early as 90 days gestation, intense AT(1)R-ir was observed predominantly in the zona glomerulosa and to a lesser extent in the zona fasciculata, and it was not detectable in the adrenal medulla. AT(1)R mRNA decreased 4-fold between 105 days and 120 days, whereas AT(1)R mRNA levels remained relatively constant between 120 days and the newborn period. In contrast, both in the adult sheep and in the fetal sheep from as early as 90 days gestation, intense CYP11B-ir was consistently detected throughout the adrenal cortex and in steroidogenic cells that surround the central adrenal vein. In conclusion, we speculate that the presence of AT(1)R in the zona fasciculata, and the higher levels of expression of AT(1)R at around 100 days gestation, may suggest that suppression of CYP17 is mediated via AT(1)R at this time. The abundant expression of AT(1)R-ir and CYP11B-ir in the zona glomerulosa of the fetal sheep adrenal gland would also suggest that lack of angiotensin II stimulation of aldosterone secretion is not due to an absence of AT(1)R or CYP11B in the zona glomerulosa.  相似文献   

4.
This study aimed to elucidate the role of the AT(2) receptor (AT(2)R), which is expressed and upregulated in the adrenal zona glomerulosa (ZG) under conditions of increased aldosterone production. We developed a novel transgenic rat (TGR; TGRCXmAT(2)R) that overexpresses the AT(2)R in the adrenal gland, heart, kidney, brain, skeletal muscle, testes, lung, spleen, aorta, and vein. As a consequence the total angiotensin II (Ang II) binding sites increased 7.8-fold in the kidney, 25-fold in the heart, and twofold in the adrenals. The AT(2)R number amounted to 82-98% of total Ang II binding sites. In the ZG of TGRCXmAT(2)R, the AT(2)R density was elevated threefold relative to wild-type (WT) littermates, whereas AT(1)R density remained unchanged. TGRCXmAT(2)R rats were viable and exhibited normal reproduction, blood pressure, and kidney function. Notably, a slightly but significantly reduced body weight and a moderate increase in plasma urea were observed. With respect to adrenal function, 24-h urinary and plasma aldosterone concentrations were unaffected in TGRCXmAT(2)R at baseline. Three and 14 days of Ang II infusion (300 ng·min(-1)·kg(-1)) increased plasma aldosterone levels in WT and in TGR. These changes were completely abolished by the AT(1)R blocker losartan. Of note, glomerulosa cell proliferation, as indicated by the number of Ki-67-positive glomerulosa cells, was stimulated by Ang II in TGR and WT rats; however, this increase was significantly attenuated in TGR overexpressing the AT(2)R. In conclusion, AT(2)R in the adrenal ZG inhibits Ang II-induced cell proliferation but has no obvious lasting effect on the regulation of the aldosterone production at the investigated stages.  相似文献   

5.
A prolonged infusion with ANF (20 micrograms/kg/h for 7 days) induced atrophy of zona glomerulosa cells and lowering of basal plasma concentration of aldosterone in rats whose hypothalamo-hypophyseal-adrenal axis and renin-angiotensin system had been interrupted by the simultaneous administration of dexamethasone/captopril and maintenance doses of ACTH/angiotensin II. Chronic ANF treatment also caused comparable reductions in the aldosterone response of zona glomerulosa cells to the acute stimulation with angiotensin II, potassium and ACTH. These data are interpreted to indicate that ANF exerts an inhibitory effect on the growth and secretory activity of rat zona glomerulosa, and that the mechanism underlying this action of ANF does not involve blockade of renin release or ACTH secretion.  相似文献   

