共查询到20条相似文献,搜索用时 0 毫秒
1.
研究了夜间低温对两个芒果(Mangifera indica)品种翡翠芒(Khieo Sawoei)和四季芒(Choke Anand)光合生理的影响.两个芒果品种的幼茼盆栽于全光和50%相对光强下一年.在第二年的冬季,连续7天晚上将芒果幼苗移到4℃的冷库中,白大保持原条件.于低温处理前、处理期间和结束低温处理后10天中测定芒果幼苗的光合生理特征.结果表明,夜间低温导致两个芒果品种的净光合速率、气孔导度和光系统Ⅱ的最大光化学效率(Fv/Fm)降低、非光化学猝灭(NPQ)上升.夜间低温对生长在全光下的芒果幼苗光合作用的抑制比50%光下的更重.翡翠芒的Fv/Fm比四季芒下降的更多,但后者的NPQ上升更多.夜间低温还导致两种光下芒果幼苗叶片的叶绿素含量下降,类胡萝卜素/叶绿素比值、丙二醛含量、膜的透性和可溶性化合物(可溶性总糖和脯氨酸)上升.解除低温胁迫后,四季芒Fv/Fm的恢复比翡翠芒的快.解除低温胁迫7天后二者的F发、Fv/Fm能完全恢复.上述结果表明,翡翠芒对低温更敏感,遮荫可以明显缓解两个芒果品种低温引起的光抑制. 相似文献
2.
Zhenfei Guo Meiyan Huang Shaoyun Lu Zhao Yaqing Qiao Zhong 《Acta Physiologiae Plantarum》2007,29(1):39-46
The responses of antioxidative system and photosystem II photochemistry of rice (Oryza sativa L.) to paraquat induced oxidative stress were investigated in a chilling-tolerant cultivar Xiangnuo no. 1, and a chilling-susceptible
cultivar, IR-50. Electrolyte leakage and malondialdehyde (MDA) content of Xiangnuo no. 1 were little affected by paraquat,
but they increased in IR-50. After paraquat treatment, superoxide dismutase (SOD) activity remained high in Xiangnuo no. 1,
while it declined in IR-50. Activities of catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) declined
with oxidative stress in both cultivars, but Xiangnuo no. 1 had higher GR activity than IR-50. Under paraquat induced oxidative
stress, ascorbic acid (AsA) and reduced glutathione (GSH) concentrations remained high in Xiangnuo no. 1, but decreased in
IR-50. The results indicated that higher activities of SOD and GR and higher contents of AsA and GSH in Xiangnuo no. 1 under
paraquat induced oxidative stress were associated with its tolerance to paraquat, while paraquat induced damage to IR-50 was
related to decreased activities of SOD, APX and GR and contents of AsA and GSH. F
v/F
m, Φ
PSII, and qP remained high in Xiangnuo no. 1, while they decreased greatly in IR-50 under paraquat induced oxidative stress. 相似文献
3.
Effect of drought stress on chlorophyll a fluorescence and electrical admittance of shoots in Norway spruce seedlings 总被引:1,自引:0,他引:1
Effects of mild and severe soil drought on the water status of needles, chlorophyll a fluorescence, shoot electrical admittance, and concentrations of photosynthetic pigments in needles of seedlings of Picea abies (L.) Karst. were examined under controlled greenhouse conditions. Drought stress reduced shoot admittance linearly with a decrease in shoot water potential (w) and increase in water deficit (WD) and led to a decrease in concentrations of chlorophyll a, b and carotenoids. Severe water stress (shoot w=–2.4 MPa) had a negative effect on chlorophyll a fluorescence parameters including PSII activity (Fv/Fm), and the vitality index (Rfd). Variations in these parameters suggest an inhibition of the photosynthetic electron transport in spruce needles. Water stress led to a decrease in the mobility of electrolytes in tissues, which was reflected by decreased shoot electrical admittance. After re-watering for 21 days the WD in needles decreased and the shoot water potential increased. In the re-watered plants, the chloroplast function was restored and chlorophyll a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in the seedlings triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. We conclude that the shoot electrical admittance and photosynthetic electron transport in leaves are closely linked to changes in water status and their decrease is among the initial responses of seedlings to water stress. 相似文献
4.
