首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vestibulo-ocular reflex (VOR) is capable of producing compensatory eye movements in three dimensions. It utilizes the head rotational velocity signals from the semicircular canals to control the contractions of the extraocular muscles. Since canal and muscle coordinate frames are not orthogonal and differ from one another, a sensorimotor transformation must be produced by the VOR neural network. Tensor theory has been used to construct a linear transformation that can model the three-dimensional behavior of the VOR. But tensor theory does not take the distributed, redundant nature of the VOR neural network into account. It suggests that the neurons subserving the VOR, such as vestibular nucleus neurons, should have specific sensitivity-vectors. Actual data, however, are not in accord. Data from the cat show that the sensitivity-vectors of vestibular nucleus neurons, rather than aligning with any specific vectors, are dispersed widely. As an alternative to tensor theory, we modeled the vertical VOR as a three-layered neural network programmed using the back-propagation learning algorithm. Units in mature networks had divergent sensitivity-vectors which resembled those of actual vestibular nucleus neurons in the cat. This similarity suggests that the VOR sensorimotor transformation may be represented redundantly rather than uniquely. The results demonstrate how vestibular nucleus neurons can encode the VOR sensorimotor transformation in a distributed manner.  相似文献   

2.
The vestibulo-ocular reflex (VOR) produces compensatory eye movements by utilizing head rotational velocity signals from the semicircular canals to control contractions of the extraocular muscles. In mammals, the time course of horizontal VOR is longer than that of the canal signals driving it, revealing the presence of a central integrator known as velocity storage. Although the neurons mediating VOR have been described neurophysiologically, their properties, and the mechanism of velocity storage itself, remain unexplained. Recent models of integration in VOR are based on systems of linear elements, interconnected in arbitrary ways. The present study extends this work by modeling horizontal VOR as a learning network composed of nonlinear model neurons. Network architectures are based on the VOR arc (canal afferents, vestibular nucleus (VN) neurons and extraocular motoneurons) and have both forward and lateral connections. The networks learn to produce velocity storage integration by forming lateral (commissural) inhibitory feedback loops between VN neurons. These loops overlap and interact in a complex way, forming both fast and slow VN pathways. The networks exhibit some of the nonlinear properties of the actual VOR, such as dependency of decay rate and phase lag upon input magnitude, and skewing of the response to higher magnitude sinusoidal inputs. Model VN neurons resemble their real counterparts. Both have increased time constant and gain, and decreased spontaneous rate as compared to canal afferents. Also, both model and real VN neurons exhibit rectification and skew. The results suggest that lateral inhibitory interactions produce velocity storage and also determine the properties of neurons mediating VOR. The neural network models demonstrate how commissural inhibition may be organized along the VOR pathway.  相似文献   

3.

Background

Vestibulo-ocular reflex (VOR) gain adaptation, a longstanding experimental model of cerebellar learning, utilizes sites of plasticity in both cerebellar cortex and brainstem. However, the mechanisms by which the activity of cortical Purkinje cells may guide synaptic plasticity in brainstem vestibular neurons are unclear. Theoretical analyses indicate that vestibular plasticity should depend upon the correlation between Purkinje cell and vestibular afferent inputs, so that, in gain-down learning for example, increased cortical activity should induce long-term depression (LTD) at vestibular synapses.

Methodology/Principal Findings

Here we expressed this correlational learning rule in its simplest form, as an anti-Hebbian, heterosynaptic spike-timing dependent plasticity interaction between excitatory (vestibular) and inhibitory (floccular) inputs converging on medial vestibular nucleus (MVN) neurons (input-spike-timing dependent plasticity, iSTDP). To test this rule, we stimulated vestibular afferents to evoke EPSCs in rat MVN neurons in vitro. Control EPSC recordings were followed by an induction protocol where membrane hyperpolarizing pulses, mimicking IPSPs evoked by flocculus inputs, were paired with single vestibular nerve stimuli. A robust LTD developed at vestibular synapses when the afferent EPSPs coincided with membrane hyperpolarisation, while EPSPs occurring before or after the simulated IPSPs induced no lasting change. Furthermore, the iSTDP rule also successfully predicted the effects of a complex protocol using EPSP trains designed to mimic classical conditioning.

