首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generating diverse protein libraries that contain improved variants at a sufficiently high frequency is critical for improving the properties of proteins using directed evolution. Many studies have illustrated how random mutagenesis, cassette mutagenesis, DNA shuffling and similar approaches are effective diversity generating methods for directed evolution. Very few studies have explored random circular permutation, the intramolecular relocation of the N- and C-termini of a protein, as a diversity-generating step for directed evolution. We subjected a library of random circular permutations of TEM-1 β-lactamase to selections on increasing concentrations of a variety of β-lactam antibiotics including cefotaxime. We identified two circularly permuted variants that conferred elevated resistance to cefotaxime but decreased resistance to other antibiotics. These variants were circularly permuted in the Ω-loop proximal to the active site. Remarkably, one variant was circularly permuted such that the key catalytic residue Glu166 was located at the N-terminus of the mature protein.  相似文献   

2.
Trinucleotide exchange (TriNEx) is a method for generating novel molecular diversity during directed evolution by random substitution of one contiguous trinucleotide sequence for another. Single trinucleotide sequences were deleted at random positions in a target gene using the engineered transposon MuDel that were subsequently replaced with a randomized trinucleotide sequence donated by the DNA cassette termed SubSeq(NNN). The bla gene encoding TEM-1 beta-lactamase was used as a model to demonstrate the effectiveness of TriNEx. Sequence analysis revealed that the mutations were distributed throughout bla, with variants containing single, double and triple nucleotide changes. Many of the resulting amino acid substitutions had significant effects on the in vivo activity of TEM-1, including up to a 64-fold increased activity toward ceftazidime and up to an 8-fold increased resistance to the inhibitor clavulanate. Many of the observed amino acid substitutions were only accessible by exchanging at least two nucleotides per codon, including charge-switch (R164D) and aromatic substitution (W165Y) mutations. TriNEx can therefore generate a diverse range of protein variants with altered properties by combining the power of site-directed saturation mutagenesis with the capacity of whole-gene mutagenesis to randomly introduce mutations throughout a gene.  相似文献   

3.
Actinomycete cytochrome P450 from Nonomuraea recticatena NBRC 14525 (P450moxA) catalyzes the hydroxylation of a broad range of substrates, including fatty acids, steroids, and various aromatic compounds. Hence, the enzyme is potentially useful in medicinal applications, but the activity is insufficient for practical use. Here we applied directed evolution to enhance the activity. A random mutagenesis library was screened using 7-ethoxycoumarin as a substrate to retrieve 17 variants showing >2-fold activities. Twenty-five amino acid substitutions were found in the variants, of which five mutations were identified to have the largest effects (Q87W, T115A, H132L, R191W, and G294D). These mutations additively increased the activity; the quintet mutant had 20-times the activity of the wildtype. These five single mutations also increased in activity toward structurally distinct substrates (diclofenac and naringenin). Based on the three-dimensional structure of the enzyme, we discerned that mutations in the substrate recognition site improved the activity, which was substrate dependent; mutations apart from the active site improved the activity as well as the substrates did.  相似文献   

4.
To generate a random mutant library that is free from mutation at a particular amino acid residue, we replace the codon of interest with a detachable, short DNA sequence containing a BsaXI recognition site. After PCR mutagenesis, this sequence is removed and intramolecular ligation of the sequences flanking the insert regenerates the gene. The three-base cohesive ends for ligation correspond to the codon for the targeted residue and any sequences with mutations at this site will fail to ligate. As a result, only the variants that are free from mutation at this site are in the proper reading frame. In a random library of C30 carotenoid synthase CrtM, this method was used to exclude readily accessible mutations at position F26, which confer C40 synthase function. This enabled us to identify two additional mutations, W38C and E180G, which confer the same phenotype but are present in the random library at much lower frequencies.  相似文献   