The effect of a short period of saline stress was studied in two phenotypically different cultivars, one of normal fruit-size (L. esculentum cv. New Yorker) and one of cherry fruit-size (L. esculentum var.cerasiforme cv. PE-62). In both cultivars the relative growth rate (RGR) and the leaf area ratio (LAR) decreased following salinisation. The leaf turgor potential (p) and the osmotic potential at full turgor (os) decreased to the same extent in both cultivars. However, the contributions of organic and inorganic solutes to the osmotic adjustment was different between cultivars. New Yorker achieved the osmotic adjustment by means of the Cl– and Na+ uptake from the substrate, and by synthesis of organic solutes. In the cherry cultivar organic solutes did not contribute to the osmotic adjustment, instead, their contribution decreased after salinisation. After the salt stress was removed, the water stress disappeared, the content of organic solutes decreased in plants of both cultivars and, therefore, their growth was not retarded by the diversion of resources for the synthesis of organic solutes. However, the toxic effects of the Cl– and Na+ did not disappear after removal of the salt stress, and the net assimilation rate (NAR) and the rate of growth (RGR) did not recover. 相似文献
5.
Abdallah Oukarroum Saïd El Madidi Gert Schansker Reto J. Strasser 《Environmental and Experimental Botany》2007,60(3):438-446
The main objective of this study was to evaluate the effects of drought and re-watering on 10 varieties of barley (Hordeum vulgare L.) originating from Morocco. Five varieties obtained from the National Institute of Agricultural Research (INRA) of Morocco and five landraces (local varieties defined by high stress tolerance, high yield stability, an intermediate yield and low-input demand) collected at five localities in the south of Morocco were used in the present study. After 2 weeks of growth, drought stress was initiated by withholding water for 2 weeks followed by 1 week of re-watering. The polyphasic OJIP fluorescence transient was used to evaluate photosystem II (PSII) criteria at the end of the first week of drought stress (moderate drought), at the end of the second week (severe drought) and the end of the recovery phase. Drought and re-watering had little effect on the maximum quantum yield of primary photochemistry φPo(=FV/FM). The photosynthetic performance index (PI) is the product of an antenna, reaction center and electron transport dependent parameter. It revealed differences between varieties as a function of drought and re-watering. For the screening for drought stress tolerance, changes in the PI during a 2-week drought stress treatment were analysed and a new parameter was defined: the drought factor index (DFI) = log(PIweek 1/PIcontrol) + 2 log(PIweek 2/PIcontrol). The DFI of the tested varieties correlated with their drought tolerance. Another parameter that was analysed was the relative water content. It decreased during the drought stress treatment varying between 61% and 78.2% at the end of the drought period. During the subsequent recovery period, it increased in a species-dependent manner (65.1–94.1%). A third parameter studied were changes in the initial fluorescence rise. The fluorescence rise during the first 300 μs (L-band) can give information on the energetic connectivity between PSII units whereas changes in the rise during the first 2 ms (K-band) offer information on developing limitations on the donor side of PSII. Changes in respectively the L and K-bands of the fluorescence transients OJIP were shown to have predictive value with respect to the vitality of leaves and the tolerance of the varieties to drought stress. 相似文献
6.
Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring 总被引:1,自引:0,他引:1
Micropropagated rose plants (Rosa hybrida L., cv. New Dawn) were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus intraradices (Schenk and Smith) and subjected to different drought regimens. The dual objectives of these experiments were to investigate
the mechanism and the extent to which AM can prevent drought damages and whether physiological analyses reveal enhanced drought
tolerance of an economically important plant such as the rose. In a long-term drought experiment with four different water
regimens, visual scoring of wilt symptoms affirmed that AM in a selected host–symbiont combination increased plant performance.
This effect was mostly expressed if moderate drought stress was constantly applied over a long period. In a short-term experiment
in which severe drought stress was implemented and plants were allowed to recover after 4 or 9 days, no visual differences
between mycorrhizal and non-mycorrhizal roses were observed. Therefore, the early physiological steps conferring drought tolerance
were prone to investigation. Proline content in leaves proved to be an unsuitable marker for AM-induced drought tolerance,
whereas analysis of chlorophyll a fluorescence using the JIP test (collecting stress-induced changes of the polyphasic O-J-I-P fluorescence kinetics in a non-destructive
tissue screening) was more explanatory. Parameters derived from this test could describe the extent of foliar stress response
and help to differentiate physiological mechanisms of stress tolerance. AM led to a more intense electron flow and a higher
productive photosynthetic activity at several sites of the photosynthetic electron transport chain. A K step, known as a stress
indicator of general character, appeared in the fluorescence transient only in drought-stressed non-mycorrhizal plants; conversely,
the data elucidate a stabilising effect of AM on the oxygen-evolving complex at the donor site of photosystem (PS) II and
at the electron-transport chain between PS II and PS I. If drought stress intensity was reduced by a prolonged and milder
drying phase, these significant tolerance features were less pronounced or missing, indicating a possible threshold level
for mycorrhizal tolerance induction. 相似文献
7.
