首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of isoprenoid growth regulators on avocado (Persea americana Mill. cv Hass) fruit growth and mesocarp 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity was investigated during the course of fruit ontogeny. Both normal and small-fruit phenotypes were used to probe the interaction between the end products of isoprenoid biosynthesis and the activity of HMGR in the metabolic control of avocado fruit growth. Kinetic analysis of the changes in both cell number and size revealed that growth was limited by cell number in phenotypically small fruit. In small fruit a 70% reduction in microsomal HMGR activity was associated with an increased mesocarp abscisic acid (ABA) concentration. Application of mevastatin, a competitive inhibitor of HMGR, reduced the growth of normal fruit and increased mesocarp ABA concentration. These effects were reversed by co-treatment of fruit with mevalonic acid lactone, isopentenyladenine, or N-(2-chloro-4-pyridyl)-N-phenylurea, but were not significantly affected by either gibberellic acid or stigmasterol. However, stigmasterol appeared to partially restore fruit growth when co-injected with mevastatin in either phase II or III of fruit growth. In vivo application of ABA reduced fruit growth and mesocarp HMGR activity and accelerated fruit abscission, effects that were reversed by co-treatment with isopentenyladenine. Together, these observations indicate that ABA accumulation down-regulates mesocarp HMGR activity and fruit growth, and that in situ cytokinin biosynthesis modulates these effects during phase I of fruit ontogeny, whereas both cytokinins and sterols seem to perform this function during the later phases.  相似文献   

2.
Plant hormone homeostasis and the control of avocado fruit size   总被引:1,自引:0,他引:1  
Control of plant hormone homeostasis is crucial for normal organdevelopment in plants. To elucidate the contribution of plant hormonehomeostasis to fruit growth, tissue distribution and activity of xanthinedehydrogenase (XDH), abscisic aldehyde (AB-ald)- and indole acetaldehyde(IA-ald) oxidase, and cytokinin oxidase (CKOX) were determined in seed, seedcoat and mesocarp of normal 'Hass avocado and its small-fruitphenotype during the linear phase of growth. Activity of these enzymes wasrelated to the tissue content of indole-3-acetic acid (IAA) and abscisic acid(ABA). IA-ald oxidase was present only in seed tissue whereas AB-ald oxidase andXDH activity was found in seed and mesocarp tissue. Seed of the small'Hass fruit had increased XDH and AB-ald oxidase activity and highendogenous ABA, but reduced IA-ald oxidase activity and adenine. There was nodifference in seed, seed coat and mesocarp CKOX activity between normal andsmall fruit. Inhibition of XDH activity in whole fruit by treatment withallopurinol decreased IAA and increased ABA of seed tissue. In mesocarp ofripening fruit allopurinol increased ABA and IAA but had no effect on levels ofiP. Results indicate that activity of IA-ald and AB-ald oxidases in avocadofruit contribute to maintenance of the IAA/ABA ratio in seed and mesocarp tissueand that increased AB-ald oxidase, or reduced IA-ald oxidase, may be part of thesyndrome associated with the appearance of a small-fruit phenotype.  相似文献   

3.
Sucrose accumulation in developing peach fruit   总被引:35,自引:0,他引:35  
Uptake of 14C-sugars and activities of sucrose metabolizing enzymes were determined in order to study the mechanism(s) of sucrose accumulation in developing peach fruit. Mesocarp of young peach fruit contained glucose and fructose but little sucrose. Starting 88 days after anthesis (DAA) the sucrose concentration increased greatly. The mechanism of sucrose accumulation was studied by measuring 14C-sucrose and 14C-glucose uptake rates at three different stages of fruit development, and by assaying weekly the activity of enzymes involved in the hydrolysis and/or synthesis of the soluble sugars. Uptake of 0.5–100 m M 14C-sucrose and 14C-glucose by mesocarp tissue slices showed a complex pattern at the first stage of fruit development (62 DAA). During the subsequent growth stages the pattern of sugar uptake changed and was approximately monophasic at the third stage of fruit development.
At 10 m M , glucose was taken up more rapidly than sucrose at the first and second stage of fruit development. Uptake was partially inhibited by the uncoupler carbonylcyanide m -chlorophenylhydrazone (CCCP) at 25 μ M. These results, together with the presence of a putative extracellular invertase, suggest an apoplastic route for sucrose uptake which is dependent, at least in part, on energy supply.
Activities of sucrose hydrolyzing enzymes (insoluble acid invertase, soluble acid invertase, neutral invertase, sucrose synthase) were high in young fruits and declined sharply with fruit development concomitantly with accumulation of sucrose. The storage of the sugar was not accompanied by a rise in synthetic activities (sucrose synthase, sucrose phosphate synthase), suggesting that sucrose could, at least in part enter the carbohydrate pool directly.  相似文献   

