首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the study of multiple failure time data with recurrent clinical endpoints, the classical independent censoring assumption in survival analysis can be violated when the evolution of the recurrent events is correlated with a censoring mechanism such as death. Moreover, in some situations, a cure fraction appears in the data because a tangible proportion of the study population benefits from treatment and becomes recurrence free and insusceptible to death related to the disease. A bivariate joint frailty mixture cure model is proposed to allow for dependent censoring and cure fraction in recurrent event data. The latency part of the model consists of two intensity functions for the hazard rates of recurrent events and death, wherein a bivariate frailty is introduced by means of the generalized linear mixed model methodology to adjust for dependent censoring. The model allows covariates and frailties in both the incidence and the latency parts, and it further accounts for the possibility of cure after each recurrence. It includes the joint frailty model and other related models as special cases. An expectation-maximization (EM)-type algorithm is developed to provide residual maximum likelihood estimation of model parameters. Through simulation studies, the performance of the model is investigated under different magnitudes of dependent censoring and cure rate. The model is applied to data sets from two colorectal cancer studies to illustrate its practical value.  相似文献   

2.
Most existing statistical methods for mapping quantitative trait loci (QTL) are not suitable for analyzing survival traits with a skewed distribution and censoring mechanism. As a result, researchers incorporate parametric and semi-parametric models of survival analysis into the framework of the interval mapping for QTL controlling survival traits. In survival analysis, accelerated failure time (AFT) model is considered as a de facto standard and fundamental model for data analysis. Based on AFT model, we propose a parametric approach for mapping survival traits using the EM algorithm to obtain the maximum likelihood estimates of the parameters. Also, with Bayesian information criterion (BIC) as a model selection criterion, an optimal mapping model is constructed by choosing specific error distributions with maximum likelihood and parsimonious parameters. Two real datasets were analyzed by our proposed method for illustration. The results show that among the five commonly used survival distributions, Weibull distribution is the optimal survival function for mapping of heading time in rice, while Log-logistic distribution is the optimal one for hyperoxic acute lung injury.  相似文献   

3.
Nie H  Cheng J  Small DS 《Biometrics》2011,67(4):1397-1405
In many clinical studies with a survival outcome, administrative censoring occurs when follow-up ends at a prespecified date and many subjects are still alive. An additional complication in some trials is that there is noncompliance with the assigned treatment. For this setting, we study the estimation of the causal effect of treatment on survival probability up to a given time point among those subjects who would comply with the assignment to both treatment and control. We first discuss the standard instrumental variable (IV) method for survival outcomes and parametric maximum likelihood methods, and then develop an efficient plug-in nonparametric empirical maximum likelihood estimation (PNEMLE) approach. The PNEMLE method does not make any assumptions on outcome distributions, and makes use of the mixture structure in the data to gain efficiency over the standard IV method. Theoretical results of the PNEMLE are derived and the method is illustrated by an analysis of data from a breast cancer screening trial. From our limited mortality analysis with administrative censoring times 10 years into the follow-up, we find a significant benefit of screening is present after 4 years (at the 5% level) and this persists at 10 years follow-up.  相似文献   

4.
We propose parametric regression analysis of cumulative incidence function with competing risks data. A simple form of Gompertz distribution is used for the improper baseline subdistribution of the event of interest. Maximum likelihood inferences on regression parameters and associated cumulative incidence function are developed for parametric models, including a flexible generalized odds rate model. Estimation of the long-term proportion of patients with cause-specific events is straightforward in the parametric setting. Simple goodness-of-fit tests are discussed for evaluating a fixed odds rate assumption. The parametric regression methods are compared with an existing semiparametric regression analysis on a breast cancer data set where the cumulative incidence of recurrence is of interest. The results demonstrate that the likelihood-based parametric analyses for the cumulative incidence function are a practically useful alternative to the semiparametric analyses.  相似文献   

5.
He W  Lawless JF 《Biometrics》2003,59(4):837-848
This article presents methodology for multivariate proportional hazards (PH) regression models. The methods employ flexible piecewise constant or spline specifications for baseline hazard functions in either marginal or conditional PH models, along with assumptions about the association among lifetimes. Because the models are parametric, ordinary maximum likelihood can be applied; it is able to deal easily with such data features as interval censoring or sequentially observed lifetimes, unlike existing semiparametric methods. A bivariate Clayton model (1978, Biometrika 65, 141-151) is used to illustrate the approach taken. Because a parametric assumption about association is made, efficiency and robustness comparisons are made between estimation based on the bivariate Clayton model and "working independence" methods that specify only marginal distributions for each lifetime variable.  相似文献   