Lukáš Kolarovič Peter Valentovič Miroslava Luxová Otília Gašparíková 《Plant Growth Regulation》2009,59(1):21-26
Seedlings of two cultivars of maize (Zea mays L.) differing in their drought sensitivity were exposed to osmotic stress (0.3 M sorbitol, −1.4 MPa) for 4, 8, 12, 24 and
48 h during their heterotrophic stage of development. Alterations in their antioxidant pools combined with the activities
of enzymes involved in defence against oxidative stress were investigated. Significant activation of antioxidative defence
mechanisms correlated with drought-induced oxidative stress tolerance, and this phenomenon was shown to be characteristic
of the drought-tolerant cv. Nova. Activities of some ROS-scavenging enzymes, superoxide dismutase (SOD), guaiacol peroxidase
(POX), catalase (CAT) and ascorbate peroxidase (APX) were already enhanced significantly 4 h after the start of drought exposure
in the drought-tolerant cv. Nova. Furthermore, a significant increase in the ascorbate pool was observed in this cultivar.
On the other hand, in the drought-sensitive cv. Ankora only SOD and POD activities and the thiol pool were increased. No changes
in APX activity or the level of ascorbate were recorded in cv. Ankora. Studies of root cell viability indicated that marked
oxidative damage appeared only in cv. Ankora. These results, together with our previous observations, confirmed the higher
ability of cv. Nova to tolerate drought stress and cope effectively with oxidative damage. 相似文献
8.
Summary A convenient system for the rapid simultaneous measurement of both chlorophyll fluorescence quenching using a modulated light system, and of CO2, and water vapour exchange by leaves is described. The system was used in a study of the effects of water deficits on the photosynthesis by apple leaves (Malus x domestica Borkh.). Apple leaves were found to have low values of steady-state variable fluorescence, and the existence of significant fluorescence with open traps (Fo) quenching necessitated the measurement and use of a corrected Fo in the calculation of quenching components. Long-term water stress had a marked effect on both gas-exchange and chlorophyll fluorescence quenching. Non-photochemical quenching (qn) in particular was increased in water-stressed leaves, and it was particularly sensitive to incident radiation in such leaves. In contrast, rapid dehydration only affected gas exchange. Relaxation of qn quenching in the dark was slow, taking approximately 10 min for a 50% recovery, in well-watered and in draughted plants, and whether or not the plants had been exposed to high light. 相似文献
9.
The effect of water stress on growth, Na+ and K+ accumulation and water utilization was investigated in plants of two populations of Atriplex halimus L. originating from Kairouan (Tunisia) and Tensift (Morocco). Water deficit was applied by withholding water for 22 days. All plants remained alive until the end of the treatment although growth was strongly reduced in both populations. Water stress decreased CO2 assimilation in saturating conditions, mainly in the population obtained from Kairouan, suggesting an impact of drought on the dark phase of photosynthesis, beside a decrease in stomatal conductance which was recorded mainly in the population obtained from Tensift. The two studied populations did not differ in their water consumption, as indicated by similar soil gravimetric water content and plant transpiration. However, water use efficiency increased under stress conditions in the population from Tensift but not in the population from Kairouan. Thelatter population displayed a larger capacity for osmotic adjustment. A drought-induced specific increase in Na+ concentration was also reported in both populations. It is concluded that in A. halimus, water stress resistance estimated in terms of biomass production, could be associated with higher WUE rather than with with a greater osmotic adjustment and that sodium may assume a specific physiological function in this xerohalophytic C4 species. 相似文献
10.
