首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diazotrophic bacteria are important contributors to salt marsh productivity, but the biotic and abiotic factors that influence their distributions and function and the extent of their diversity cannot be understood in the absence of physiological information. Here we examine the physiological diversity and distribution patterns of diazotrophic bacteria associated with the rhizoplane of the saltmeadow cordgrass, Spartina patens, in comparison with diazotrophs from other intertidal grasses (tall and short form Spartina alterniflora and Juncus roemerianus) from the same salt marsh. S. patens plants were collected from two distinct habitats, and a total of 115 strains (111 Gram negative and 4 Gram positive strains) were isolated into pure culture by stab inoculating roots and rhizomes into combined nitrogen-free semisolid media. Most strains were microaerophilic and approximately one-half were motile. API test strips were used to eliminate redundancy within the culture collection, resulting in 21 physiologically different API groups (17 Gram negative and 4 Gram positive groups). A representative strain from each API group was selected for dot blot hybridization with a nifH specific probe and 16 strains (13 Gram negative and 3 Gram positive) were scored as positive. The nifH positive API group representative strains were characterized further using BIOLOG test plates. Substrate utilization potentials defined two S. patens strain clusters, and only one S. patens strain was physiologically similar to any other strain from a different host plant origin. No distinctions could be made based on the different S. patens habitats, suggesting that the host plant may have a greater impact than abiotic environmental conditions on the distributions of the rhizoplane diazotrophs recovered.  相似文献   

2.
Rhizoplane-rhizosphere nitrogen-fixing microorganisms (diazotrophs) are thought to provide a major source of biologically available nitrogen in salt marshes dominated by Spartina alterniflora. Compositional and functional stability has been demonstrated for this important functional group; however, the quantitative responses of specific diazotroph populations to environmental variability have not been assessed. Changes in the relative abundances of selected rhizoplane diazotrophs in response to long-term fertilization were monitored quantitatively by reverse sample genome probing. Fertilization stimulated Spartina, with plant height nearly tripling after 1 year. Fertilization also resulted in significant changes in interstitial porewater parameters. Diazotrophic activity (acetylene reduction assay) was sensitive to the fertilization treatments and was inhibited in some plots on several sampling dates. However, inhibition was never consistent across all of the replicates within a treatment and activity always recovered. The rhizoplane diazotrophs were quite responsive to environmental variability and to experimental treatments, but none were displaced by either environmental variability or experimental treatments. All strains were detected consistently throughout this study, and extensive spatial heterogeneity in the distribution patterns of these organisms was observed. The physiological traits that differentiate the diazotroph populations presumably support competitiveness and niche specialization, resulting in the observed resilience of the diazotroph populations in the rhizosphere.  相似文献   

3.
Abstract Salt marshes dominated by Spartina alterniflora (smooth cordgrass) are among the most productive ecosystems known, despite nitrogen limitation. Rhizoplane/rhizosphere diazotrophy (nitrogen fixation) serves as a significant source of combined nitrogen in these systems. Several recent studies have demonstrated remarkable physiological and phylogenetic macro- and microdiversity within this important functional group of organisms. However, the ecological significance of this diversity is presently unknown. The physiological characteristics of the culturable, oxygen-utilizing fraction of the rhizoplane diazotroph assemblages from Spartina alterniflora and from another salt marsh grass, the black needle rush Juncus roemerianus, were examined in combination with an assessment of the phylogenetic relatedness by whole genome DNA–DNA hybridization. Analysis of substrate utilization data permitted quantitative evaluation of fully cross-hybridizing strain groups and physiological clusters. Phylogenetically related strains, defined by DNA homology ≥90% relative to the positive control, displayed extensive physiological diversity. Seven bootstrap-supported physiological clusters, composed largely of phylogenetically dissimilar strains, showed similar utilization patterns for at least one class of ecologically relevant substrates (carbohydrates, carboxylic acids, or amino acids). These diazotrophs appear to be physiologically adapted for utilization of specific substrates or classes of substrates, lending support to diazotrophic functional redundancy. Microenvironmental heterogeneity is credited for promoting this diversity by selecting for physiologically specialized diazotroph populations to occupy defined niches in situ. One outcome of this physiological diversity is maintenance of a crucial environmental function (nitrogen fixation) over a broad range of environmental conditions. Received: 15 October 1999; Accepted: 28 December 1999; Online Publication: 25 April 2000  相似文献   