6.
7.
The effects of a 3-day water deprivation were studied in adult female rats in order to know what are the different zones of the adrenal gland and the hormonal factors involved in the growth and the activity of the adrenal gland. Water deprivation significantly increased plasma renin activity (PRA), plasma Angiotensin II (AII), vasopressin (AVP), epinephrine, aldosterone and corticosterone concentrations but did not modify the plasma adrenocorticotropin hormone (ACTH) level. Water deprivation significantly increased the absolute weight of the adrenal capsule containing the zona glomerulosa without modification of the density of cells per area unit suggesting that the growth of the adrenal capsule was due to a cell hyperplasia of the zona glomerulosa. Water deprivation significantly increased the density of AII type 1 (AT1) receptors in the adrenal capsule but did not modify the density of AII type 2 (AT2) receptors in the adrenal capsule and core containing the zona fasciculata, the zona reticularis and the medulla. The treatment of dehydrated female rats with captopril, which inhibits the angiotensin converting enzyme (ACE) in order to block the production of AII, significantly decreased the absolute weight of the adrenal capsule, plasma aldosterone and the density of AT1 receptors in the adrenal capsule. The concentration of corticosterone in the plasma, the density of AT2 receptors and the density of cells per unit area in the zona glomerulosa of the adrenal capsule were not affected by captopril-treatment. In conclusion, these results suggest that AII seems to be the main factor involved in the stimulation of the growth and the secretion of aldosterone by the adrenal capsule containing the zona glomerulosa during water deprivation. The low level of plasma ACTH is not involved in the growth of the adrenal gland but is probably responsible for the secretion of corticosterone by the zona fasciculata.  相似文献   

8.
Extrarenal renin has been identified in a number of tissues, including the brain, the submaxillary gland, uterus, ovary, vascular endothelium, testes, pituitary gland, and the adrenal cortex. In some tissues, including the adrenal cortex, all of the components of the renin-angiotensin system have been identified; however, no specific physiologic role has been clearly demonstrated for these extrarenal renin-angiotensin systems. We have studied the role of the renin-angiotensin system in the adrenal cortex of the rat and have found that renin is localized and synthesized in the zona glomerulosa cells. Its production can be influenced by alterations in electrolyte balance, as well as the genetic background of the rat. In adrenal capsular explant cultures, a converting enzyme inhibitor can lower angiotensin II production and reduce the stimulation of aldosterone by potassium, suggesting that this system is involved in the aldosterone response to potassium. In addition to rat adrenals, renin has been identified in human adrenal tissue and human adrenal tumors, including aldosteronomas, and a patient with hypertension has been reported to have an adrenal tumor that appeared to be secreting renin into the circulation.  相似文献   

9.
We studied regulation of the AT(2) receptor by investigating the effect of bilateral nephrectomy (bNX) in Sprague-Dawley rats. The expression of aldosterone synthase (CYP11B2) and AT(2) receptor mRNA was detected by nonradioactive in situ hybridization. AT(2) receptor mRNA was detected in cells of the first two or three subcapsular cell layers of the zona glomerulosa (ZG) and in the medulla of sham-operated animals. After bNX, the number and area of distribution of AT(2) receptor-positive cells increased in the ZG. This was associated with an enlargement of the steroidogenic active ZG and with reduced proliferation rate (sham 5.9 +/- 0.9%; bNX 2.4 +/- 0.2%; p<0.02). Infusion of angiotensin II (ANG II; 200 ng/kg/min SC for 56 hr) to bNX rats did not reverse the effect of nephrectomy on the distribution of AT(2) receptor expression, although mRNA levels per cell were reduced compared to NX alone. ANG II infusion decreased proliferation rate further (0.4 +/- 0.07%; p<0.001). In the adrenal medulla after bNX, decreased expression of the AT(2) receptor was associated with increased proliferation (2.6 +/- 0.2% vs 6.6 +/- 0.5%). These results demonstrate differential regulation of the AT(2) receptor in the adrenal gland and suggest that expression of the AT(2) receptor is involved in regulating proliferation and differentiation in the ZG and medulla. (J Histochem Cytochem 49:649-656, 2001)  相似文献   

10.
D Petrasek  G Jensen  M Tuck  N Stern 《Life sciences》1992,50(23):1781-1787
Though long standing diabetes mellitus is frequently accompanied by hypoaldosteronism, the role of insulin in this setting has never been clearly established. In the present study we have examined the direct effects of insulin on aldosterone production in rat zona glomerulosa cells in vitro. Insulin is shown to directly stimulate aldosterone production in a dose dependent manner, and to attenuate angiotensin II mediated aldosterone production, without affecting angiotensin II receptor binding kinetics. Insulin had no effect on aldosterone production mediated by the other physiological stimuli (K+ and ACTH). These data suggest a possible interaction between insulin and angiotensin II in the regulation of aldosterone secretion.  相似文献   