5.
Protein engineering by combinatorial site-directed mutagenesis evaluates a portion of the sequence space near a target protein, seeking variants with improved properties (e.g., stability, activity, immunogenicity). In order to improve the hit-rate of beneficial variants in such mutagenesis libraries, we develop methods to select optimal positions and corresponding sets of the mutations that will be used, in all combinations, in constructing a library for experimental evaluation. Our approach, OCoM (Optimization of Combinatorial Mutagenesis), encompasses both degenerate oligonucleotides and specified point mutations, and can be directed accordingly by requirements of experimental cost and library size. It evaluates the quality of the resulting library by one- and two-body sequence potentials, averaged over the variants. To ensure that it is not simply recapitulating extant sequences, it balances the quality of a library with an explicit evaluation of the novelty of its members. We show that, despite dealing with a combinatorial set of variants, in our approach the resulting library optimization problem is actually isomorphic to single-variant optimization. By the same token, this means that the two-body sequence potential results in an NP-hard optimization problem. We present an efficient dynamic programming algorithm for the one-body case and a practically-efficient integer programming approach for the general two-body case. We demonstrate the effectiveness of our approach in designing libraries for three different case study proteins targeted by previous combinatorial libraries--a green fluorescent protein, a cytochrome P450, and a beta lactamase. We found that OCoM worked quite efficiently in practice, requiring only 1 hour even for the massive design problem of selecting 18 mutations to generate 10? variants of a 443-residue P450. We demonstrate the general ability of OCoM in enabling the protein engineer to explore and evaluate trade-offs between quality and novelty as well as library construction technique, and identify optimal libraries for experimental evaluation.  相似文献   

6.
We have used random oligonucleotide mutagenesis (or saturation mutagenesis) to create a library of point mutations in the alpha 1 protein domain of a Major Histocompatibility Complex (MHC) molecule. This protein domain is critical for T cell and B cell recognition. We altered the MHC class I H-2DP gene sequence such that synthetic mutant alpha 1 exons (270 bp of coding sequence), which contain mutations identified by sequence analysis, can replace the wild type alpha 1 exon. The synthetic exons were constructed from twelve overlapping oligonucleotides which contained an average of 1.3 random point mutations per intact exon. DNA sequence analysis of mutant alpha 1 exons has shown a point mutant distribution that fits a Poisson distribution, and thus emphasizes the utility of this mutagenesis technique to "scan" a large protein sequence for important mutations. We report our use of saturation mutagenesis to scan an entire exon of the H-2DP gene, a cassette strategy to replace the wild type alpha 1 exon with individual mutant alpha 1 exons, and analysis of mutant molecules expressed on the surface of transfected mouse L cells.  相似文献   

7.
Whether evolution is erratic due to random historical details, or is repeatedly directed along similar paths by certain constraints, remains unclear. Epistasis (i.e. non-additive interaction between mutations that affect fitness) is a mechanism that can contribute to both scenarios. Epistasis can constrain the type and order of selected mutations, but it can also make adaptive trajectories contingent upon the first random substitution. This effect is particularly strong under sign epistasis, when the sign of the fitness effects of a mutation depends on its genetic background. In the current study, we examine how epistatic interactions between mutations determine alternative evolutionary pathways, using in vitro evolution of the antibiotic resistance enzyme TEM-1 β-lactamase. First, we describe the diversity of adaptive pathways among replicate lines during evolution for resistance to a novel antibiotic (cefotaxime). Consistent with the prediction of epistatic constraints, most lines increased resistance by acquiring three mutations in a fixed order. However, a few lines deviated from this pattern. Next, to test whether negative interactions between alternative initial substitutions drive this divergence, alleles containing initial substitutions from the deviating lines were evolved under identical conditions. Indeed, these alternative initial substitutions consistently led to lower adaptive peaks, involving more and other substitutions than those observed in the common pathway. We found that a combination of decreased enzymatic activity and lower folding cooperativity underlies negative sign epistasis in the clash between key mutations in the common and deviating lines (Gly238Ser and Arg164Ser, respectively). Our results demonstrate that epistasis contributes to contingency in protein evolution by amplifying the selective consequences of random mutations.  相似文献   

8.
EcoDam is an adenine-N6 DNA methyltransferase that methylates the GATC sites in the Escherichia coli genome. We have changed the target specificity of EcoDam from GATC to GATT by directed evolution, combining different random mutagenesis methods with restriction protection at GATT sites for selection and screening. By co-evolution of an enzyme library and a substrate library, we identified GATT as the best non-GATC site and discover a double mutation, R124S/P134S, as the first step to increase enzyme activity at GATT sites. After four generations of mutagenesis and selection, we obtained enzyme variants with new specificity for GATT. While the wild-type EcoDam shows no detectable activity at GATT sites in E. coli cells, some variants prefer methylation at GATT over GATC sites by about 10-fold in cells. In vitro DNA methylation kinetics carried out under single-turnover conditions using a hemimethylated GATC and a GATT oligonucleotide substrate confirmed that the evolved proteins prefer methylation of GATT sites to a similar degree. They show up to 1600-fold change in specificity in vitro and methylate the new GATT target site with 20% of the rate of GATC methylation by the wild-type enzyme, indicating good activity. We conclude that the new methyltransferases are fully functional in vivo and in vitro but show a new target-site specificity.  相似文献   