4.
Spartina alterniflora Loisel (S. alterniflora) is native to the Atlantic and Gulf Coasts of North America and was introduced to China in 1979. Over the years, S. alterniflora played an important role in protecting coastal banks, accelerating sediment deposition, improving local economies, and alleviating natural disasters. As an exotic species, S. alterniflora has a very strong capability of propagation, which has caused some negative effects, such as occupying ecological niches of some seashells and blocking harbors by fast sediment deposition. As a result, ecological control of S. alterniflora in some areas has drawn wide attention from biologists and ecologists in China and abroad. For this paper, we studied the technology of topography and hydrology modification to substitute S. alterniflora with P. asutralis and reported our results in a project applying this technology. Furthermore, we studied various ways to make use of biomass of S. alterniflora and found that such ways were a good alternative to ecological control of S. alterniflora.  相似文献   

5.
Nitrogen fixation is the primary N source in the highly productive but N-limited North Inlet, SC, USA salt marsh system. The diverse assemblages of nitrogen-fixing (diazotrophic) bacteria associated with the rhizospheres of the short and tall growth forms of Spartina alterniflora were analyzed at two sites, Crab Haul Creek and Goat Island, which are in different tidal creek drainage systems in this marsh. The sites differed in proximity to the main channel for tidal intrusion and in several edaphic parameters. We hypothesized that either the differing abiotic environmental regimes of the two sites or the variation due to seasonal effects result in differences in the diazotroph assemblage. Rhizosphere samples were collected seasonally during 1999 and 2000. DNA was purified and nifH amplified for denaturing gradient gel electrophoresis (DGGE) analysis of diazotroph assemblage composition. Principal components analysis was used to analyze the binary DGGE band position data. Season strongly influenced assemblage composition and biplots were used to identify bands that significantly affected the seasonal and site-specific clustering. The types of organisms that were most responsive to seasonal or site variability were identified on the basis of DGGE band sequences. Seasonally responsive members of the anaerobic diazotrophs were detected during the winter and postsenescence conditions and may have been responsible for elevated pore water sulfide concentrations. Sequences from a diverse assemblage of Gammaproteobacteria were predominant during growth periods of S. alterniflora. Abiotic environmental parameters strongly influenced both the S. alterniflora and the diazotrophic bacterial assemblages associated with this keystone salt marsh plant species.  相似文献   

6.
水位调控措施治理互花米草对大型底栖动物群落的影响   总被引:3,自引:0,他引:3  
王睿照  张利权 《生态学报》2009,29(5):2639-2645
采用物理控制措施治理崇明东滩自然保护区外来入侵植物互花米草(Spartina alterniflora)的蔓延和扩散,对保护该地区的生物多样性具有重要的意义.研究跟踪了崇明东滩治理互花米草示范样地内水位调控措施对大型底栖动物群落的影响.结果显示,潮间带大型底栖动物的密度和生物量具有显著的季节性波动,实施持续水位调控措施样地中大型底栖动物的密度、生物量和丰富度指数均显著低于同时期对照样地.破堤排水后的恢复样地中,随着恢复时间延长,大型底栖动物密度、生物量和丰富度指数均有不同程度的恢复.应用DCA排序方法有助于进一步分析大型底栖动物群落与水位调控措施强度之间的相互关系.研究结果表明,水位调控措施会对盐沼植被中大型底栖动物的密度、生物量和多样性产生负面影响,但这种影响在治理互花米草水位调控措施结束后可逐渐自然恢复.  相似文献   