Conclusions

These results, in strong support of theoretical predictions, suggest that the cerebellum alters the strength of vestibular synapses on MVN neurons through hetero-synaptic, anti-Hebbian iSTDP. Since the iSTDP rule does not depend on post-synaptic firing, it suggests a possible mechanism for VOR adaptation without compromising gaze-holding and VOR performance in vivo.  相似文献   

4.
The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.  相似文献   

5.
A theoretical analysis of two models of the vestibulo-ocular and optokinetic systems was performed. Each model contains a filter element in the vestibular periphery to account for peripheral adaptation, and a filter element in the central vestibulooptokinetic circuit to account for central adaptation. Both models account for1 adaptation, i.e. a response decay to a constant angular acceleration input, in both peripheral vestibular afferent and vestibulo-ocular reflex (VOR) responses and2 the reversal phases of optokinetic after-nystagmus (OKAN) and the VOR and3 oscillatory behavior such as periodic alternating nystagmus. The two models differ regarding the order of their VOR transfer function. Also, they predict different OKAN patterns following a prolonged optokinetic stimulus. These models have behavioral implications and suggest future experiments.  相似文献   

6.
Linking synaptic plasticity with behavioral learning requires understanding how synaptic efficacy influences postsynaptic firing in neurons whose role in behavior is understood. Here, we examine plasticity at a candidate site of motor learning: vestibular nerve synapses onto neurons that mediate reflexive movements. Pairing nerve activity with changes in postsynaptic voltage induced bidirectional synaptic plasticity in vestibular nucleus projection neurons: long-term potentiation relied on calcium-permeable AMPA receptors and postsynaptic hyperpolarization, whereas long-term depression relied on NMDA receptors and postsynaptic depolarization. Remarkably, both forms of plasticity uniformly scaled synaptic currents evoked by pulse trains, and these changes in synaptic efficacy were translated into linear increases or decreases in postsynaptic firing responses. Synapses onto local inhibitory neurons were also plastic but expressed only long-term depression. Bidirectional, linear gain control of vestibular nerve synapses onto projection neurons provides a plausible mechanism for motor learning underlying adaptation of vestibular reflexes.  相似文献   

7.
Through the process of habituation, continued exposure to low-frequency (0.01 Hz) rotation in the dark produced suppression of the low-frequency response of the vestibulo-ocular reflex (VOR) in goldfish. The response did not decay gradually, as might be expected from an error-driven learning process, but displayed several nonlinear and nonstationary features. They included asymmetrical response suppression, magnitude-dependent suppression for lower- but not higher-magnitude head rotations, and abrupt-onset suppressions suggestive of a switching mechanism. Microinjection of lidocaine into the vestibulocerebellum of habituated goldfish resulted in a temporary dishabituation. This suggests that the vestibulocerebellum mediates habituation, presumably through Purkinje cell inhibition of vestibular nuclei neurons. The habituated VOR data were simulated with a feed-forward, nonlinear neural network model of the VOR in which only Purkinje cell inhibition of vestibular nuclei neurons was varied. The model suggests that Purkinje cell inhibition may switch in to introduce nonstationarities, and cause asymmetry and magnitude-dependency in the VOR to emerge from the essential nonlinearity of vestibular nuclei neurons.  相似文献   

