首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Rost  E. Karge  W. Klinger 《Luminescence》1998,13(6):355-363
Evidence is provided that the amplifiers luminol and lucigenin react with different reactive oxygen species (ROS), depending on the ROS-generating system used. H2O2 is used to produce calibration curves for luminol- and lucigenin-amplified chemiluminescence. With this chemiluminescence generator we characterized the specificity and sensitivity of luminol- and lucigenin-amplified chemiluminescence and also studied penicillin G, a known enhancer of luminol-amplified chemiluminescence. The combination of luminol and lucigenin in reciprocally changing concentrations is effective in an additive manner, but the weak amplifier penicillin increases luminol-amplified chemiluminescence distinctly more than in an additive manner in different combinations. Lucigenin-amplified chemiluminescence is increased by penicillin at about 1% of the optimum concentration of penicillin; increasing concentrations of penicillin are less and less effective. On the other hand, low lucigenin concentrations enhance penicillin-amplified chemiluminescence at optimum penicillin concentrations more than in an additive manner. Fe2+ does not alter luminol-, lucigenin- or penicillin-amplified chemiluminescence. Co2+ increases luminol-amplified chemiluminescence by a factor of 100. Lucigenin- and penicillin-amplified chemiluminescence are minimally enhanced by Co2+. Cu2+ enhances luminol-amplified chemiluminescence with increasing concentrations by a factor of 1000. Lucigenin-amplified chemiluminescence increases also by the factor of 1000, but the concentration–reaction curve is not as steep. NaOCl enhances H2O2/Fe2+-driven luminol-amplified chemiluminescence in a concentration-dependent manner by a factor of 104 (in the highest concentration of 10 mmol/L) and lucigenin amplified chemiluminescence only by a factor of about 25. Catalase (CAT) abolishes luminol-, lucigenin- and penicillin-amplified chemiluminescence completely, whereas superoxide dismutase (SOD) has no effect on luminol- or penicillin-amplified chemiluminescence, but enhances lucigenin-amplified chemiluminescence five-fold increasingly with increasing SOD activity. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
《Luminescence》2003,18(1):49-57
The chemiluminescence reaction of lucigenin (Luc2+?2NO3?, N,N′‐dimethyl‐9,9′‐biacridinium dinitrate) at gold electrodes in dioxygen‐saturated alkaline aqueous solutions (pH 10) was investigated in detail by the use of electrochemical emission spectroscopy. We noted that both O2 and Luc2+ are reduced on a gold electrode in aqueous solution of pH 10 in almost the same potential region. From this fact, we expected chemiluminescence based on a radical–radical coupling reaction of superoxide ion (O2·?) and one‐electron reduced form of Luc2+ (Luc·+, a radical cation). Chemiluminescence was actually observed in the potential range where O2 and Luc2+ were simultaneously reduced at the electrodes. The effects were examined upon addition of enzymes, i.e. superoxide dismutase (SOD) and catalase, into the solution and the substitution of heavy water (D2O) for light water (H2O) as a solvent on the chemiluminescence. In the presence of native and active SOD, chemiluminescence was completely absent. On the other hand, chemiluminescence was observed, unchanged in the presence of either denatured and inert SOD or catalase. In addition, the amount of chemiluminescence in D2O solution was about three times greater than that in H2O solution. These results, together with cyclic voltammetric results, suggest that O2·? participates directly in the chemiluminescence but H2O2 does not, and the chemiluminescence results from the coupling reaction between O2·? and Luc·+ under the present experimental conditions. These chemically unstable species, O2·? and Luc·+, are produced during the simultaneous electroreduction of O2 and Luc2+. The coupling reaction between those radical species would lead to the formation of a dioxetane‐type intermediate and, finally, to chemiluminescence. The chemiluminescence reaction mechanism is discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
The Cu2+‐imprinted cross‐linked chitosan resin was synthesized and the binding characteristic of the resin to Cu2+ was evaluated. The prepared resin was packed into a micro‐glass column and used as micro‐separating column. The micro‐separating column was connected into the chemiluminescence flow system and placed in front of the window of the photomultiplier tube. Based on the luminol–hydrogen peroxide chemiluminescence system, a flow injection online chemiluminescence method for determination of trace copper was developed and trace Cu2+ in complex samples was successfully determined. The proposed method improved the shortcomings of chemiluminescence method's poor selectivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive and convenient flow‐injection chemiluminescence (FI‐CL) turn‐on assay for alkaline phosphatase (ALP) activity without any label and synthesis is developed. Cu2+ can catalyze the luminol–H2O2 CL reaction. Pyrophosphate (PPi) can chelate Cu2+ and therefore the Cu2+‐mediated luminol‐H2O2 CL reaction is inhibited. The addition of ALP can catalyze the hydrolysis of PPi into phosphate ions, Cu2+ is released and the chemiluminescence recovers. A detection limit of 1 mU/mL ALP is obtained.  相似文献   