4.
Sucrose Metabolism in Netted Muskmelon Fruit during Development   总被引:40,自引:10,他引:30       下载免费PDF全文
Sugar content and composition are major criteria used in judging the quality of netted muskmelon (Cucumis melo L. var reticulatus) fruit. Sugar composition and four enzymes of sucrose metabolism were determined in `Magnum 45' muskmelon fruit at 10-day intervals beginning 10 days after pollination (DAP) until full-slip (35 DAP). Sugar content increased in both outer (green) mesocarp and inner (orange) mesocarp between 20 and 30 DAP. The major proportion of total increase in sugar was attributed to sucrose accumulation. The large increase in sucrose relative to glucose and fructose was accompanied by a dramatic decrease in acid invertase activity, which was highest in both tissues at 10 and 20 DAP, and increases in sucrose phosphate synthase (SPS) and sucrose synthase activities. The green tissue had a lower proportion of total sugar as sucrose, greater invertase activity, and less SPS activity than the orange tissue. Changes in relative sucrose content were highly correlated with changes in enzyme activity. The results strongly suggest that increases in the proportion of sucrose found in melon fruit were associated with a decline in acid invertase activity and an increase in SPS activity approximately 10 days before full-slip. Therefore, these enzymes apparently play a key role in determining sugar composition and the quality of muskmelon fruit.  相似文献   

5.
Sugar content largely determines watermelon fruit quality. We compared changes in sugar accumulation and activities of carbohydrate enzymes in the flesh (central portion) and mesocarp of elite sweet watermelon line 97103 (Citrullus lanatus subsp. vulgaris) and exotic non-sweet line PI296341-FR (C. lanatus subsp. lanatus) to elucidate the physiological and biochemical mechanisms of sugar accumulation in watermelon fruit. The major translocated sugars, raffinose and stachyose, were more unloaded into sweet watermelon fruit than non-sweet fruit. During the fruit development, acid α-galactosidase activity was much higher in flesh of 97103 than in mesocarp of 97103, in flesh and mesocarp of PI296341-FR fruit. Insoluble acid invertase activity was higher in 97103 flesh than in 97103 mesocarp, PI296341-FR flesh or mesocarp from 18 days after pollination (DAP) to 34 DAP. Changes in soluble acid invertase activity in 97103 flesh were similar to those in PI296341-FR flesh and mesocarp from 18 DAP to full ripening. Sucrose synthase and sucrose phosphate synthase activities in 97103 flesh were significantly higher than those in 97103 mesocarp and PI296341-FR fruits from 18 to 34 DAP. Only insoluble acid invertase and sucrose phosphate synthase activities were significantly positively correlated with sucrose content in 97103 flesh. Therefore, phloem loading, distribution and metabolism of major translocated sugars, which are controlled by key sugar metabolism enzymes, determine fruit sugar accumulation in sweet and non-sweet watermelon and reflect the distribution diversity of translocated sugars between subspecies.  相似文献   