8.
The functional implication of the cerebellar flocculus in regulation of the VOR and OKR gain has mostly been studied by lesion experiments, and the hypotheses derived from these experiments are not always in line with one another. In the present study, a reversible method was used to inhibit floccular Purkinje cells. The GABA-A agonist muscimol or the GABA-B agonist baclofen were bilaterally injected into the flocculus of rabbits, and the effects of these injections on the gain of the VOR and OKR were studied. Both drugs induced a reduction by at least 50% of the gain of the VOR in light and darkness, and of the OKR. Although GABA-A and GABA-B receptors are known to have different cerebellar localizations, muscimol and baclofen injections resulted in quantitatively similar effects. It is suggested that these GABA-agonists cause either direct or indirect inhibition of floccular Purkinje cells, thus reducing modulation of the firing rate of these neurons by afferent mossy and climbing fibers. Because the flocular Purkinje cells act out of phase with the vestibular neurons which drive the oculomotor neurons, a reduced output of floccular Purkinje cells would result in a reduction of the VOR and OKR gain. These experiments provide strong evidence that the cerebellar flocculus has a positive influence on the basic VOR and OKR gain.  相似文献   

9.
The radii of curvature (R) of the horizontal (Rh), anterior (Ra) and posterior (Rp) semicircular canals were measured by a new technique (called ROTA) for cat, guinea pig and man. For each canal, data points from the ossecus canal were rotated and plotted by computer such that the plane of the sheet of computer plot corresponded to the plane best fitting that canal. The radius of each osseous canal was determined and where necessary, the radius of the are of data points was corrected for thickness of the absent tissue. For cat, guinea pig and man there are differences in R between canals within a labyrinth suggesting that if other things are equal there could be differences in the average mechanical sensitivity of the canals, which is consistent with physiological recordings from primary vestibular neurons in the cat, The Rs determined by ROTA are compared with Rs determined by conventional histological means.  相似文献   

10.
The vestibulo-ocular reflex is the system of compensatory ocular movements in response to stimulation of the kinetic labyrinth seen in all vertebrates. It allows maintenance of a stable gaze even when the head is moving. Perhaps the simplest influence on the VOR is the spatial orientation of the planes of the semicircular canals relative to the extraocular muscles. It is hypothesized that the extraocular muscles are in parallel alignment with their corresponding semicircular canals in order to reduce the amount of neural processing needed and hence keep reflex times to a minimum. However, despite its obvious importance, little is known of this spatial arrangement. Moreover, nothing is known about any ontogenetic changes in the relative orientations of the extraocular muscles and semicircular canals. The morphologies of fetal and adult specimens of Homo sapiens were examined using magnetic resonance (MR) images. Three-dimensional co-ordinate data were taken from the images and used to calculate vector equations of the extraocular muscles and planes of best fit for the semicircular canals. The relative orientations of the muscles and canals were then calculated from the vectors and planes. It was shown that there are significant correlations between both the anterior and lateral semicircular canals and their corresponding extraocular muscles during ontogeny. In the case of the lateral canal with the medial rectus, the lateral canal with the lateral rectus, and the anterior canal with the inferior oblique, the trend is towards, though never reaching, alignment, whereas the anterior canal and the superior rectus muscle move out of alignment as age increases. Furthermore, it was noted that none of the six muscle-canal pairs is in perfect alignment, either during ontogeny or in adulthood. It was also shown that the three semicircular canals are not precisely orthogonal, but that the anterior and posterior canals form an angle of about 85 degrees , while the anterior and lateral canals diverge by approximately 100 degrees . Overall, it was shown that there is significant reorientation of the extraocular muscles and semicircular canals during ontogeny, but that, in most cases, there is little realignment beyond the fetal period.  相似文献   

11.
The vertebrate vestibular system detects linear (otolith organs) and angular (semicircular canals) acceleration. The function of the otolith system is twofold, 1: perception of linear acceleration of the head, and 2: assessment of the spatial orientation of the head relative to the vector of gravity. Because of the latter function, a change of gravity will affect the vestibular input which, in turn, may have a wide range of serious physiological effects, for instance on ocular reflexes. The function of the vestibulo-ocular reflex (VOR) is to stabilize the visual image on the retina. Measurement of this VOR provides a method to investigate the (processing within the) vestibular system. Discrimination between gravity and linear acceleration, caused by movement of the head, is not possible. Therefore, information from the otolith system must be constantly compared with additional information from other sensory systems in order to solve the inherent ambiguity between tilt and translation. In this processing, cues from the semicircular canals also play a role. During parabolic flight, experiments can be performed at altered gravity levels for brief periods of time. On earth, the only effective possibility to manipulate gravity for longer periods of time is a centrifuge. Together with experiments in weightlessness during orbital flight, these methods form useful tools to investigate the influence of gravity on physiology. In our laboratory, rats have been kept inside a centrifuge at 2.5 g during their entire life-span (i.e. including gestation).  相似文献   