5.
In the present study we investigated the effect of acute administration of L-arginine on Na+,K+-ATPase and Mg2+-ATPase activities and on some parameters of oxidative stress (chemiluminescence and total radical-trapping antioxidant parameter-TRAP) in midbrain of adult rats. We also tested the effect of L-NAME on the effects produced by arginine. Sixty-day-old rats were treated with an acute intraperitoneal injection of saline (group I, control), arginine (0.8 g/kg) (group II), L-NAME (2 mg/kg) (group III) or arginine (0.8 g/kg) plus L-NAME (2 mg/kg) (group IV). Na+,K+-ATPase activity was significantly reduced in the arginine-treated rats, but was not affected by other treatments. In contrast, Mg2+-ATPase activity was not altered by any treatment. Furthermore, chemiluminescence was significantly increased and TRAP was significantly decreased in arginine-treated rats, whereas the simultaneous injection of L-NAME prevented these effects. These results demonstrate that in vivo arginine administration reduces Na+,K+-ATPase activity possibly through free radical generation induced by NO formation.  相似文献   

6.
Studies were carried out to determine the relationship between NADPH- and ascorbate-initiated chemiluminescence (CL) and lipid peroxidation (LP) in rat hepatic microsomes. NADPH-initiated CL and LP become maximal 15 min after addition of NADPH to the microsomes and ascorbate-initiated CL and LP become maximal 90 to 120 min following addition of ascorbate. There are four lines of evidence to indicate that both NADPH- and ascorbate-initiated chemiluminescence are related to lipid peroxidation. (i) The time courses for the increases in CL and in LP are identical. (ii) There is a linear relationship between total (integral) or maximal CL and LP. (iii) Drug substrates which inhibit LP also inhibit CL in a quantitatively similar manner. (iv) Inhibitors of lipid peroxidation, such as Co2+, Mn2+, Hg2+, para-chloromercuribenzenesulfonic acid, and EDTA, also inhibit chemiluminescence. The results of these experiments indicate that chemiluminescence initiated in hepatic microsomes by either NADPH or ascorbate is directly proportional to lipid peroxidation.  相似文献   

7.
A simple chemical system consisting of FeSO4 and H2O2 (Fenton's reagent) was shown to emit light (chemiluminescence). The addition of tryptophan to the reaction markedly enhanced light production. Very little chemiluminescence was observed when H2O2 was omitted from the reaction and when ferric, instead of ferrous, ions were used. Hydroxyl radical (OH.) and singlet oxygen (1ΔgO2) quenchers suppressed chemiluminescence of the FeSO4 + tryptophan + H2O2 system; and, deuterium oxide (2H2O) enhanced chemiluminescence of both FeSO4 reactions. These observations suggest that a radical chain reaction involving both OH. and 1ΔgO2 is responsible for the chemiluminescent reactions. Six iron-containing proteins, some of which are located within granulocytes, all emitted light in the presence of H2O2. Since iron and H2O2 are present in metabolically stimulated granulocytes, it is likely that chemiluminescent reactions similar to the ones demonstrated in this study account for part of the chemiluminescence of activated granulocytes.  相似文献   