6.
7.
E M Klann  B Hall    A B Bennett 《Plant physiology》1996,112(3):1321-1330
Invertase (beta-fructosidase, EC 3.2.1.26) hydrolyzes sucrose to hexose sugars and thus plays a fundamental role in the energy requirements for plant growth and maintenance. Transgenic plants with altered extracellular acid invertase have highly disturbed growth habits. We investigated the role of intracellular soluble acid invertase in plant and fruit development. Transgenic tomato (Lycopersicon esculentum Mill.) plants expressing a constitutive antisense invertase transgene grew identically to wild-type plants. Several lines of transgenic fruit expressing a constitutive antisense invertase gene had increased sucrose and decreased hexose sugar concentrations. Each transgenic line with fruit that had increased sucrose concentrations also had greatly reduced levels of acid invertase in ripe fruit. Sucrose-accumulating fruit were approximately 30% smaller than control fruit, and this differential growth correlated with high rates of sugar accumulation during the last stage of development. These data suggest that soluble acid invertase controls sugar composition in tomato fruit and that this change in composition contributes to alterations in fruit size. In addition, sucrose-accumulating fruit have elevated rates of ethylene evolution relative to control fruit, perhaps as a result of the smaller fruit size of the sucrose-accumulating transgenic lines.  相似文献   

8.
Growth, accumulation of sugars and starch, and the activity of enzymes involved in sucrose mobilization were determined throughout the development of sweet pepper fruits. Fruit development was roughly divided into three phases: (1) an initial phase with high relative growth rate and hexose accumulation, (2) a phase with declining growth rate and accumulation of sucrose and starch, and (3) a ripening phase with no further fresh weight increase and with accumulation of hexoses, while sucrose and starch were degraded. Acid and neutral invertase (EC 3.2.1.26) were closely correlated to relative growth rate until ripening and inversly correlated to the accumulation of sucrose. Acid invertase specifically increased during ripening, concurrently with the accumulation of hexoses. Sucrose synthase (EC 2.4.1.13) showed little correlation to fruit development, and in periods of rapid growth the activity of sucrose synthase was low compared to the invertases. However, during late fruit growth sucose synthase was more active than the invertases. We conclude that invertase activities determine the accumulation of assimilates in the very young fruits, and a reactivation of acid invertase is responsible for the accumulation of hexoses during ripening. During late fruit growth, before ripening, sucrose synthase is transiently responsible for the sucrose breakdown in the fruit tissue. Results also indicate that pyrophosphate-dependent phosphofructokinase (EC 2.7.1.90) and its activator fructose-2,6-bisphosphate (Fru2,6bisP) are involved in the regulation of the sink metabolism of the fruit tissue.  相似文献   

9.
Sucrose is the photoassimilate transported from the leaves to the fruit of tomato yet the fruit accumulates predominantly glucose and fructose. Hydrolysis of sucrose entering the fruit can be accomplished by invertase or sucrose synthase. Early in tomato fruit development there is a transient increase in sucrose synthase activity and starch which is correlated with fruit growth and sink strength suggesting a regulatory role for sucrose synthase in sugar import. Using an antisense sucrose synthase cDNA under the control of a fruit-specific promoter we show that sucrose synthase activity can be reduced by up to 99% in young fruit without affecting starch or sugar accumulation. This result calls into question the importance of sucrose synthase in regulating sink strength in tomato fruit.  相似文献   

10.
Studies on the effect of fruit size on endogenous ABA and isopentenyladenine(iP) in developing avocado (Persea americana Mill. cv. Hass)fruit revealed that ABA content was negatively correlated withfruit size whilst the iP/ABA ratio showed a linear relationshipwith increasing size of fruit harvested 226 d after full bloom.The effect of this change in hormone balance on the relationshipbetween symplastic solute transport and appearance of the smallfruit variant was examined following manipulation of the endogenouscytokinin (CK)/ABA ratio. Application of ABA caused seed coatsenescence and retarded fruit growth but these effects wereabsent in fruit treated with equal amounts of ABA plus iP. Thus,the underlying physiological mechanisms associated with ABA-inducedretardation of Hass avocado fruit growth appeared to be inextricablylinked to a decline in CK content and included: diminution ofmesocarp and seed coat plasmodesmatal branching, gating of mesocarpand seed coat plasmodesmata by deposition of electron densematerial in the neck region, abolishment of the electrochemicalgradient between mesocarp and seed coat parenchyma, and arrestof cell-to-cell chemical communication. (Received February 25, 1998; Accepted July 28, 1998)  相似文献   