J. Basnayake M. Cooper M. M. Ludlow R. G. Henzell P. J. Snell 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,90(5):675-682
Water stress is one of the major constraints to the grain yield of sorghum in tropical and sub-tropical areas of the world. Osmotic adjustment has been widely proposed as a plant attribute that confers adaptation to water stress. The inheritance of osmotic adjustment to water stress was investigated in a series of generations derived from the three possible bi-parental crosses between two inbred sorghum lines with a high capacity for osmotic adjustment (Tx2813 and TAM422; high-OA lines) and one with a low capacity (QL27; low-OA line). Broad-sense heritability on a single-plant basis was generally found to be high. Analysis of segregation ratios by the mixture method of clustering identified two independent major genes for high osmotic adjustment. The line Tx2813 possessed a recessive gene which is given the symbol oa1; the line TAM422 possessed an additive gene which is given the symbol OA2. There was some evidence that there may be other minor genes which influence the expression of osmotic adjustment in these crosses as two putative transgressive segregants, with higher osmotic adjustment than the parents, were identified from the cross between Tx2813 and TAM422. Populations of recombinant inbred lines were developed and characterised for osmotic adjustment for two of the crosses (QL27 x TAM422, low-OA x high-OA; Tx2813 x TAM422, high-oal x high-OA2). These will be used to conduct experiments which test hypotheses about the contribution of the high-osmotic-adjustment genes to the grain yield of sorghum under a range of water-stress conditions. 相似文献
11.
In this study we used the cuttings of Populus przewalskii Maximowicz as experimental material and sodium nitroprusside (SNP) as nitric oxide (NO) donor to determine the physiological
and biochemical responses to drought stress and the effect of NO on drought tolerance in woody plants. The results indicated
that drought stress not only significantly decreased biomass production, but also significantly increased hydrogen peroxide
content and caused oxidative stress to lipids and proteins assessed by the increase in malondialdehyde and total carbonyl
contents, respectively. The cuttings of P. przewalskii accumulated many amino acids for osmotic adjustment to lower water potential, and activated the antioxidant enzymes such
as superoxide dismutase, guaiacol peroxidase and ascorbate peroxidase to maintain the balance of generation and quenching
of reactive oxygen species. Moreover, exogenous SNP application significantly heightened the growth performance of P. przewalskii cuttings under drought treatment by promotion of proline accumulation and activation of antioxidant enzyme activities, while
under well-watered treatment the effect of SNP application was very little. 相似文献
12.
A simple kinetic model structure for chlorophyll fluorescence (ChlF) from Photosystem II (PSII) offers practical usefulness in quantitative analysis and extraction of information from measured ChlF. In this work, the major PSII phototransduction kinetics was represented with only five state variables. Parameters were estimated through a least-squares algorithm. The developed model structure could produce the well-known OJIP pattern and fit measured ChlF. Influences of PQ pool size, active QB sites, and QA reduction rate on ChlF emission were simulated and discussed in light of the existing literature. 相似文献
13.
Robin S Pathan MS Courtois B Lafitte R Carandang S Lanceras S Amante M Nguyen HT Li Z 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2003,107(7):1288-1296
Osmotic adjustment is one of several characters putatively associated with drought tolerance in rice. Indica cultivars are known to have a greater capacity for osmotic adjustment than japonica cultivars. We developed an advanced back-cross population using an indica donor, IR62266-42-6-2, to introgress osmotic adjustment into an elite japonica cultivar, IR60080-46A. One hundred and fifty BC3F3 families were genotyped using microsatellites and RFLP markers, and a few candidate genes. We evaluated osmotic adjustment in these lines under greenhouse conditions using the re-hydration technique. Using the composite interval mapping technique, we detected 14 QTLs located on chromosomes 1, 2, 3, 4, 5, 7, 8 and 10 that together explained 58% of the phenotypic variability. Most, but not all, of the alleles with positive effects came from the donor parent. On chromosome 8, two QTLs were associated in repulsion. The QTL locations were in good agreement with previous studies on this trait on rice and in other cereals. Some BC3F3 lines carried the favorable alleles at the two markers flanking up to four QTLs. Intercrossing these lines followed by marker-aided selection in their progenies will be necessary to recover lines with levels of osmotic adjustment equal to the donor parent. The advanced back-cross strategy appeared to be an appropriate method to accelerate the process of introgressing interesting traits into elite material.Communicated by Q. Zhang 相似文献
14.
15.