8.
G. Bottu 《Luminescence》1991,6(3):147-151
The chemiluminescence of the system luminol +Fe2+ + H2O2 was measured in aqueous buffer at pH 7.2. In veronal (5,5-diethybarbiturate) buffer, the luminescence is strongly quenched by ethanol and mannitol, but only weakly by t-butanol, benzoate and superoxide dismutase (SOD); complexing Fe2+ with 1,10-phenanthroline or 2,2′-dipyridyl causes a decrease of light production that can be partially obviated by the simultaneous addition of SOD. In phosphate buffer, the luminescence is higher than in veronal and it is efficiently quenched by all four OH · quenchers and by SOD. In Tris buffer, no light production is observed as long as the Fe2+ is not complexed. When Fe2+ is complexed by pyrophosphate or phytate, there is a strong chemiluminescence in all three buffers, which is quenched by all four OH · quenchers and by SOD. When Fe2+ is complexed by EDTA or DTPA, very little luminescence is observed. The luminol analogue phthalhydrazide, which was suggested by Merényi and Lind as a reliable OH · detector, can replace luminol only in phosphate buffer, and thus turns out to be very specific indeed for free OH ·.  相似文献   

9.
We report the first detailed study of the characteristics of an octahydro‐Schiff base derivative as a new luminophor in the peroxyoxalate chemiluminescence (POCL) system. The effect of reagents on this new POCL system was investigated. In addition, the response surface methodology was used for evaluating the relative significance of variables in this POCL system, establishing models and determining optimal conditions. The quenching effect of some cations and compounds such as Cu2+, Fe3+, Hg2+, imidazole, histidine and cholesterol on an optimized POCL reaction were studied. The dynamic ranges were up to approximaterly 100 and 175 × 10?6 M for Cu2+ and cholesterol respectively. The detection limits were 3.3 × 10?6 m and 2.58 × 10?6 m for Cu2+ and histidine, respectively. In all cases the relative standard deviations were 4–5% (n = 4). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Forchlorfenuron is a low-toxic phenylurea plant growth regulator. Excessive intake of forchlorfenuron can lead to metabolic disorders of the matrix and be harmful to human health. The chemiluminescence intensity of the KIO4–K2CO3–Mn2+ reaction decreased in the presence of forchlorfenuron. Based on this result, a rapid and sensitive chemiluminescence method was established to determine forchlorfenuron by combining it with a batch injection static device. The injection speed, injection volume and reagent concentration of the forchlorfenuron–KIO4–K2CO3–Mn2+ chemiluminescence reaction were optimized. Under these optimized conditions, the linear range of the method was 1.0–200.0 μg/L, and the limit of detection was 0.29 μg/L (S/N = 3). The chemiluminescence method for the determination of forchlorfenuron could be completed in 10 s. The method was applied to detect the residual forchlorfenuron in dried fruit samples, and the results are consistent with high-performance liquid chromatography-mass spectrometry. This method has the advantages of high sensitivity, rapid response, less reagent consumption, and convenient operation. It will provide a new perspective for chemiluminescence for the rapid and sensitive determination of forchlorfenuron in various complex samples.  相似文献   