11.
Effects of tissue position (viz. outer vs inner mesocarp) and heat treatment (48°C, 20 min) on variations in polygalacturonase (EC 3.2.1.15 and EC 3.2.1.67) activity and ripening of fruits of Carica papaya L. cv. Backcross Solo were investigated. Polygalacturonase activity increased during ripening concomitantly with an increase in tissue softness and soluble polyuronide level. Throughout ripening, inner mesocarp tissue was softer and contained higher polygalacturonase activity than outer mesocarp tissue. Titratable acidity as well as ß-galactosidase (EC 3.2.1.23) activity also increased during ripening; however, unlike polygalacturonase, their level or activity was lower in inner than in outer mesocarp. Ascorbic acid could partially account for the increase in titratable acidity during ripening but contributed very little to the differences in titratable acid levels between outer and inner mesocarp. Heat treatment had no effect on either fruit softness or titratable acidity, but it markedly reduced the increase in ascorbic acid and polygalacturonase activity during ripening. Ripening, as reflected by changes in tissue softness and polygalacturonase activity, progressed outwardly from the interior towards the exterior of the fruit. The effect of heat treatment in suppressing polygalacturonase activity was relatively greater in inner than in outer mesocarp, suggesting that sensitivity of the enzyme to heat treatment may vary with stage of ripeness of the tissue.  相似文献   

12.
Along with sucrose, sorbitol represents the main photosynthetic product and form of translocated carbon in peach. This study aimed at determining whether peach fruit carbohydrate metabolism is affected by changes in source–sink balance , and specifically whether sorbitol or sucrose availability regulates fruit enzyme activities and growth. In various trials, different levels of assimilate availability to growing fruits were induced in vivo by varying crop load of entire trees, leaf : fruit ratio (L:F) of fruiting shoots, or by interrupting the phloem stream (girdling) to individual fruits. In vitro, fruit tissue was incubated in presence/absence of sorbitol and sucrose. Relative growth rate (RGR), enzyme activities and carbohydrates were measured at different fruit growth stages of various peach cultivars in different years. At stage III, high crop load induced higher acid invertase (AI, EC 3.2.1.26) activities and hexose : sucrose ratios. Both sorbitol and sucrose contents were proportional to L:F, while sorbitol dehydrogenase (SDH, EC 1.1.1.14) activity was the only enzyme activity directly related to L:F in both fruit growth stages. Girdling reduced fruit RGR and all major carbohydrates after 4 days and SDH activity already after 48 h, but it did not affect sucrose synthase (SS, EC 2.4.1.13), AI and neutral invertase (NI, EC 3.2.1.27). Fruit incubation in sorbitol for 24 h induced higher SDH activities than in buffer alone. In general, assimilate availability affected both sorbitol and sucrose metabolism in peach fruit, and sorbitol may function as a signal for modulating SDH activity. Under highly competitive conditions, AI activity may be enhanced by assimilate depletion, providing a mechanism to increase fruit sink strength by increasing hexose concentrations.  相似文献   

13.
宁夏枸杞果实糖积累和蔗糖代谢相关酶活性的关系   总被引:9,自引:2,他引:7  
通过对枸杞果实发育过程中果实生长模式、蔗糖、果糖、葡萄糖和淀粉含量及糖代谢相关酶活性的测定,研究了宁夏枸杞果实生长发育过程中糖的代谢积累与相关酶活性的关系.结果表明:(1)宁夏枸杞果实发育呈双S"曲线,果实主要以积累己糖为主.(2)蔗糖磷酸合成酶(SPS)活性在果实发育初期处于下降的趋势,在花后19d开始上升,果实转色后又逐渐下降;蔗糖合成酶(SS)活性总体表现为SS分解方向的活性大于SS合成方向的活性,说明枸杞果实发育过程中,SS的活性主要以分解方向的为主;酸性转化酶(AI)和中性转化酶(NI)的活性随果实发育呈上升趋势,但在果实成熟后期有所下降,且AI和NI活性高于合成酶类的活性,较高的转化酶类活性促进了果实内部己糖的积累.(3)在枸杞果实生长发育中,葡萄糖和果糖含量与AI和NI均呈极显著正相关,而与其它酶不具有相关性.说明AI和NI在宁夏枸杞果实的糖代谢中起着主要的调控作用.  相似文献   