6.
The accelerated failure time regression model is most commonly used with right-censored survival data. This report studies the use of a Weibull-based accelerated failure time regression model when left- and interval-censored data are also observed. Two alternative methods of analysis are considered. First, the maximum likelihood estimates (MLEs) for the observed censoring pattern are computed. These are compared with estimates where midpoints are substituted for left- and interval-censored data (midpoint estimator, or MDE). Simulation studies indicate that for relatively large samples there are many instances when the MLE is superior to the MDE. For samples where the hazard rate is flat or nearly so, or where the percentage of interval-censored data is small, the MDE is adequate. An example using Framingham Heart Study data is discussed.  相似文献   

7.
We propose a parametric regression model for the cumulative incidence functions (CIFs) commonly used for competing risks data. The model adopts a modified logistic model as the baseline CIF and a generalized odds‐rate model for covariate effects, and it explicitly takes into account the constraint that a subject with any given prognostic factors should eventually fail from one of the causes such that the asymptotes of the CIFs should add up to one. This constraint intrinsically holds in a nonparametric analysis without covariates, but is easily overlooked in a semiparametric or parametric regression setting. We hence model the CIF from the primary cause assuming the generalized odds‐rate transformation and the modified logistic function as the baseline CIF. Under the additivity constraint, the covariate effects on the competing cause are modeled by a function of the asymptote of the baseline distribution and the covariate effects on the primary cause. The inference procedure is straightforward by using the standard maximum likelihood theory. We demonstrate desirable finite‐sample performance of our model by simulation studies in comparison with existing methods. Its practical utility is illustrated in an analysis of a breast cancer dataset to assess the treatment effect of tamoxifen, adjusting for age and initial pathological tumor size, on breast cancer recurrence that is subject to dependent censoring by second primary cancers and deaths.  相似文献   

8.
There is a great deal of recent interests in modeling right‐censored clustered survival time data with a possible fraction of cured subjects who are nonsusceptible to the event of interest using marginal mixture cure models. In this paper, we consider a semiparametric marginal mixture cure model for such data and propose to extend an existing generalized estimating equation approach by a new unbiased estimating equation for the regression parameters in the latency part of the model. The large sample properties of the regression effect estimators in both incidence and the latency parts are established. The finite sample properties of the estimators are studied in simulation studies. The proposed method is illustrated with a bone marrow transplantation data and a tonsil cancer data.  相似文献   

9.
OBJECTIVES: The question of interest is estimating the relationship between haplotypes and an outcome measure, based upon unphased genotypes. The outcome of interest might be predicting the presence of disease in a logistic model, predicting a numeric drug response in a linear model, or predicting survival time in a parametric survival model with censoring. Explanatory variables may include phased haplotype design variables, environmental variables, or interactions between them. METHODS: We extend existing generalized linear haplotype models to parametric survival outcomes. To improve the stability of model variance estimates, a profile likelihood solution is proposed. An adjustment for population stratification is also considered. Here we investigate data sampled from known 'strata' (e.g., gender or ethnicity) that influence haplotype prior probabilities and thus the regression model weights. Differing linear model variance estimates, and the effect of stratification and departures from Hardy-Weinberg Equilibrium (HWE) on parameter estimates, are compared and contrasted via simulation. RESULTS: From simulations, we observed an improvement in statistical power when using a solution to profile likelihood equations. We also saw that stratification had little impact on estimates. Haplotypes that are not in HWE had a negative impact on power to test hypotheses. Finally, profile likelihood solutions for haplotypes deviating from HWE had improved power and confidence interval coverage of regression model coefficients.  相似文献   

10.
Zhang M  Davidian M 《Biometrics》2008,64(2):567-576
Summary .   A general framework for regression analysis of time-to-event data subject to arbitrary patterns of censoring is proposed. The approach is relevant when the analyst is willing to assume that distributions governing model components that are ordinarily left unspecified in popular semiparametric regression models, such as the baseline hazard function in the proportional hazards model, have densities satisfying mild "smoothness" conditions. Densities are approximated by a truncated series expansion that, for fixed degree of truncation, results in a "parametric" representation, which makes likelihood-based inference coupled with adaptive choice of the degree of truncation, and hence flexibility of the model, computationally and conceptually straightforward with data subject to any pattern of censoring. The formulation allows popular models, such as the proportional hazards, proportional odds, and accelerated failure time models, to be placed in a common framework; provides a principled basis for choosing among them; and renders useful extensions of the models straightforward. The utility and performance of the methods are demonstrated via simulations and by application to data from time-to-event studies.  相似文献   