Scattering of green light and chlorophyll fluorescence by spinach leaves kept in a stream of air or nitrogen were compared with leaf adenylate levels during illumination with blue, red or far-red light. Energy charge and ATP-ADP ratios exhibited considerable variability in different leaves both in the dark and in the light. Variability is explained by different possible states of the reaction oxidizing triose phosphate or reducing 3-phosphoglycerate. Except when oxygen levels were low, there was an inverse relationship between light scattering and chlorophyll fluorescence during illumination with blue or red light. When CO2 was added to a stream of CO2-free air, chlorophyll fluorescence increased, sometimes after a transient decrease, and both light scattering and leaf ratios decreased. Similar observations were made when air was replaced by nitrogen under blue or high-intensity red light. Under these conditions, over-reduction caused inhibition of electron transport and phosphorylation in chloroplasts. However, when air was replaced by nitrogen during illumination with low-intensity red light or far-red light, light scattering increased instead of decreasing. Under these light conditions, ratios were maintained in the light. They decreased drastically only after darkening. Although ratios responded faster than light scattering or the slow secondary decline of chlorophyll fluorescence due to illumination, it appeared that in the steady state, light scattering and chlorophyll fluorescence are useful indicators of the phosphorylation state of the leaf adenylate system at least under aerobic conditions, when chloroplast and extrachloroplast adenylate systems can effectively communicate. 相似文献
16.
低温胁迫对2个茶树品种叶片叶绿素荧光特性的影响 总被引:3,自引:0,他引:3
以茶树〔Camellia sinensis ( Linn.) O. Ktze.〕品种‘黄金芽’(‘Huangjinya’)和‘迎霜’(‘Yingshuang’)为实验材料,研究了4℃低温胁迫1、2、4和6d对茶树叶片叶绿素荧光特性的影响。结果表明:4℃低温胁迫条件下2个茶树品种叶片的PSⅡ最大光化学效率( Fv/Fm )、PSⅡ潜在活性( Fv/F0)和表观光合电子传递速率( ETR)均显著低于各自的对照(25℃),且总体上随胁迫时间延长逐渐下降;‘黄金芽’叶片的光化学淬灭系数(qP)随低温胁迫时间延长持续下降且低于其对照,而‘迎霜’叶片的qP较其对照的变幅较小,且2个品种的qP总体上与各自的对照无显著差异;随低温胁迫时间延长,2个品种叶片的非光化学淬灭系数( NPQ)均先升高后降低,并在胁迫2 d时达到最高,且总体上高于各自的对照;而2个品种叶片的光合功能相对限制值( LPFD )均随低温胁迫时间延长而增大,且大多高于各自的对照。与各自的对照相比,低温胁迫条件下‘迎霜’叶片的各项叶绿素荧光参数的变幅总体上低于‘黄金芽’。研究结果显示:低温胁迫可直接损伤茶树叶片的PSⅡ反应中心,致使过剩的激发能大量积累于PSⅡ反应中心,最终导致茶树光合作用能力减弱。根据叶绿素荧光参数的比较结果,可以初步判定品种‘迎霜’的耐寒性优于品种‘黄金芽’。 相似文献
17.
About 20-year-old desert plants of C4 species, Haloxylon ammodendron, growing at the southern edge of the Badain Jaran Desert in China, were selected to study the photosynthetic characteristics
and changes in chlorophyll fluorescence when plants were subject to a normal arid environment (AE), moist atmospheric conditions
during post-rain (PR), and the artificial supplement of soil water (SW). Results showed that under high radiation, in the
AE, the species down-regulated its net assimilation rate (A) and maximum photochemical efficiency of PS II (Fv/Fm), indicating photoinhibition. However, under the PR and SW environments,
A was up-regulated, with a unimodal diurnal course of A and a small diurnal change in Fv/Fm, suggesting no photoinhibition. When the air humidity or SW content was increased, the
light compensation points were reduced; light saturation points were enhanced; while light saturated rate of CO2 assimilation (A
max) and apparent quantum yield of CO2 assimilation (ΦC) increased. ΦC was higher while the A
max was reduced under PR relative to the SW treatment. It was concluded that under high-radiation conditions drought stress causes
photoinhibition of H. ammodendron. Increasing air humidity or soil moisture content can reduce photoinhibition and increase the efficiency of solar energy
use. 相似文献
18.