14.
Our previous work demonstrated that exogenous gibberellins (GAs) applications during rapid fruit growth significantly increases sink demand and results in a larger fruit in Japanese pear. In an attempt to unravel the mechanism of increased sink demand by applied GAs, the histology, cell wall components of the flesh, and carbon accumulation in the fruit were assessed for Japanese pear (Pyrus pyrifolia, cultivar ‘Kousui’), as were the activities of sucrose- and sorbitol-cleaving enzymes. Our results show that most vascular tissues occurred in core tissue with very little vascular tissue in the flesh. Application of a mixture of GA3 + GA4 in lanolin paste significantly increased the amount of ethanol-insoluble solids, e.g., total pectins, hemicellulose, and cellulose in the cell walls. There was a significantly increased sink demand (assessed by 13C accumulation in the fruit) by the applied GAs, and this increased sink strength was closely related to increased activities of cell wall-bound invertase in the core, neutral invertase and NAD-dependent sorbitol dehydrogenase in the flesh during rapid fruit growth. As well, concentrations of sorbitol and sucrose in the flesh were decreased by GA application, while glucose concentration increased. Most importantly, the fact that sink activity can be increased by GA application implies that endogenous GAs are likely to be important modulators for sugar metabolism. Hence, selecting for genotypes with elevated GA production in the growing fruit and increased activities of key enzymes for sugar metabolism could result in increased fruit size.  相似文献   

15.
Acid invertase (EC 3.2.1.26) is one of the key enzymes involved in the carbohydrate sink-organ development and the sink strength modulation in crops. The experiment conducted with 'Starkrimson' apple (Malus domestica Borkh) fruit showed that, during the fruit development, the activity of acid invertase gradually declined concomitantly with the progressive accumulation of fructose, glucose and sucrose, while Western blotting assay of acid invertase detected a 30 ku peptide of which the immuno-signal intensity increased during the fruit development. The im-muno-localization via immunogold electron microscopy showed that, on the one hand, acid invertase was mainly located on the flesh cell wall with numbers of the immunosignals present in the vacuole at the late stage of fruit development; and on the other hand, the amount of acid invertase increased during fruit development, which was consistent with the results of Western blotting. The in vivo pre-incubation of fruit discs with soluble sugars showed that  相似文献   

16.
《Phytochemistry》1987,26(7):1883-1887
Sucrose, reducing sugars and starch content were measured in developing cucumber (C. sativus cv Delilah), sweet melon (C. melon cv Galia and cv Noy Yizre'el) and non-sweet melon (C. melo cv Bird's Nest) fruit. Sweet melon were characterized by accumulation of sucrose in the maturing fruit, while cucumber and non-sweet melon had a low sucrose content at all stages studied. Soluble acid invertase activity (EC 3.2.1.26) dramatically decreased in sweet melon, concomitant with the onset of sucrose accumulation. Significant activity of soluble acid invertase was retained in mature cucumber and non-sweet melon. Insoluble acid invertase, determined not to be an artifact of extraction, constituted a significant portion of total invertase activity (ca 25% in young sweet melon and ca 50% in young cucumber). In sweet melon sucrose synthase activity (EC 2.4.1.13), measured in both the cleavage and synthesis direction, increased during the sucrose accumulation period. The results are discussed in terms of the roles of invertase and sucrose synthase in sucrose accumulation in Cucumis.  相似文献   

17.
Final fruit size is the consequence of complex metabolic events that occur between fruit set and maturation. Disruption of these biochemical and molecular processes at any stage during fruit growth will impact on final fruit size. Because fruit size is a function of cell number rather than cell size, factors affecting cell division cycle activity assume importance. In this paper, we focus attention on the metabolic control of fruit growth using avocado as a model system. Three areas of current interest are highlighted, viz. the contribution by isoprenoid metabolism in the control of cell proliferation, the role played by carbohydrate content and composition in signalling changes in metabolite status and gene expression and maintenance of plant hormone homeostasis. Central to the process of fruit growth and control of final fruit size by cell division is 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and activity of the sucrose non-fermenting 1-related protein kinase (SnRK1) complex. It is argued that sugar content and composition of sink cells impact on SnRK1 (and hexokinase) to modulate expression of sugar-metabolizing enzymes, HMGR and molybdenum cofactor (MoCo)-containing enzymes. These changes, in turn, impact on hormone metabolism by affecting allocation of the purine-derived MoCo to aldehyde oxidase and thus the endogenous concentration of indole-3-acetic acid, abscisic acid and cytokinin (CK) to alter plant hormone homeostasis. These aspects are integrated into a model to explain the metabolic control of avocado fruit growth and final fruit size.  相似文献   