11.
In order to study the mechanism of the enhancement of solution chemiluminescence, the kinetics of the decay of the oxidant and the chemiluminescence emission were followed for oxidations by permanganate, manganese dioxide sol and Mn3+(aq) of glyoxylic acid, using stopped‐flow spectrophotometry. Results are reported for the glyoxylic acid oxidized under pseudo first‐order conditions and in an acidic medium at 25 °C. For permanganate under these conditions, the decay is sigmoidal, consistent with autocatalysis, and for manganese dioxide sol and Mn3+ it is pseudo first order. The effects of the presence of aqueous formaldehyde and Mn2+ were observed and a fit to a simple mechanism is discussed. It is concluded that chemiluminescent enhancement in these systems is best explained by reaction kinetics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Here, a simple and portable paper-based analytical device (PAD) based on the inherent capability of carbon quantum dots (CQDs) to serve as a great emitter for the bis(2,4,6-trichlorophenyl)oxalate (TCPO)–hydrogen peroxide (H₂O₂) chemiluminescence (CL) reaction is introduced for the detection of harmful mercury ions (Hg2+). The energy is transferred from the unstable reaction intermediate (1,2-dioxetanedione) to CQDs, as acceptors, and an intensive orange-red CL emission is generated at ~600 nm, which is equal to the fluorescence emission wavelength of CQDs. The analytical applicability of this system was examined for the determination of Hg2+. It was observed that Hg2+ could significantly quench the produced emission, which can be attributed to the formation of a stable and nonluminescent Hg2+–CQDs complex. Accordingly, a simple and rapid PAD was established for monitoring Hg2+, with a limit of detection of 0.04 μg ml−1. No interfering effect on the signal was found from other examined cations, indicating the acceptable specificity of the method. The designed assay was appropriately utilized to detect Hg2+ ions in cosmetic samples with high efficiency. It was characterized by its low cost, ease of use, and was facile but accurate and high selective for the detection of Hg2+ ions. In addition, the portability of this probe makes it suitable for on-site screening purposes.  相似文献   

13.
Oscillating chemiluminescence enhanced by the addition of tri‐n‐propylamine (TPrA) to the typical Belousov–Zhabotinsky (BZ) reaction system catalyzed by ruthenium(II)tris(2.2'‐bipyridine)(Ru(bpy)32+) was investigated using a luminometry method. The [Ru(bpy)3]2+/TPrA system was first used as the catalyst for a BZ oscillator in a closed system, which exhibited a shorter induction period, higher amplitude and much more stable chemiluminescence (CL) oscillation. The effects of various concentrations of TPrA, oxygen and nitrogen flow rate on the oscillating behavior of this system were examined. In addition, the CL intensity of the [Ru(bpy)3]2+/TPrA–BZ system was found to be inhibited by phenol, thus providing a way for use of the BZ system in the determination of phenolic compounds. Moreover, the possible mechanism of the oscillating CL reaction catalyzed by [Ru(bpy)3]2+/TPrA and the inhibition effects of oxygen and phenol on this oscillating CL system were considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The estimated light emission spectrum was determined for a singlet oxygen (1O2)-producing system, NaOCl + H2O2, alone and in the presence of tryptophan and bovine serum albumin. Tryptophan and bovine serum albumin caused a decrease in the red emission of 1O2 and an increase in the amount of shorter wavelength light. This effect was due to chemiluminescence rather than fluorescence. Arachidonic acid caused a similar spectral shift, while guanosine demonstrated a late chemiluminescent reaction of predominantly short wavelength light in the presence of 1O2.  相似文献   

15.
《Luminescence》2003,18(6):341-345
A chemiluminescence (CL) signal was observed when alkaline earth metal ion solution, Mg2+ or Ca2+ or Ba2+, was injected into a reaction mixture of fluorescein and potassium permanganate. A possible CL mechanism is proposed based upon the CL, fluorescence and UV‐visible spectra. Furthermore, the feasibility of the application of these reactions to the analysis of these alkaline earth metal ions was evaluated and the analytical parameters of the methods were determined. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A novel automated precolumn derivatization followed by separation using liquid chromatography for the determination of pseudoephedrine (PSE) by a microfluidic chemiluminescence detector has been developed. An on‐line derivatization procedure was utilized by converting PSE into a highly light emitting species in a Ru(bipy)32+‐peroxydisulphate chemiluminescence (CL) system by derivatizing it with a 1.0 M formaldehyde solution. The derivatized analyte was directly injected into a microbore high‐performance liquid chromatography (HPLC) system coupled to an on‐chip chemiluminescence detector. The newly developed highly selective, sensitive and fast HPLC‐CL method was validated and successfully applied for the analysis of PSE in pharmaceutical formulations and a human urine sample. The selectivity of the method is not only due to the HPLC separation but is also due to the highly selective detection principle of the Ru(bipy)32+‐peroxydisulphate CL system used. There was no interference observed from the common preservatives and excipients used in pharmaceutical preparations, which did not show any significant CL signal. The retention time of PSE was less than 3 min, and the detection limits and quantification limits were found to be 5.7 and 26.0 µg L–1, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The ability of D-α-tocopherol to act as a quencher of 1O2 (singlet oxygen) was tested with a biological source of 1O2, namely the phagocytosis activated myeloperoxidase contained in the homogenate of human circulating polymorphonuclear leukocytes.With this system, the 1O2 quenching efficiency of exogenously added D-α-tocopherol was estimated from its inhibitory effect on the luminol amplified chemiluminescence. This inhibitory effect was dose dependent. D-α-tocopherol was also efficient in quenching the chemiluminescence generated through the H2O2-horseradish system. In both systems the quenching effect may be almost entirely “physical”, since very little tocopherol was destroyed when compared to the relatively large amount of H2O2 consumed.  相似文献   