B. Teulat C. Borries D. This 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2001,103(1):161-170
Quantitative trait locus (QTL) analysis was carried out with 167 recombinant inbred lines (RILs) of barley derived from a cross between Tadmor and Er/Apm to identify the genomic regions controlling traits related to plant water status and osmotic adjustment (OA). The experiment was conducted in a growth chamber using a random incomplete block design (nine blocks). Relative water content (RWC) and leaf osmotic potential (ψπ) were measured at 100% and 14% of the field capacity on 105 RILs in each block. In addition, the water-soluble carbohydrate concentration (WSC) was measured in the four first-blocks. The leaf osmotic potential at full turgor (ψπ100), the water-soluble carbohydrate concentration at full turgor (WSC100), and also OA, the accumulation of water-soluble carbohydrates (dWSC100), the contribution of a change in water content to OA (CWC) and of the net solute accumulation to OA (SA) have also been calculated. In a previous paper (Teulat et al. 1998), 12 QTLs were identified for RWC, ψπ, ψπ100 and OA with adjusted means (block effects and pot-within-block effects fixed) with an incomplete genetic map. In the present paper, a more-saturated and improved map is described. A new QTL analysis as been performed with adjusted means. The new QTLs identified for previous evaluated traits, as well as the QTLs for the new traits, are presented. Eight additional regions (22 QTLs) were identified which increased to 13 the total number of chromosomal regions (32 QTLs) controlling traits related to plant water status and/or osmotic adjustment in this barley genetic background. The results emphasise the value of the experimental design employed for the evaluation of traits difficult to assess in genetic studies. The putative target regions for drought-tolerance improvement are discussed combining arguments on the consistency of QTLs and, when possible, the physiological value of QTLs (trait relevance, syntenic relationships and clustering of QTLs). Received: 8 March 2000 / Accepted: 18 October 2000 相似文献
19.
Using chlorophyll (chl) fluorescence imaging, we studied the effect of mild (MiDS), moderate (MoDS) and severe (SDS) drought stress on photosystem II (PSII) photochemistry of 4-week-old Arabidopsis thaliana. Spatio-temporal heterogeneity in all chl fluorescence parameters was maintained throughout water stress. After exposure to drought stress, maximum quantum yield of PSII photochemistry (F(v)/F(m)) and quantum efficiency of PSII photochemistry (Φ(PSΙΙ)) decreased less in the proximal (base) than in the distal (tip) leaf. The chl fluorescence parameter F(v) /F(m) decreased less after MoDS than MiDS. Under MoDS, the antioxidant mechanism of A. thaliana leaves seemed to be sufficient in scavenging reactive oxygen species, as evident by the decreased lipid peroxidation, the more excitation energy dissipated by non-photochemical quenching (NPQ) and decreased excitation pressure (1-q(p)). Arabidopsis leaves appear to function normally under MoDS, but do not seem to have particular metabolic tolerance mechanisms under MiDS and SDS, as revealed by the level of lipid peroxidation and decreased quantum yield for dissipation after down-regulation in PSII (Φ(NPQ)), indicating that energy dissipation by down-regulation did not function and electron transport (ETR) was depressed. The simultaneous increased quantum yield of non-regulated energy dissipation (Φ(NO)) indicated that both the photochemical energy conversion and protective regulatory mechanism were insufficient. The non-uniform photosynthetic pattern under drought stress may reflect different zones of leaf anatomy and mesophyll development. The data demonstrate that the effect of different degrees of drought stress on A. thaliana leaves show spatio-temporal heterogeneity, implying that common single time point or single point leaf analyses are inadequate. 相似文献
20.
Carbon dioxide exchange, transpiration, chlorophyll fluorescence and light scattering of leaves of Lycopersicom esculentum, Helianthus annuus and Arbutus unedo were measured simultaneously before and after abscission of leaves. Scattering of a weak green measuring beam was used to monitor water fluxes across the thylakoid membranes of the mesophyll. When leaves were cut under water, stomata initially closed partially and then occasionally exhibited distinct regulatory oscillations. As stomata closed, light scattering decreased indicating water influx into the mesophyll. Stomatal oscillations were accompanied, with small but noticeable phase shifts, by oscillations of water fluxes at the thylakoid level. These fluxes could be distinguished from the water fluxes accompanying light-dependent ion pumping across the thylakoids by the concomitant chlorophyll fluorescence signals. The latter record energy-dependent ion fluxes in addition to redox changes of the electron-transport chain. As stomata closed partially after cutting a leaf under water, photosynthesis decreased. In Arbutus unedo and Helianthus annuus leaves, transient stomatal closure was insufficient to account for transient inhibition of photosynthesis which appeared to be brought about by transfer of an inhibitory solute through the petiole into the mesophyll. This solute also stimulated respiration in the dark. When leaves were cut in air, stomata opened transiently (Iwanoff effect) before wilting enforced closure. Photosynthesis followed the stomatal responses, increasing during opening and decreasing during closure.Dedicated to Professor H. Ullrich on the occasion of his 85th birthday 相似文献