9.
Exploring the sequence space of a DNA aptamer using microarrays   总被引:2,自引:1,他引:1  
The relationship between sequence and binding properties of an aptamer for immunoglobulin E (IgE) was investigated using custom DNA microarrays. Single, double and some triple mutations of the aptamer sequence were created to evaluate the importance of specific base composition on aptamer binding. The majority of the positions in the aptamer sequence were found to be immutable, with changes at these positions resulting in more than a 100-fold decrease in binding affinity. Improvements in binding were observed by altering the stem region of the aptamer, suggesting that it plays a significant role in binding. Results obtained for the various mutations were used to estimate the information content and the probability of finding a functional aptamer sequence by selection from a random library. For the IgE-binding aptamer, this probability is on the order of 1010 to 109. Results obtained for the double and triple mutations also show that there are no compensatory mutations within the space defined by those mutations. Apparently, at least for this particular aptamer, the functional sequence space can be represented as a rugged landscape with sharp peaks defined by highly constrained base compositions. This makes the rational optimization of aptamer sequences using step-wise mutagenesis approaches very challenging.  相似文献   

10.
Directed evolution can be a powerful tool to predict antibiotic resistance. Resistance involves the accumulation of mutations beneficial to the pathogen while maintaining residue interactions and core packing that are critical for preserving function. The constraint of maintaining stability, while increasing activity, drastically reduces the number of possible mutational combination pathways. To test this theory, TEM-1 beta-lactamase was evolved using a hypermutator E. coli-based directed evolution technique with cefotaxime selection. The selected mutants were compared to two previous directed evolution studies and a database of clinical isolates. In all cases, evolution resulted in the generation of the E104K/M182T/G238S combination of mutations ( approximately 500-fold increased resistance), which is equivalent to clinical isolate TEM-52. The structure of TEM-52 was determined to 2.4 A. G238S widens access to the active site by 2.8 A whereas E104K stabilizes the reorganized topology. The M182T mutation is located 17 A from the active site and appears to be a global suppressor mutation that acts to stabilize the new enzyme structure. Our results demonstrate that directed evolution coupled with structural analysis can be used to predict future mutations that lead to increased antibiotic resistance.  相似文献   

11.
For a quantitative understanding of the process of adaptation, we need to understand its "raw material," that is, the frequency and fitness effects of beneficial mutations. At present, most empirical evidence suggests an exponential distribution of fitness effects of beneficial mutations, as predicted for Gumbel-domain distributions by extreme value theory. Here, we study the distribution of mutation effects on cefotaxime (Ctx) resistance and fitness of 48 unique beneficial mutations in the bacterial enzyme TEM-1 β-lactamase, which were obtained by screening the products of random mutagenesis for increased Ctx resistance. Our contributions are threefold. First, based on the frequency of unique mutations among more than 300 sequenced isolates and correcting for mutation bias, we conservatively estimate that the total number of first-step mutations that increase Ctx resistance in this enzyme is 87 [95% CI 75-189], or 3.4% of all 2,583 possible base-pair substitutions. Of the 48 mutations, 10 are synonymous and the majority of the 38 non-synonymous mutations occur in the pocket surrounding the catalytic site. Second, we estimate the effects of the mutations on Ctx resistance by determining survival at various Ctx concentrations, and we derive their fitness effects by modeling reproduction and survival as a branching process. Third, we find that the distribution of both measures follows a Fréchet-type distribution characterized by a broad tail of a few exceptionally fit mutants. Such distributions have fundamental evolutionary implications, including an increased predictability of evolution, and may provide a partial explanation for recent observations of striking parallel evolution of antibiotic resistance.  相似文献   

12.
Sequence directed mutagenesis is a mechanism by which imperfect repeats “repair” each other to become perfect, generating mutations. This process is known to be prevalent in prokaryotes and it has been implicated in several human genetic diseases. Here we test whether sequence directed mutagenesis occurs in the protein coding sequences of eukaryotes using extensive DNA sequence data from humans, mice, Drosophila, nematodes, yeast, and Arabidopsis. Using two tests we find little evidence of sequence directed mutagenesis. We conclude that sequence directed mutagenesis is not prevalent in eukaryotes and that the examples of human diseases, apparently caused by sequence directed mutagenesis, are probably coincidental. [Reviewing Editor: Dr. Richard Kliman]  相似文献   