7.
互花米草与芦苇光合色素含量对淹水措施的响应   总被引:3,自引:1,他引:2  
古志钦  张利权  袁琳 《应用生态学报》2009,20(10):2365-2369
以上海崇明东滩入侵植物互花米草与本地种芦苇为研究对象,研究持续淹水胁迫对两种植物光合色素含量的影响.结果表明:互花米草与芦苇叶片的光合色素基本组成与含量不同,对持续淹水的响应也不同.在持续淹水胁迫下,互花米草叶绿素a、叶绿素b及类胡萝卜素含量降低,叶绿素a/b、类胡萝卜素/叶绿素值提高;芦苇各色素含量升高,叶绿素a/b、类胡萝卜素/叶绿素值基本保持稳定.解除持续淹水胁迫后,互花米草各色素含量逐渐升高,叶绿素a/b、类胡萝卜素/叶绿素值降低,并逐渐接近对照水平;而芦苇各色素含量显著高于对照.两种植物均表现出一定的补偿效应,但芦苇比互花米草更能适应同等程度的持续淹水胁迫.应用持续淹水措施治理互花米草时,可采用本地种芦苇作为治理后湿地恢复的替代植物.  相似文献   

8.
不同建群时间下互花米草种群生长及生物量分配   总被引:1,自引:0,他引:1  
姚懿函  清华  安树青  何军  王玉 《生态学报》2010,30(19):5200-5208
采用"空间代替时间"的方法,研究具有不同建群时间的互花米草种群生长及生物量分配特征。结果表明:种群高度生长从建群2a到16a呈下降趋势,6a和16a均显著低于2a(P0.05);密度、总生物量及地上生物量从建群2a到16a均呈下降趋势,16a显著低于2a(P0.05);地下生物量、根冠比随建群时间延长先增长后降低,但前者16a显著低于2a(P0.05);同化器官生物量不随建群时间变化,而非同化器官生物量随建群时间延长而减少,6a和16a均显著低于2a(P0.05);须根和根状茎生物量随建群时间延长先增大后减小。结果显示建群16a后种群呈衰退态势,探究其原因将有助于我国互花米草的管理与控制。  相似文献   

9.
水淹对互花米草生长及生理的影响   总被引:22,自引:2,他引:22  
肖强  郑海雷  叶文景  陈瑶  朱珠 《生态学杂志》2005,24(9):1025-1028
研究了互花米草在不同没顶水淹时间处理下,株高、叶面积等生长指标以及叶片光合速率与色素、脯氨酸、可溶性糖和蛋白质含量等生理指标变化情况。结果表明,随着水淹时间延长,米草株高和叶面积呈下降趋势,叶片光合速率下降;叶片中自由水/束缚水、叶绿素和类胡萝卜素含量、可溶性糖在不同水淹时长处理之间也存在显著差异;但可溶性蛋白质和游离脯氨酸含量在各处理间差异无显著性。  相似文献   

10.
We examined crustacean zooplankton data (excluding nauplii) from 15 shallow lakes in south and central Florida, spanning a range of sizes and Chlorophyll-a concentrations. Each dataset was comprised of monthly samples from 2 years (6 lakes), or monthly to quarterly samples from 10 or 12 years (9 lakes). We quantified relationships between the zooplankton to phytoplankton biomass ratio (BZ:BP) and measurements of BZ and BP at three levels of resolution: (1) sampling events; (2) seasonal means; and (3) period-of-record means and medians. For individual sampling events, variations in ZB explained most of the variation in BZ:BP and ratios were little affected by changes in BP. Seasonal declines in BZ:BP corresponded with declines in BZ, were not related to declines in biomass of edible algae, and happened in spring–summer when earlier studies indicated high densities of planktivorous fish. Period-of-record means and medians did not identify any relationships between the biomass ratio and either BZ or BP, suggesting that processes affecting the ratio operate at shorter time scales than multiple years. Short-term and seasonal changes in BZ:BP in Florida may be controlled by predation. Testing this hypothesis will require coincident sampling of plankton and fish over a number of years or experimental studies.  相似文献   

