首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Histones and histone acetylation have been investigated during three stages of Drosophila hydei embryogenesis--early gastrula, late gastrula and organogenesis. No essential changes in the electrophoretic pattern of the histones have been revealed during the stages examined. However, we established an enhanced level of [14C]acetate incorporation at the time of extensive gene activation during gastrulation as well as some quantitative differences in the pattern of acetylation during gastrula and organogenesis. We consider most of them to be related to chromatin assembly during the stage of gastrulation and suggest that the correlation between histone acetylation and gene activity during Drosophila embryogenesis concerns histone H3 acetylation. The involvement of both acetylation and deacetylation in the steady-state acetylation level has been examined as well. We have found that the higher acetyltransferase activity is responsible for the enhanced level of acetate incorporation during gastrulation.  相似文献   

2.
3.
4.
5.
6.
7.
Li Y  Chu JS  Kurpinski K  Li X  Bautista DM  Yang L  Sung KL  Li S 《Biophysical journal》2011,100(8):1902-1909
Histone deacetylation and acetylation are catalyzed by histone deacetylase (HDAC) and histone acetyltransferase, respectively, which play important roles in the regulation of chromatin remodeling, gene expression, and cell functions. However, whether and how biophysical cues modulate HDAC activity and histone acetylation is not well understood. Here, we tested the hypothesis that microtopographic patterning and mechanical strain on the substrate regulate nuclear shape, HDAC activity, and histone acetylation. Bone marrow mesenchymal stem cells (MSCs) were cultured on elastic membranes patterned with parallel microgrooves 10 μm wide that kept MSCs aligned along the axis of the grooves. Compared with MSCs on an unpatterned substrate, MSCs on microgrooves had elongated nuclear shape, a decrease in HDAC activity, and an increase of histone acetylation. To investigate anisotropic mechanical sensing by MSCs, cells on the elastic micropatterned membranes were subjected to static uniaxial mechanical compression or stretch in the direction parallel or perpendicular to the microgrooves. Among the four types of loads, compression or stretch perpendicular to the microgrooves caused a decrease in HDAC activity, accompanied by the increase in histone acetylation and slight changes of nuclear shape. Knocking down nuclear matrix protein lamin A/C abolished mechanical strain-induced changes in HDAC activity. These results demonstrate that micropattern and mechanical strain on the substrate can modulate nuclear shape, HDAC activity, and histone acetylation in an anisotropic manner and that nuclear matrix mediates mechanotransduction. These findings reveal a new mechanism, to our knowledge, by which extracellular biophysical signals are translated into biochemical signaling events in the nucleus, and they will have significant impact in the area of mechanobiology and mechanotransduction.  相似文献   

8.
Deletion of genes for proteins involved in histone H4 acetylation produces sensitivity to DNA-damaging agents in both Saccharomyces cerevisiae and mammalian cells. In the present studies, we show that treating wild-type yeast cells with histone acetyl transferase (HAT) inhibitors, which are chemicals that cause a global decrease in histone H4 acetylation, sensitizes the cells to ionizing radiation. Using HAT inhibitors, we have placed histone H4 acetylation into the RAD51-mediated homologous recombination repair pathway. We further show that yeast cells with functionally defective HAT proteins have normal phospho-H2A (gamma-H2A) induction after irradiation but a reduced rate of loss of gamma-H2A. This argues that HAT-defective cells are able to detect DNA double-strand breaks normally but have a defect in the repair of these lesions. We also show that cells treated with HAT inhibitors have intact G1 and G2 checkpoints after exposure to ionizing radiation, suggesting that G1 and G2 checkpoint activation is independent of histone H4 acetylation.  相似文献   

9.
10.
The effect of phosphorylation on the basicities of amines in histone H3 peptides and their acetylation kinetics is probed with a mild chemical acetylating agent. Phosphorylation of Ser‐10 lowers the rate of chemical acetylation of Lys‐9, Lys‐14, and Lys‐18 by methyl acetyl phosphate in that order consistent with a higher pKa of these Lys residues induced by phosphorylation; basicities increase up to 3 pKa units as a function of distance from Ser‐10 phosphate. Enzymic acetylation of Lys residues with high pKa values in nucleosomes is also expected to be enhanced by phosphorylation, consistent with the known mechanism involving binding of protonated amines to N‐acetyltransferases; fetal hemoglobin has a related linkage of increased basicity at a specific site, its acetylation, and a resulting decrease in subunit interaction strength. In the absence of a phosphate on Ser‐10, the amines of Lys‐9, Lys‐14, and Lys‐18 have lowered pKa values. Chemical acetylation of glycine and glycinamide have analogous kinetic profiles to the histone peptides but the phosphate inductive effect in histone H3 is more potent since the linkage between phosphorylation and acetylation is propagated with a range extending 9–10 amino acids in either direction from the phosphorylation site enhancing protonation of amino groups. We conclude that lysine amine basicities in histone tails are not static but inducible and variable due to a dynamic and immediate interaction between phosphorylation/acetylation that may contribute to inactive heterochromatin by compaction through such Ser phosphate–Lys amine electrostatic interactions and their relaxation by acetylation in euchromatin.  相似文献   

11.
12.
13.
14.
15.
16.
We have used gene amplification in Drosophila follicle cells as a model of metazoan DNA replication to address whether changes in histone modifications are associated with replication origin activation. We observe that replication initiation is associated with distinct histone modifications. Acetylated lysines K5, K8, and K12 on histone H4 and K14 on histone H3 are specifically enriched during replication initiation at the amplification origins. Strikingly, H4 acetylation persists at an amplification origin well after replication forks have progressed significantly outward from the origin, indicating that H4 acetylation is associated with origin regulation and not histone deposition at the replication forks. Origin recognition complex subunit 2 (orc2) mutants with severe amplification defects do not abolish H4 acetylation, whereas the dup/cdt1 mutant delays the appearance of acetylation foci, and mutants in rbf result in temporal persistence. These data indicate that core histone acetylation is associated with origin activity. Furthermore, follicle cells undergoing gene amplification exhibit high levels of histone H1 phosphorylation. The patterns of H1 phosphorylation provide insights into cell cycle states during amplification, as H1 kinase activity in follicle cells is responsive to high Cyclin E activity, and it can be abolished by overexpressing the retinoblastoma homolog, Rbf, that represses Cyclin E. These data suggest that amplification origins are able to initiate when the cells are in a late S-phase, when the genome is normally not licensed for replication.  相似文献   

17.
Sleep disorders negatively affect cognition and health. Recent evidence has indicated that chromatin remodeling via histone acetylation regulates cognitive function. This study aimed to investigate the possible roles of histone acetylation in sleep deprivation (SD)-induced cognitive impairment. Results of the Morris water maze test showed that 3 days of SD can cause spatial memory impairment in Wistar rats. SD can also decrease histone acetylation levels, increase histone deacetylase 2 (HDAC2) expression, and decrease histone acetyltransferase (CBP) expression. Furthermore, SD can reduce H3 and H4 acetylation levels in the promoters of the brain-derived neurotrophic factor (Bdnf) gene and thus significantly downregulate BDNF expression and impair the activity of key BDNF signaling pathways (pCaMKII, pErk2, and pCREB). However, treatment with the HDAC inhibitor trichostatin A attenuated all the negative effects induced by SD. Therefore, BDNF and its histone acetylation regulation may play important roles in SD-induced spatial memory impairment, whereas HDAC inhibition possibly confers protection against SD-induced impairment in spatial memory and hippocampal functions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号