13.
Benzoylformate decarboxylase (BFD) from Pseudomonas putida was subjected to directed molecular evolution to generate mutants with increased carboligase activity which is a side reaction of the enzyme. After a single round of random mutagenesis mutants were isolated which exhibited a 5-fold increased carboligase activity in aqueous buffer compared to the wild-type enzyme with a high enantiomeric excess of the product (S)-2-hydroxy-1-phenyl-propanone. From the same library, mutants with enhanced carboligase activity in water-miscible organic solvents have been isolated. The selected mutants have been characterized by sequencing, revealing that all mutants carry a mutation at Leu476, which is close to the active site but does not directly interact with the active center. BFD-L476Q has a 5-fold higher carboligase activity than the wild-type enzyme. L476 was subjected to saturation mutagenesis yielding eight different mutants with up to 5-fold increased carboligase activity. Surprisingly, all L476 mutants catalyze the formation of 2-hydroxy-1-phenyl-propanone with significantly higher enantioselectivity than the wild-type enzyme although enantioselectivity was not a selection parameter. Leu476 potentially plays the role of a gatekeeper of the active site of BFD, possibly by controlling the release of the product. The biocatalyst could be significantly improved for its side reaction, the C-C bond formation and for application under conditions that are not optimized in nature.  相似文献   

14.
The inclusion of phytase in monogastric animal feed has the benefit of hydrolyzing indigestible plant phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) to provide poultry and swine with dietary phosphorus. An ideal phytase supplement should have a high temperature tolerance, allowing it to survive the feed pelleting process, a high specific activity at low pHs, and adequate gastric performance. For this study, the performance of a bacterial phytase was optimized by the use of gene site saturation mutagenesis technology. Beginning with the appA gene from Escherichia coli, a library of clones incorporating all 19 possible amino acid changes and 32 possible codon variations in 431 residues of the sequence was generated and screened for mutants exhibiting improved thermal tolerance. Fourteen single site variants were discovered that retained as much as 10 times the residual activity of the wild-type enzyme after a heated incubation regimen. The addition of eight individual mutations into a single construct (Phy9X) resulted in a protein of maximal fitness, i.e., a highly active phytase with no loss of activity after heating at 62 degrees C for 1 h and 27% of its initial activity after 10 min at 85 degrees C, which was a significant improvement over the appA parental phytase. Phy9X also showed a 3.5-fold enhancement in gastric stability.  相似文献   

15.
A method of mutagenic and unidirectional reassembly (MURA) that can generate libraries of DNA-shuffled and randomly truncated proteins was developed. The method involved fragmenting the template gene(s) randomly by DNase I and reassembling the small fragments with a unidirectional primer by PCR. The MURA products were treated with T4 DNA polymerase and subsequently with a restriction enzyme whose site was located on the region of the MURA primer. The N-terminal-truncated and DNA-shuffled library of a Serratia sp. phospholipase A(1) prepared by this method had an essentially random variation of truncated size and also showed point mutations associated with DNA shuffling. After high-throughput screening on triglyceride-emulsified plates, several mutants exhibiting absolute lipase activity (NPL variants) were obtained. The sequence analysis and the lipase activity assay on the NPL variants revealed that N-terminal truncations at a region beginning with amino acids 61 to 71, together with amino acid substitutions, resulted in the change of substrate specificity from a phospholipase to a lipase. We therefore suggest that the MURA method, which combines incremental truncation with DNA shuffling, can contribute to expanding the searchable sequence space in directed evolution experiments.  相似文献   

16.
17.
Thermoanaerobacterium thermosulfurigenes cyclodextrin glucanotransferase primarily catalyses the formation of cyclic alpha-(1,4)-linked oligosaccharides (cyclodextrins) from starch. This enzyme also possesses unusually high hydrolytic activity as a side reaction, thought to be due to partial retention of ancestral enzyme function. This side reaction is undesirable, since it produces short saccharides that are responsible for the breakdown of the cyclodextrins formed, thus limiting the yield of cyclodextrins produced. To reduce the competing hydrolysis reaction, while maintaining the cyclization activity, we applied directed evolution, introducing random mutations throughout the cgt gene by error-prone PCR. Mutations in two residues, Ser-77 and Trp-239, on the outer region of the active site, lowered the hydrolytic activity up to 15-fold with retention of cyclization activity. In contrast, mutations within the active site could not lower hydrolytic rates, indicating an evolutionary optimized role for cyclodextrin formation by residues within this region. The crystal structure of the most effective mutant, S77P, showed no alterations to the peptide backbone. However, subtle conformational changes to the side chains of active-site residues had occurred, which may explain the increased cyclization/hydrolysis ratio. This indicates that secondary effects of mutations located on the outer regions of the catalytic site are required to lower the rates of competing side reactions, while maintaining the primary catalytic function. Subsequent functional analysis of various glucanotransferases from the superfamily of glycoside hydrolases also suggests a gradual evolutionary progression of these enzymes from a common 'intermediate-like' ancestor towards specific transglycosylation activity.  相似文献   