11.
Spartina alterniflora Lois. is a dominant species growing in intermediate and saline marshes of the US Gulf coast and Atlantic coastal marshes. S. alterniflora plants were subjected to a range of soil redox potential (Eh) conditions representing a well aerated to reduced conditions in a rhizotron system under controlled environmental conditions. The low soil Eh resulted in inhibition of root elongation shortly after treatment initiation. Root elongation was reduced as soil Eh approached values below ca. +350 mV. Substantial decrease in root elongation was noted when soil Eh fell below +200 mV. Generally, net photosynthetic rate (PN) decreased as soil Eh was reduced, with substantial reductions in PN found when Eh approached negative values. Average PN was reduced to 87, 64, and 44% of control under +340, +245, and -180 mV treatments, respectively. The reductions in root elongation and PN in response to low soil Eh indicated the adverse effects of low soil Eh on plant functioning and the need for periods of soil aeration that allow plants to resume normal functioning. Thus periods of drainage allowing soil aeration during the growing season appear to be critical to S. alterniflora by providing favorable conditions for root growth and gas exchange with important implications for plant carbon fixation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Seed dormancy characteristics of Spartina alterniflora were delineated previously by Plyler and Carrick (American Journal of Botany, vol. 80, pp. 752–756, 1993). This study was undertaken in order to determine whether or not the dormancy characteristics of S. patens are similar. As in the previous study, the site of a dormancy mechanism was determined by assessing the germinability of surgically altered dormant seeds. Likewise, the effects of three growth-regulating substances (abscisic acid, fusicoccin, and gibberellic acid), prechilling, and light were studied by assessing the germinability of appropriately treated dormant seeds. Surgical injury to the endosperm, and to a lesser extent the scutellum, produced significant germination in S. patens, whereas only injury to the scutellum produced germination in S. alterniflora. Exogenously applied abscisic acid was highly effective in maintaining dormancy in injured seeds of both species. Gibberellic acid and fusicoccin were ineffective in promoting germination in S. patens, but fusicoccin was highly effective in breaking dormancy in 5. alterniflora. Prechilling was effective in breaking dormancy in S. patens but not in S. alterniflora. In S. patens, treatments that broke dormancy were only successful when seeds were exposed to light during the germination period. It is concluded that the dissimilarities in the dormancy mechanisms may be manifestations of the different environmental adaptations these closely related species display.  相似文献   

13.
B. L. Howes  J. M. Teal 《Oecologia》1994,97(4):431-438
Spartina alterniflora has been reported to lose significant amounts of oxygen to its rhizosphere with potentially important effects on salt-marsh biogeochemical cycling and plant productivity. The potential significance of this oxidative pathway was evaluated using laboratory split-chamber experiments to quantify oxygen loss from intact root systems under a wide variety of pre-treatment and incubation conditions including antibiotics to inhibit microbial respiration. The aerenchyma system of S. alterniflora was found to transport O2, N2, Ar, and CH4 from above-ground sources to its below-ground roots and rhizomes. While non-respiratory gases were observed to move from the lacunae to water bathing the root systems, net O2 loss did not occur; instead oxygen present outside of the roots/rhizomes was consumed. Net oxygen loss was found when resistance to gas transport was reduced in the lacunae-rhizosphere pathway by placing the root systems in a gas phase and when plant respiration was significantly reduced. Root system respiration appeared to be the major variable in the plant oxygen balance. When root and rhizome respiration was inhibited using poisons or lowered by cooling, the oxygen deficit was greatly reduced and oxygen loss was indicated. The effect of seasonal temperature changes on root system oxygen deficit presents a possible explanation as to why Spartina produces root systems with respiration rates that cannot be supported by gas transport. Overall, while oxygen loss from individual plant roots is likely, integrating measured root system oxygen loss with geochemical data indicates that the mass amount of oxygen lost from S. alterniflora root systems is small compared to the total oxygen balance of vegetated salt marsh sediments.  相似文献   