12.
Vestibular compensation is simulated as learning in a dynamic neural network model of the horizontal vestibulo-ocular reflex (VOR). The bilateral, three-layered VOR model consists of nonlinear units representing horizontal canal afferents, vestibular nuclei (VN) neurons and eye muscle motoneurons. Dynamic processing takes place via commissural connections that link the VN bilaterally. The intact network is trained, using recurrent back-propagation, to produce the VOR with velocity storage integration. Compensation is simulated by removing vestibular afferent input from one side and retraining the network. The time course of simulated compensation matches that observed experimentally. The behavior of model VN neurons in the compensated network also matches real data, but only if connections at the motoneurons, as well as at the VN, are allowed to be plastic. The dynamic properties of real VN neurons in compensated and normal animals are found to differ when tested with sinusoidal but not with step stimuli. The model reproduces these conflicting data, and suggests that the disagreement may be due to VN neuron nonlinearity.  相似文献   

13.
Extracellular recordings were made during vestibular stimulation from an in vitro turtle brain stem in which the temporal bones remained attached. Under visual control, microelectrodes were slowly advanced into the vestibular nucleus (VN) while we rotated the brain and searched for a single isolated unit whose spike activity was modulated by the lateral semicircular canals. In some experiments, responses were shown to be due to stimulation of the lateral canals, either by positioning the brains in forward or backward pitch during horizontal rotation or by plugging the vertical canals with wax. VN neurons usually had low spontaneous activity and rectified sinusoidal responses to sinusoidal stimulation. Spike response histograms were averaged from many stimulus cycles and were then fit to a sine function. The fitted phase and amplitude parameters were plotted relative to stimulus frequency and amplitude. The sample of VN cells were quite heterogeneous. Using stimuli at 1 Hz, however, each cell's response phase was weakly correlated with the slope of the plots of response amplitude versus frequency so that a cell could be categorized as sensitive to velocity or acceleration and as sensitive to ipsiversive or contraversive rotation, depending on whether its phase was near −180°, −90°, 0°, or 90°, and whether the gain exceeded 0.4 spikes/s per °/s. The properties of these VN cells suggest that there is substantial complexity in the vestibular responses at this first site of central vestibular processing. These data are compared to that of other species where such vestibular signals play an important role in oculomotor and spinal reflexes. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 99–177, 1997  相似文献   

14.
There is no general agreement on whether afferent signals from the extraocular muscles play any part in oculomotor control. However, we have previously shown that they modify the responses of cells in the oculomotor control system during the vestibulo-ocular reflex (VOR). If, as we suspect, these signals have an important role in the control of the VOR from moment-to-moment, we should be able to demonstrate similar, functionally significant, modifications at the output of the reflex. We have recorded the electromyographic activity of several extraocular muscles of the right eye during the VOR and while imposing movements on the left eye. We describe how the activity of the muscles, reflected in the electromyogram, is modified in specific ways depending on the parameters of the imposed eye movements. The effects of the extraocular afferent signals on the eye-muscle responses to vestibular drive during the slow phase of the VOR appear to be corrective. Thus the present results provide strong evidence that afferent signals from the extraocular muscles are concerned in the control of the reflex from moment-to-moment, and suggest that the wider question of their role in oculomotor control merits further consideration.  相似文献   