18.
A screening system for directed evolution of DNA polymerases employing a fluorescent Scorpion probe as a reporter has been developed. The screening system has been validated in a directed evolution experiment of a distributive polymerase from the Y-polymerase family (Dpo4 from Sulfolobus solfataricus) which was improved in elongation efficiency of consecutive mismatches. The engineering campaign yielded improved Dpo4 polymerase variants one of which was successfully benchmarked in a sequence saturation mutagenesis experiment especially with regard to the desirable consecutive transversion mutations (>2.5-fold increase in frequency relative to a reference library prepared with Dpo4 WT). The Scorpion probe screening system enables to reengineer polymerases with low processivity and fidelity, and no secondary activities (i.e. exonuclease activity or strand displacement activity) to match demands in diversity generation for directed protein evolution.  相似文献   

19.
While glyco-engineered monoclonal antibodies (mAbs) with improved antibody-dependent cell-mediated cytotoxicity (ADCC) are reaching the market, extensive efforts have also been made to improve their pharmacokinetic properties to generate biologically superior molecules. Most therapeutic mAbs are human or humanized IgG molecules whose half-life is dependent on the neonatal Fc receptor FcRn. FcRn reduces IgG catabolism by binding to the Fc domain of endocytosed IgG in acidic lysosomal compartments, allowing them to be recycled into the blood. Fc-engineered mAbs with increased FcRn affinity resulted in longer in vivo half-life in animal models, but also in healthy humans. These Fc-engineered mAbs were obtained by alanine scanning, directed mutagenesis or in silico approach of the FcRn binding site. In our approach, we applied a random mutagenesis technology (MutaGenTM) to generate mutations evenly distributed over the whole Fc sequence of human IgG1. IgG variants with improved FcRn-binding were then isolated from these Fc-libraries using a pH-dependent phage display selection process. Two successive rounds of mutagenesis and selection were performed to identify several mutations that dramatically improve FcRn binding. Notably, many of these mutations were unpredictable by rational design as they were located distantly from the FcRn binding site, validating our random molecular approach. When produced on the EMABling® platform allowing effector function increase, our IgG variants retained both higher ADCC and higher FcRn binding. Moreover, these IgG variants exhibited longer half-life in human FcRn transgenic mice. These results clearly demonstrate that glyco-engineering to improve cytotoxicity and protein-engineering to increase half-life can be combined to further optimize therapeutic mAbs.  相似文献   

20.
A natural mutational hotspot in the thyA gene of Escherichia coli accounts for over half of the mutations that inactivate this gene, which can be selected by resistance to the antibiotic trimethoprim. This T to A transversion, at base 131 of the coding sequence, occurs within a 17 bp quasi-palindromic sequence. To clarify the mechanism of mutagenesis, we examine here cis and trans-acting factors affecting thyA131 mutational hotspot activity at its natural location on the E.coli chromosome. Confirming a template-switch mechanism for mutagenesis, an alteration that strengthens base-pairing between the inverted repeat DNA sequences surrounding the hotspot stimulated mutagenesis and, conversely, mutations that weakened pairing reduced hotspot activity. In addition, consistent with the idea that the hotspot mutation is templated from DNA synthesis from mispaired strands of the inverted repeats, co-mutation of multiple sites within the quasipalindrome was observed as predicted from the DNA sequence of the corresponding repeat. Surprisingly, inversion of the thyA operon on the chromosome did not abolish thyA131 hotspot mutagenesis, indicating that mutagenesis at this site occurs during both leading and lagging-strand synthesis. Loss of the SOS-induced DNA polymerases PolII, PolIV, and PolV, caused a marked increase in the hotspot mutation rate, indicating a heretofore unknown and redundant antimutagenic effect of these repair polymerases. Hotspot mutagenesis did not require the PriA replication restart factor and hence must not require fork reassembly after the template-switch reaction. Deficiency in the two major 3' single-strand DNA exonucleases, ExoI and ExoVII, stimulated hotspot mutagenesis 30-fold and extended the mutagenic tract, indicating that these exonucleases normally abort a large fraction of premutagenic events. The high frequency of quasipalindrome-associated mutations suggests that template-switching occurs readily during chromosomal replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号