18.
In vitro screening of a Fe2+‐chelating effect using a Fenton's reaction–luminol chemiluminescence (CL) system is described. The luminescence between the reactive oxygen species generated by the Fenton's reaction and luminol was decreased on capturing Fe2+ using a chelator. The proposed method can prevent the consumption of expensive seed compounds (drug discovery candidates) owing to the high sensitivity of CL detection. Therefore, the assay could be performed using small volumes of sample solution (150 μL) at micromolar concentrations. After optimization of the screening conditions, the efficacies of conventional chelators such as ethylenediaminetetraacetic acid (EDTA), diethylentriaminepentaacetic acid (DETAPAC), deferoxamine, deferiprone and 1,10‐phenanthroline were examined. EC50 values for these compounds (except 1,10‐phenanthroline) were in the range 3.20 ± 0.87 to 9.57 ± 0.64 μM (n = 3). Rapid measurement of the Fe2+‐chelating effect with an assay run time of a few minutes could be achieved using the proposed method. In addition, the specificity of the method was discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
《Luminescence》2003,18(5):249-253
We established a peroxynitrite–luminol chemiluminescence system for detecting peroxynitrite in cell culture solution exposed to carbon disulphide (CS2). Three factors, including exposure time to ozone (Factor A), volume of peroxynitrite (ONOO?) solution (Factor B) and luminol concentrations (Factor C) at three levels were selected and the combinations were in accordance with orthogonal design L9 (34). Peroxynitrite was generated from the reaction of ozone and 0.01 mol/L sodium azide (NaN3) dissolved in carbonic acid buffer solution (pH 11), and it was reacted with luminol to yield chemiluminescence. The peak value, peak time and kinetic curve of the light emission were observed. The selected combination conditions were 50 s ozone, 800 µL peroxynitrite and 0.001 mol/L luminol solution. Cell culture solution with CS2 enhanced the emission intensity of chemiluminescence (F = 8.38, p = 0.018) and shortened the peak time to chemiluminescence (F = 139.00, p = 0.0001). The data demonstrated that this luminol chemiluminescence system is suitable for detecting peroxynitrite in cell culture solutions for evaluating the effect of CS2 on endothelial cells. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The stopped-flow technique was employed to measure chemiluminescent emission from the reaction of a mixture of oxalate and proline with a chemiluminescence reagent, tris(2,2′-bipyridine)ruthenium(III), or Ru(bpy)33+. Ru(bpy)33+ is a versatile reagent and is often used in bioanalytical applications, including the detection of certain drugs and their metabolites, for example. Unfortunately, Ru(bpy)33+ has not yet been fully examined as a possible chemiluminescence reagent for simultaneous kinetic determinations. In this work, a differential reaction rate method, based on simple least squares regressions of the pseudo-first order decay data, was used to resolve two compounds, oxalate and proline, reacting simultaneously with Ru(bpy)33+. Our results indicate that stopped-flow analyses with Ru(bpy)33+ could provide a viable method for simultaneous determinations of unresolvable analytes of environmental and pharmaceutical importance. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号