11.
In bovine adrenal glomerulosa cells, angiotensin II and extracellular K+ stimulate aldosterone secretion in a calcium-dependent manner. In these cells, physiological concentrations of extracellular potassium activate both T-type (low threshold) and L-type (high threshold) voltage-operated calcium channels. Paradoxically, the cytosolic calcium response to 9 mM K+ is inhibited by angiotensin II. Because K+-induced calcium changes observed in the cytosol are almost exclusively due to L-type channel activity, we therefore studied the mechanisms of L-type channel regulation by angiotensin II. Using the patch-clamp method in its perforated patch configuration, we observed a marked inhibition (by 63%) of L-type barium currents in response to angiotensin II. This effect of the hormone was completely prevented by losartan, a specific antagonist of the AT1 receptor subtype. Moreover, this inhibition was strongly reduced when the cells were previously treated for 1 night with pertussis toxin. An effect of pertussis toxin was also observed on the modulation by angiotensin II of the K+ (9 mM)-induced cytosolic calcium response in fura-2-loaded cells, as well as on the angiotensin II-induced aldosterone secretion, at both low (3 mM) and high (9 mM) K+ concentrations. Finally, the expression of both Go and Gi proteins in bovine glomerulosa cells was detected by immunoblotting. Altogether, these results strongly suggest that in bovine glomerulosa cells, a pertussis toxin-sensitive G protein is involved in the inhibition of L-type channel activity induced by angiotensin II.  相似文献   

12.
D A Ontjes 《Life sciences》1980,26(24):2023-2035
The control of cortisol secretion by ACTH and of aldosterone secretion by angiotensin is exerted upon separate cell populations in the adrenal cortex. Cells of the zona faciculata and the zona glomerulosa, while sharing common steroidogenic pathways, are affected differently by hormones and drugs. Fasciculata cells demonstrate increased cAMP formation and cortisol output primarily in response to ACTH. ACTH receptors, when occupied by hormone, transmit an activating signal to membrane-bound adenylate cyclase by a mechanism that may require the translocation of Ca2+. Although the precise way in which increased intracellular cAMP leads to increased steroidogenesis is unknown, protein phosphorylation and new protein synthesis are probably involved. Glomerulosa cells also respond to ACTH, but are uniquely responsive to physiological concentrations of angiotensin II and K+. The responsiveness of these cells to angiotensin may be governed by alterations in receptor number. Whether occupied angiotensin receptors activate steroidogenesis via cAMP is uncertain, but alterations in Ca2+ distribution within the cell may again be involved. Dopamine probably exerts a tonic inhibitory effect on glomerulosa cell function. Competitive inhibitory analogs for both ACTH and angiotensin II are available, but thus far all inhibitors have retained weak agonist properties. Because the regulatory processes for both cortisol and aldosterone are complex, a wide variety of drugs can affect rates of steroidogenesis invivo.  相似文献   

13.
The secretion of aldosterone and its responses to stimulation have been studied in rat adrenal zona glomerulosa tissue incubated as intact capsules or as collagenase-dispersed cell suspensions, and in intact perfused rat adrenal glands. Several differences are apparent in the functions of the various preparations. Aldosterone secretion rates are similar in incubated intact capsules and in the perfused gland. Relative to corticosterone, lower yields of aldosterone are obtained in dispersed glomerulosa cell in vitro. This may be related to the loss in the dispersed cells of a pool of tissue steroid (aldosterone or a precursor) which is revealed only in intact tissue incubations by trypsin stimulation of aldosterone secretion. Trypsin-released aldosterone is increased by prior dietary sodium restriction. In addition, differences occur in the responses of dispersed cells and perfused glands to stimulation. Perfused glands from animals on a normal diet are less sensitive to stimulation by ACTH or alpha-MSH, but more sensitive than dispersed cells to angiotensin II amide. In the perfused gland, sensitivity of response (lowest effective concentration) to all three stimulants is increased by prior dietary sodium restriction, in contrast to dispersed cells in which increased sensitivity has been reported only to alpha-MSH. The perfused gland is particularly sensitive to angiotensin II amide, and a bolus administration of 1 amol gives significant stimulation in glands from animals on low sodium intake. Electrical (field) stimulation or dopamine administration at 10(-6) mol/l (which is ineffective in dispersed cells) both depress aldosterone secretion by the perfused gland. The data suggest that the sequestered pool of steroid is utilized in the perfused gland for aldosterone secretion. They furthermore suggest that in the intact gland there are mechanisms, which involve neural components, for intraglandular regulation of aldosterone secretion, which are lost in dispersed cells in vitro. Such mechanisms may be involved in sensitivity increases in sodium depletion.  相似文献   