15.
Summary The vestibulo-ocular reflex undergoes adaptive changes that require inputs from the cerebellar flocculus onto brainstem vestibular neurons. As a step toward developing an in vitro preparation in chicks for studying the synaptic basis of those changes, we have elucidated the organization of the pathways through which the flocculus influences vestibulo-ocular movements. Electrical stimulation of the vestibular ampulla evoked brief, contralaterally directed movements in both eyes. Although single current pulses to the flocculus elicited no response, conjunctive stimulation of the flocculus and the vestibular apparatus significantly reduced the vestibularly-evoked movement. Trains of current pulses applied to the flocculus and ampulla evoked eye movements directed toward and away from the side of stimulation, respectively. Recordings from the brainstem revealed neurons that were activated by ipsilateral vestibular stimulation and inhibited by ipsilateral floccular stimulation. Our sample included neurons in the lateral vestibular nucleus, the ventrolateral portion of the medial vestibular nucleus, and the superior vestibular nucleus. Similarities between these findings and those of similar studies in mammals indicate that the chick will provide a good model system for cellular studies of adaptive changes in the vestibulo-ocular reflex.Abbreviations FTN flocculus target neuron - VOR vestibuloocular reflex  相似文献   

16.
17.
The autosomal dominant spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases characterized by progressive instability of posture and gait, incoordination, ocular motor dysfunction, and dysarthria due to degeneration of cerebellar and brainstem neurons. Among the more than 20 genetically distinct subtypes, SCA8 is one of several wherein clinical observations indicate that cerebellar dysfunction is primary, and there is little evidence for other CNS involvement. The aim of the present work was to study the decay of the horizontal vestibulo-ocular reflex (VOR) after a short period of constant acceleration to understand the pathophysiology of the VOR due to cerebellar Purkinje cell degeneration in SCA8. The VOR was recorded in patients with genetically defined SCA8 during rotation in the dark. Moderate to severely affected patients had a qualitatively intact VOR, but there were quantitative differences in the gain and dynamics compared to normal controls. During angular velocity ramp rotations, there was a reversal in the direction of the VOR that was more pronounced in SCA8 compared to controls. Modeling studies indicate that there are significant changes in the velocity storage network, including abnormal feedback of an eye position signal into the network that contributes to this reversal. These and other results will help to identify features that are diagnostic for SCA subtypes and provide new information about selective vulnerability of neurons controlling vestibular reflexes.  相似文献   

18.
19.
Corallium rubrum, an endemic Mediterranean gorgonian coral, has undergone an intensive exploitation leading to the extinction of local commercial banks and changes in the structure and dynamics of coastal populations. Management and conservation of this species requires a better understanding of the genetic structuring and connectivity among populations. With this aim, seven microsatellite loci have been isolated. All loci were polymorphic with allele numbers ranging from five to 26 and observed heterozygosity ranging from 0.18 to 0.68. Significant deviations from Hardy–Weinberg expected genotype frequencies due to heterozygote deficiency were detected at all loci.  相似文献   

20.
The genetic and epigenetic influences that establish and maintain the unique phenotype of the extraocular muscles (EOMs) are poorly understood. The vestibulo-ocular reflex (VOR) represents an important input into the EOMs, as it stabilizes eye position relative to the environment and provides a platform for function of all other eye movement systems. A role for vestibular cues in shaping EOM maturation was assessed in these studies using the ototoxic nitrile compound 3',3'-iminodipropionitrile (IDPN) to eliminate the receptor hair cells that drive the vestibulo-ocular reflex. Intraperitoneal injections of IDPN were followed by a 2-week survival period, after which myosin heavy chain (MyHC) analysis of the EOMs was performed. When IDPN was administered to juvenile rats, the proportion of eye muscle fibers expressing developmental and fast myosins was increased, while EOM-specific MyHC mRNA levels were downregulated. By contrast, IDPN treatment in adult rats affected only the proportion of fibers expressing developmental MyHC isoforms, leaving the EOM-specific MyHC mRNA unaltered. These data provide evidence that the VOR modulates EOM-specific MyHC expression in development. The lack of significant changes in EOM-specific MyHC expression in adult EOM following IDPN administration suggests that there may be a critical period during development when alterations in vestibular activity have significant and permanent consequences for the eye muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号