14.
Pezeshki  S.R. 《Photosynthetica》1998,34(1):107-114
Spartina alterniflora Lois. is a dominant species growing in intermediate and saline marshes of the US Gulf coast and Atlantic coastal marshes. S. alterniflora plants were subjected to a range of soil redox potential (Eh) conditions representing a well aerated to reduced conditions in a rhizotron system under controlled environmental conditions. The low soil Eh resulted in inhibition of root elongation shortly after treatment initiation. Root elongation was reduced as soil Eh approached values below ca. +350 mV. Substantial decrease in root elongation was noted when soil Eh fell below +200 mV. Generally, net photosynthetic rate (PN) decreased as soil Eh was reduced, with substantial reductions in PN found when Eh approached negative values. Average PN was reduced to 87, 64, and 44% of control under +340, +245, and -180 mV treatments, respectively. The reductions in root elongation and PN in response to low soil Eh indicated the adverse effects of low soil Eh on plant functioning and the need for periods of soil aeration that allow plants to resume normal functioning. Thus periods of drainage allowing soil aeration during the growing season appear to be critical to S. alterniflora by providing favorable conditions for root growth and gas exchange with important implications for plant carbon fixation.  相似文献   

15.
芦苇、互花米草的生长和繁殖对盐分胁迫的响应   总被引:1,自引:0,他引:1  
对2种海滨植物——土著种芦苇(Phragmites australis)和外来种互花米草(Sparti-na alterniflora)在淡水、中盐度(15‰)和高盐度(30‰)环境下生长和有性繁殖特征及其年际动态进行了研究,以期探索海滨植物对盐分胁迫的适应机制。结果表明:2年中各盐度处理下互花米草地上部分生物量均高于芦苇,芦苇和互花米草地上部分生物量、株高和分蘖数均随着盐度的升高而显著下降。芦苇第1年没有开花;第2年,只有淡水和中盐度处理下的芦苇开花。各盐分梯度下,第1年互花米草的开花株数没有显著差异,但花序重量在高盐度条件下显著下降;第2年高盐胁迫仍然抑制了互花米草的繁殖。第1年各处理下的芦苇株高均低于互花米草,但第2年淡水和中盐环境中的芦苇株高高于互花米草。除了高盐处理下的芦苇,第2年这2种植物地上部分生物量、株高、开花株数、花序重量显著高于第1年。与芦苇相比,互花米草表现出较高的生长能力和耐盐能力;2种植物的生长和繁殖的能力随着定居时间的增加而提高,但高盐胁迫抑制了芦苇第2年的增长;芦苇第2年在淡水和中盐度条件下表现出株高上的优势。  相似文献   

16.
Aim To examine the distribution and structure of genetic variation among native Spartina alterniflora and to characterize the evolutionary mechanisms underlying the success of non‐native S. alterniflora. Location Intertidal marshes along the Atlantic, Gulf and Pacific coasts of North America. Methods amova , parsimony analysis, haplotype networks of chloroplast DNA (cpDNA) sequences, neighbour‐joining analysis, Bayesian analysis of population structure, and individual assignment testing were used. Results Low levels of gene flow and geographic patterns of genetic variation were found among native S. alterniflora from the Atlantic and Gulf coasts of North America. The distribution of cpDNA haplotypes indicates that Atlantic coast S. alterniflora are subdivided into ‘northern’ and ‘southern’ groups. Variation observed at microsatellite loci further suggests that mid‐Atlantic S. alterniflora are differentiated from S. alterniflora found in southern Atlantic and New England coastal marshes. Comparisons between native populations on the Atlantic and Gulf coasts and non‐native Pacific coast populations substantiate prior studies demonstrating reciprocal interspecific hybridization in San Francisco Bay. Our results corroborate historical evidence that S. alterniflora was introduced into Willapa Bay from multiple source populations. However, we found that some Willapa Bay S. alterniflora are genetically divergent from putative sources, probably as a result of admixture following secondary contact among previously allopatric native populations. We further recovered evidence in support of models suggesting that S. alterniflora has secondarily spread within Washington State, from Willapa Bay to Grays Harbor. Main conclusions Underlying genetic structure has often been cited as a factor contributing to ecological variation of native S. alterniflora. Patterns of genetic structure within native S. alterniflora may be the result of environmental differences among biogeographical provinces, of migration barriers, or of responses to historical conditions. Interactions among these factors, rather than one single factor, may best explain the distribution of genetic variation among native S. alterniflora. Comprehensive genetic comparisons of native and introduced populations can illustrate how biological invasions may result from dramatically different underlying factors – some of which might otherwise go unrecognized. Demonstrating that invasions can result from several independent or interacting mechanisms is important for improving risk assessment and future forecasting. Further research on S. alterniflora not only may clarify what forces structure native populations, but also may improve the management of non‐native populations by enabling post‐introduction genetic changes and the rapid evolution of life‐history traits to be more successfully exploited.  相似文献   