14.
We raised a polyclonal antibody against a decapeptide corresponding to the carboxyl terminus of the rat angiotensin II AT1 receptor. This antibody was demonstrated to be specific for the rat receptor according to a number of approaches. These included (a) the ultrastructural localization of immunogold-labeled receptor on the surfaces of zona glomerulosa cells in the adrenal cortex, (b) the specific labeling of Chinese hamster ovarian (CHO) cells transfected with AT1 receptors, (c) the identification of a specific band on Western blots, (d) the immunocytochemical co-localization of angiotensin receptors on neurons in the lamina terminalis of the brain shown to be responsive to circulating angiotensin II, as shown by the expression of c-fos, and (e) the correlation between the expression of the mRNA of the AT1 receptor and AT1 receptor immunoreactivity.(J Histochem Cytochem 47:507-515, 1999)  相似文献   

15.
The inhibiting effects of 18-ethynyl-deoxycorticosterone (18-E-DOC) as a mechanism-based inhibitor on the late-steps of the aldosterone biosynthetic pathway were examined in calf adrenal zona glomerulosa cells in primary culture and in freshly isolated calf zona glomerulosa cells. 18-E-DOC inhibited the stimulated secretion of aldosterone and 18-hydroxycorticosterone in a similar dose-response and time fashion. No significant differences were found between the inhibition in cultured and freshly isolated cells (Ki of 0.25 vs 0.26 μM) Corticosterone secretion stimulated by ACTH or angiotensin II was also cultured in freshly isolated zona glomerulosa and fasciculata cells, but was not inhibited in cultured calf adrenal cells. Cortisol secretion stimulated by ACTH was not inhibited by 18-E-DOC in cultured zona fasciculata adrenal cells, but was inhibited in freshly isolated zona fasciculata cells with a Ki of 48 μM. The secretion of 18-hydroxyDOC or 19-hydroxyDOC stimulated by ACTH was not inhibited by 18-E-DOC. The bovine adrenal has been reported to have cytochrome P-450 11β-hydroxylases that can perform the various hydroxylations required for the synthesis of cortisol and aldosterone in the different areas of the adrenal. In other species a distinct 11β-hydroxylase which participates in the biosynthesis of aldosterone and is located in the zona glomerulosa has been described. These studies with the mechanism-based inhibitor, 18-E-DOC, suggest that the bovine adrenal functions in a manner very similar to that of other species and raises the possibility that a distinct 11β-hydroxylase with aldosterone synthase activity might be present, but has not been cloned as yet.  相似文献   

16.
17.
The object of this review is to describe the role of the renin–angiotensin system in control of aldosterone secretion. The review focuses on the roles of the circulating renin–angiotensin (RAS) system, the activity of which is determined predominantly by control of renin secretion from the kidney and on the role of the intra-adrenal RAS. Angiotensin can bind to two types of G protein coupled receptors, the AT1 and AT2 receptors. Both receptors are found on cells from the zona glomerulosa, the site of aldosterone synthesis. Angiotensin II acting via the AT1 receptor stimulates the synthesis of aldosterone at early and late steps in the pathway. Its effect on aldosterone is influenced by a number of other factors such as plasma potassium levels, sodium status, other peptides such as ANP and adrenomedullin and proadrenomedullin N-terminal peptide. All components of the RAS are found in the adrenal gland. The activity of this intra-adrenal RAS is unmasked and amplified in nephrectomised animals. Aldosterone controls sodium transport across epithelial cells, but recently novel effects on the heart have been described.  相似文献   