18.
In the paper, the soluble sugar composition and activities of enzymes metabolizing sucrose: invertase (β-fructosidase, EC 3.2.1.26), sucrose synthase (SS; EC 2.4.1.13) and sucrose-phosphate synthase (SPS; EC 2.4.1.14) were investigated during fruit development of two pear species: Pyrus bretschneideri Rehd. cv. ‘Yali’ and P. pyrifolia Nakai cv. ‘Aikansui’, characterized as low and high sucrose types, respectively. It was found that, at the end of fruit development of ‘Aikansui’, the level of sucrose was five times higher than in ‘Yali’ in the same period. It was coincident with the significantly higher activities of SS (synthesis) and SPS and lower activities of invertase (vacuolar and cell wall-bound acid invertase and neutral invertase). The high correlation was found between sucrose level and SS (synthesis) and SPS activities in ‘Aikansui’ pears.  相似文献   

19.
套袋对梨果实发育过程中糖组分及其相关酶活性的影响   总被引:3,自引:0,他引:3  
以翠冠和黄金梨为试材,测定套袋和未套袋(对照)梨果实发育时期果实中蔗糖、葡萄糖、果糖和山梨醇含量以及蔗糖代谢相关酶酸性转化酶(AI)、中性转化酶(NI)、蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)的活性,并对果实中糖组分积累与酶活性的关系进行了分析.结果表明:(1)两梨品种套袋果实在发育过程中蔗糖、葡萄糖、果糖、山梨醇和糖代谢相关酶活性变化趋势与对照基本一致,套袋果实糖含量均低于对照但差异不显著,而各相关酶活性在两类果实间差异表现各异.(2)在梨果实发育早期,果实中以分解酶类为主,糖分积累低;发育后期以合成酶类为主,糖分积累多.(3)两品种套袋和对照果实AI活性与葡萄糖含量均呈显著或极显著正相关,SS合成方向活性与蔗糖含量均为极显著正相关,且翠冠对照果SPS活性与蔗糖含量呈极显著正相关.可见,套袋通过提高果实发育早期转化酶(Inv)活性,降低果实后期蔗糖磷酸合成酶(SPS)、蔗糖合成酶(SS)的活性来影响糖分积累,从而影响梨果品质.  相似文献   

20.
Acid invertase (EC 3.2.1.26) is one of the key enzymes involved in the carbohydrate sinkorgan development and the sink strength modulation in crops. The experiment conducted with ‘Starkrimson’ apple (Malus domestica Borkh) fruit showed that, during the fruit development, the activity of acid invertase gradually declined concomitantly with the progressive accumulation of fructose, glucose and sucrose, while Western blotting assay of acid invertase detected a 30 ku peptide of which the immuno-signal intensity increased during the fruit development. The immunolocalization via immunogold electron microscopy showed that, on the one hand, acid invertase was mainly located on the flesh cell wall with numbers of the immunosignals present in the vacuole at the late stage of fruit development; and on the other hand, the amount of acid invertase increased during fruit development, which was consistent with the results of Western blotting. The in vivo preincubation of fruit discs with soluble sugars showed that the activity of extractible acid invertase was inhibited by fructose or glucose, while Western blotting did not detect any changes in apparent quantity of the enzyme nor other peptides than 30 ku one. So it is considered that fructose and glucose induced the post-translational or translocational inhibitory regulation of acid invertase in developing apple fruit. The mechanism of the post-translational inhibition was shown different from both the two previously reported ones that proposed either the inhibition by hexose products in the in vitro chemical reaction equilibrium system or the inhibition by the proteinaceous inhibitors. It was hypothesized that fructose and glucose might induce acid invertase inhibition by modulating the expression of some inhibition-related genes or some structural modification of acid invertase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号