17.
The positive and negative effects of exotic Spartina alterniflora in China   总被引:1,自引:0,他引:1  
Spartina alterniflora is a perennial salt marsh grass native to the Atlantic and Gulf Coasts of North America. Recognized for its effects of diminishing strong tide even storms and accelerating sediment deposition, S. alterniflora was introduced into China in 1979. Now the artificial vegetation of Spartina has expanded to around 50 000 h m2 along the east coast of China due to its strong capability of propagating by seeds and rhizome fragments. Although it was listed among 16 harmful exotic species in China 3 years ago, we need to evaluate its positive and negative effects in the coastal region of China objectively. This paper reviews some major positive effects of S. alterniflora in China, e.g. being a dominant primary producer, buffering against tides, accelerating accretion and reclamation, absorbing nutrients and digesting pollutants, as well as some major negative effects, e.g. occupying the niche of local species, altering the mudflat habitat, changing and even diminishing biodiversity, and damaging the aquiculture in the tidal land. In addition, its biomaterial uses and biological substitution as a means of ecological regulation is also discussed.  相似文献   

18.
Lignocellulosic structural changes of Spartina alterniflora after anaerobic digestion were investigated by Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), and scanning electron microscopy (SEM). Batch experiments for anaerobic mono-digestion of S. alterniflora and co-digestion with potato at S. alterniflora to potato (SA:P) of 4:1 and 6:1 (based on volatile solids [VS]) were performed at 35 ± 1 °C at initial VS of 6%. FTIR spectroscopy study showed that the ratio of lignin to carbohydrate peak area for digested S. alterniflora was more than twice that for the undigested one, and the ratio of lignin to hemicellulosic peak area of samples from co-digestion was approximately twice that from mono-digestion, indicating co-digestion improved hemicellulosic degradation of S. alterniflora. This should attribute to the concentration increase of volatile fatty acids with a peak of about 11 g Ae l?1 for co-digestion compared with 5 g Ae l?1 for mono-digestion. XRD analysis indicated that anaerobic digestion decreased the crystallinity of S. alterniflora by 6.1–8.6%, but the degree of crystallinity decrease for co-digestion was slightly different from that of mono-digestion. SEM observation showed that physical structural destruction of S. alterniflora caused by co-digestion was similar to that caused by mono-digestion, and the degradation of S. alterniflora stem occurred mainly in vascular bundle tissue, whereas the degradation of parenchyma cells was not obvious.  相似文献   

19.
Marshes worldwide are actively degrading in response to increased sea level rise rates and reduced sediment delivery, though the growth rate of vegetation plays a critical role in determining their stability. We have compiled 56 measurements of aboveground annual productivity for Spartina alterniflora , the dominant macrophyte in North American coastal wetlands. Our compilation indicates a significant latitudinal gradient in productivity, which we interpret to be determined primarily by temperature and/or the length of growing season. Simple linear regression yields a 27 g m−2 yr−1 increase in productivity with an increase of mean annual temperature by 1 °C. If temperatures warm 2–4 °C over the next century, then marsh productivity may increase by 10–40%, though physiological research suggests that increases in the north could potentially be offset by some decreases in the south. This increase in productivity is roughly equivalent to estimates of marsh lost due to future sea level change. If a warming-induced stimulation of vegetation growth will enhance vertical accretion and limit erosion, then the combined effects of global change may be to increase the total productivity and ecosystem services of tidal wetlands, at least in northern latitudes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号