18.
VIP acutely enhanced the plasma concentration of aldosterone (but not that of corticosterone) both in normal rats, and in rats chronically treated with dexamethasone and ACTH or captopril and angiotensin II. VIP increased aldosterone blood concentration in chronically captopril-treated animals, but not in rats in which ACTH secretion was inhibited by dexamethasone. These findings suggest that VIP is specifically involved in the stimulation of the secretory activity of rat zona glomerulosa, and that this action of VIP requires a normal level of circulating ACTH.  相似文献   

19.
Angiotensin II and its heptapeptide fragment, Des-Asp-1-angiotensin II, produced a striking increase in aldosterone secretion in rats pretreated with dexamethasone and morphine to reduce ACTH release. 1-Sar-8-Ala-angiotensin II (10 mug/kg min-1) given simultaneously with angiotensin II (1 mug/min) blocked the aldosterone response to angiotensin II in rats pretreated to reduce ACTH release. In contrast, 1-Sar-8-Ala-angiotensin II at the same dose failed to block the steroid response to Des-Asp-1-angiotensin II (1 mug/min) but a larger dose of 50 mug/kg min-1 of the angiotensin II antagonist blocked completely both the aldosterone and the corticosterone responses to 1 mug/min of Des-Asp-1-angiotensin II. From these data it is suggested that the heptapeptide has a higher affinity for zona glomerulosa receptors than the octapeptide and that Des-Asp-1-angiotensin II mediates, at least in part, the steroidogenic response to the renin-angiotensin system in the rat. The pressor response to Des-Asp-1-angiotensin II was approximately 50% of that produced by the octapeptide in the rat, and 1-Sar-8-Ala-angiotensin II was as effective in partially blocking the pressor response to the octapeptide as in inhibiting the heptapeptide. The present observations indicate a dissociation of adrenal cortex and peripheral arteriolar receptors in their affinity for angiotensin.  相似文献   

20.
Aldosterone production occurs in the outer area of the adrenal cortex, the zona glomerulosa. The glucocortocoids cortisol and corticosterone, depending upon the species, are synthesized in the inner cortex, the zona fasciculata. Calf zona glomerulosa cells rapidly lose the ability to synthesize aldosterone when placed in primary culture unless they are incubated in the presence of the antioxidants butylated hydroxyanisol and selenous acid, the radioprotectant DMSO, and the cytochrome P-450 inhibitor metyrapone. In the presence of these additives, calf zona fasciculata cells in primary culture synthesize aldosterone at rates which can approach those from cells isolated from the zona glomerulosa. Calf zona glomerulosa and fasciculata cells both responded well to ACTH and angiotensin II, but the zona fasciculata cells respond very poorly compared to glomerulosa cells to increased potassium in the media. Rat zona fasciculata cells in primary culture under similar conditions did not synthesize aldesterone, suggesting that the regulation of the expression of the enzymes responsible for the biosynthesis of aldosterone in the two species is different. Two distinct cytochrome P-450 cDNAs which hydroxylate deoxycorticosterone at the 11β position have been described in the rat, human and mouse. Both cytochrome P-450 cDNAs have been cloned and expressed in non-steroidogenic cells, but only one is expressed in the zona glomerulosa and only this glomerulosa cytochrome P450 can further hydroxylate deoxycorticosterone to generate aldosterone. Two bovine adrenal cDNAs have been described with 11β-hydroxylase activity and their expression products in transiently transfected COS cells can convert deoxycorticosterone into aldosterone. Both enzymes are expressed in all zones of the adrenal cortex. Zonal regulation of aldosterone synthesis in the bovine adrenal gland may be due to an 11β-hydroxylase with aldosterone synthesizing capacity which has not yet been isolated. Alternatively, a single enzyme might be responsible for the several hydroxylations in the pathway between deoxycorticosterone and aldosterone and zonal synthesis might be controlled by unknown factors regulating the expression of C-18 hydroxylation. The incubation of zona fasciculata with antioxidants and metyrapone results in atypical expression of this activity by an unclear mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号