11.
The modeling of lifetime (i.e. cumulative) medical cost data in the presence of censored follow-up is complicated by induced informative censoring, rendering standard survival analysis tools invalid. With few exceptions, recently proposed nonparametric estimators for such data do not extend easily to handle covariate information. We propose to model the hazard function for lifetime cost endpoints using an adaptation of the HARE methodology (Kooperberg, Stone, and Truong, Journal of the American Statistical Association, 1995, 90, 78-94). Linear splines and their tensor products are used to adaptively build a model that incorporates covariates and covariate-by-cost interactions without restrictive parametric assumptions. The informative censoring problem is handled using inverse probability of censoring weighted estimating equations. The proposed method is illustrated using simulation and also with data on the cost of dialysis for patients with end-stage renal disease.  相似文献   

12.
Summary We propose a Bayesian chi‐squared model diagnostic for analysis of data subject to censoring. The test statistic has the form of Pearson's chi‐squared test statistic and is easy to calculate from standard output of Markov chain Monte Carlo algorithms. The key innovation of this diagnostic is that it is based only on observed failure times. Because it does not rely on the imputation of failure times for observations that have been censored, we show that under heavy censoring it can have higher power for detecting model departures than a comparable test based on the complete data. In a simulation study, we show that tests based on this diagnostic exhibit comparable power and better nominal Type I error rates than a commonly used alternative test proposed by Akritas (1988, Journal of the American Statistical Association 83, 222–230). An important advantage of the proposed diagnostic is that it can be applied to a broad class of censored data models, including generalized linear models and other models with nonidentically distributed and nonadditive error structures. We illustrate the proposed model diagnostic for testing the adequacy of two parametric survival models for Space Shuttle main engine failures.  相似文献   

13.

Interval-censored failure times arise when the status with respect to an event of interest is only determined at intermittent examination times. In settings where there exists a sub-population of individuals who are not susceptible to the event of interest, latent variable models accommodating a mixture of susceptible and nonsusceptible individuals are useful. We consider such models for the analysis of bivariate interval-censored failure time data with a model for bivariate binary susceptibility indicators and a copula model for correlated failure times given joint susceptibility. We develop likelihood, composite likelihood, and estimating function methods for model fitting and inference, and assess asymptotic-relative efficiency and finite sample performance. Extensions dealing with higher-dimensional responses and current status data are also described.

  相似文献   

14.
Summary Several statistical methods for detecting associations between quantitative traits and candidate genes in structured populations have been developed for fully observed phenotypes. However, many experiments are concerned with failure‐time phenotypes, which are usually subject to censoring. In this article, we propose statistical methods for detecting associations between a censored quantitative trait and candidate genes in structured populations with complex multiple levels of genetic relatedness among sampled individuals. The proposed methods correct for continuous population stratification using both population structure variables as covariates and the frailty terms attributable to kinship. The relationship between the time‐at‐onset data and genotypic scores at a candidate marker is modeled via a parametric Weibull frailty accelerated failure time (AFT) model as well as a semiparametric frailty AFT model, where the baseline survival function is flexibly modeled as a mixture of Polya trees centered around a family of Weibull distributions. For both parametric and semiparametric models, the frailties are modeled via an intrinsic Gaussian conditional autoregressive prior distribution with the kinship matrix being the adjacency matrix connecting subjects. Simulation studies and applications to the Arabidopsis thaliana line flowering time data sets demonstrated the advantage of the new proposals over existing approaches.  相似文献   

15.
Informative drop-out arises in longitudinal studies when the subject's follow-up time depends on the unobserved values of the response variable. We specify a semiparametric linear regression model for the repeatedly measured response variable and an accelerated failure time model for the time to informative drop-out. The error terms from the two models are assumed to have a common, but completely arbitrary joint distribution. Using a rank-based estimator for the accelerated failure time model and an artificial censoring device, we construct an asymptotically unbiased estimating function for the linear regression model. The resultant estimator is shown to be consistent and asymptotically normal. A resampling scheme is developed to estimate the limiting covariance matrix. Extensive simulation studies demonstrate that the proposed methods are suitable for practical use. Illustrations with data taken from two AIDS clinical trials are provided.  相似文献   

16.
Peng Y  Dear KB 《Biometrics》2000,56(1):237-243
Nonparametric methods have attracted less attention than their parametric counterparts for cure rate analysis. In this paper, we study a general nonparametric mixture model. The proportional hazards assumption is employed in modeling the effect of covariates on the failure time of patients who are not cured. The EM algorithm, the marginal likelihood approach, and multiple imputations are employed to estimate parameters of interest in the model. This model extends models and improves estimation methods proposed by other researchers. It also extends Cox's proportional hazards regression model by allowing a proportion of event-free patients and investigating covariate effects on that proportion. The model and its estimation method are investigated by simulations. An application to breast cancer data, including comparisons with previous analyses using a parametric model and an existing nonparametric model by other researchers, confirms the conclusions from the parametric model but not those from the existing nonparametric model.  相似文献   

17.
Methods in the literature for missing covariate data in survival models have relied on the missing at random (MAR) assumption to render regression parameters identifiable. MAR means that missingness can depend on the observed exit time, and whether or not that exit is a failure or a censoring event. By considering ways in which missingness of covariate X could depend on the true but possibly censored failure time T and the true censoring time C, we attempt to identify missingness mechanisms which would yield MAR data. We find that, under various reasonable assumptions about how missingness might depend on T and/or C, additional strong assumptions are needed to obtain MAR. We conclude that MAR is difficult to justify in practical applications. One exception arises when missingness is independent of T, and C is independent of the value of the missing X. As alternatives to MAR, we propose two new missingness assumptions. In one, the missingness depends on T but not on C; in the other, the situation is reversed. For each, we show that the failure time model is identifiable. When missingness is independent of T, we show that the naive complete record analysis will yield a consistent estimator of the failure time distribution. When missingness is independent of C, we develop a complete record likelihood function and a corresponding estimator for parametric failure time models. We propose analyses to evaluate the plausibility of either assumption in a particular data set, and illustrate the ideas using data from the literature on this problem.  相似文献   

18.
Neurobehavioral tests are used to assess early neonatal behavioral functioning and detect effects of prenatal and perinatal events. However, common measurement and data collection methods create specific data features requiring thoughtful statistical analysis. Assessment response measurements are often ordinal scaled, not interval scaled; the magnitude of the physical response may not directly correlate with the underlying state of developmental maturity; and a subject's assessment record may be censored. Censoring occurs when the milestone is exhibited at the first test (left censoring), when the milestone is not exhibited before the end of the study (right censoring), or when the exact age of attaining the milestone is uncertain due to irregularly spaced test sessions or missing data (interval censoring). Such milestone data is best analyzed using survival analysis methods. Two methods are contrasted: the non-parametric Kaplan-Meier estimator and the fully parametric interval censored regression. The methods represent the spectrum of survival analyses in terms of parametric assumptions, ability to handle simultaneous testing of multiple predictors, and accommodation of different types of censoring. Both methods were used to assess birth weight status and sex effects on 14 separate test items from assessments on 255 healthy pigtailed macaques. The methods gave almost identical results. Compared to the normal birth weight group, the low birth weight group had significantly delayed development on all but one test item. Within the low birth weight group, males had significantly delayed development for some responses relative to females.  相似文献   

19.
We derive the nonparametric maximum likelihood estimate (NPMLE) of the cumulative incidence functions for competing risks survival data subject to interval censoring and truncation. Since the cumulative incidence function NPMLEs give rise to an estimate of the survival distribution which can be undefined over a potentially larger set of regions than the NPMLE of the survival function obtained ignoring failure type, we consider an alternative pseudolikelihood estimator. The methods are then applied to data from a cohort of injecting drug users in Thailand susceptible to infection from HIV-1 subtypes B and E.  相似文献   

20.
We present an estimator of average regression effect under a non-proportional hazards model, where the regression effect of the covariates on the log hazard ratio changes with time. In the absence of censoring, the new estimate coincides with the usual partial likelihood estimate, both estimates being consistent for a parameter having an interpretation as an average population regression effect. In the presence of an independent censorship, the new estimate is still consistent for this same population parameter, whereas the partial likelihood estimate will converge to a different quantity that depends on censoring. We give an approximation of the population average effect as integral beta(t)dF(t). The new estimate is easy to compute, requiring only minor modifications to existing softwares. We illustrate the use of the average effect estimate on a breast cancer dataset from Institut Curie. The behavior of the estimator, its comparison with the partial likelihood estimate, as well as the approximation by integral beta(t)dF(t)are studied via simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号