首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Race-specific disease resistance in plants is mediated by the products of host disease resistance (R) genes. Plant genomes possess hundreds of R gene homologs encoding nucleotide-binding and leucine-rich repeat (NB-LRR) proteins. NB-LRR proteins induce a disease resistance response following recognition of pathogen-encoded avirulence (Avr) proteins. However, little is known about the general mechanisms by which NB-LRR proteins recognize Avr proteins or how they subsequently induce defense responses. The Rx NB-LRR protein of potato confers resistance to potato virus X (PVX). Using a co-purification strategy, we have identified a Ran GTPase-activating protein (RanGAP2) as an Rx-interacting protein. We show by co-immunoprecipitation that this interaction is mediated in planta through the putative signaling domain at the Rx amino terminus. Overexpression of RanGAP2 results in activation of certain Rx derivatives. Likewise, knocking down RanGAP2 expression in Nicotiana benthamiana by virus-induced gene silencing compromises Rx-mediated resistance to PVX. Thus, we have demonstrated a novel role for a RanGAP in the function of a plant disease resistance response.  相似文献   

2.
Plant genomes encode large numbers of nucleotide binding and leucine-rich repeat (NB-LRR) proteins, some of which mediate the recognition of pathogen-encoded proteins. Following recognition, the initiation of a resistance response is thought to be mediated by the domains present at the N termini of NB-LRR proteins, either a Toll and Interleukin-1 Receptor or a coiled-coil (CC) domain. In order to understand the role of the CC domain in NB-LRR function, we have undertaken a systematic structure-function analysis of the CC domain of the potato (Solanum tuberosum) CC-NB-LRR protein Rx, which confers resistance to Potato virus X. We show that the highly conserved EDVID motif of the CC domain mediates an intramolecular interaction that is dependent on several domains within the rest of the Rx protein, including the NB and LRR domains. Other conserved and nonconserved regions of the CC domain mediate the interaction with the Ran GTPase-activating protein, RanGAP2, a protein required for Rx function. Furthermore, we show that the Rx NB domain is sufficient for inducing cell death typical of hypersensitive plant resistance responses. We describe a model of CC-NB-LRR function wherein the LRR and CC domains coregulate the signaling activity of the NB domain in a recognition-specific manner.  相似文献   

3.
The potato (Solanum tuberosum) nucleotide binding-leucine-rich repeat immune receptor Rx confers resistance to Potato virus X (PVX) and requires Ran GTPase-activating protein 2 (RanGAP2) for effective immune signaling. Although Rx does not contain a discernible nuclear localization signal, the protein localizes to both the cytoplasm and nucleus in Nicotiana benthamiana. Transient coexpression of Rx and cytoplasmically localized RanGAP2 sequesters Rx in the cytoplasm. This relocation of the immune receptor appeared to be mediated by the physical interaction between Rx and RanGAP2 and was independent of the concomitant increased GAP activity. Coexpression with RanGAP2 also potentiates Rx-mediated immune signaling, leading to a hypersensitive response (HR) and enhanced resistance to PVX. Besides sequestration, RanGAP2 also stabilizes Rx, a process that likely contributes to enhanced defense signaling. Strikingly, coexpression of Rx with the Rx-interacting WPP domain of RanGAP2 fused to a nuclear localization signal leads to hyperaccumulation of both the WPP domain and Rx in the nucleus. As a consequence, both Rx-mediated resistance to PVX and the HR induced by auto-active Rx mutants are significantly suppressed. These data show that a balanced nucleocytoplasmic partitioning of Rx is required for proper regulation of defense signaling. Furthermore, our data indicate that RanGAP2 regulates this partitioning by serving as a cytoplasmic retention factor for Rx.  相似文献   

4.
Rairdan GJ  Moffett P 《The Plant cell》2006,18(8):2082-2093
Plant nucleotide binding and leucine-rich repeat (NB-LRR) proteins contain a region of homology known as the ARC domain located between the NB and LRR domains. Structural modeling suggests that the ARC region can be subdivided into ARC1 and ARC2 domains. We have used the potato (Solanum tuberosum) Rx protein, which confers resistance to Potato virus X (PVX), to investigate the function of the ARC region. We demonstrate that the ARC1 domain is required for binding of the Rx N terminus to the LRR domain. Domain-swap experiments with Rx and a homologous disease resistance gene, Gpa2, showed that PVX recognition localized to the C-terminal half of the LRR domain. However, inappropriate pairings of LRR and ARC2 domains resulted in autoactive molecules. Thus, the ARC2 domain is required to condition an autoinhibited state in the absence of elicitor as well as for the subsequent elicitor-induced activation. Our data suggest that the ARC region, through its interaction with the LRR, translates elicitor-induced modulations of the C terminus into a signal initiation event. Furthermore, we demonstrate that physical disruption of the LRR-ARC interaction is not required for signal initiation. We propose instead that this activity can lead to multiple rounds of elicitor recognition, providing a means of signal amplification.  相似文献   

5.
The potato (Solanum tuberosum) disease resistance protein Rx has a modular arrangement that contains coiled-coil (CC), nucleotide-binding (NB), and leucine-rich repeat (LRR) domains and mediates resistance to potato virus X. The Rx N-terminal CC domain undergoes an intramolecular interaction with the Rx NB-LRR region and an intermolecular interaction with the Rx cofactor RanGAP2 (Ran GTPase-activating protein 2). Here, we report the crystal structure of the Rx CC domain in complex with the Trp-Pro-Pro (WPP) domain of RanGAP2. The structure reveals that the Rx CC domain forms a heterodimer with RanGAP2, in striking contrast to the homodimeric structure of the CC domain of the barley disease resistance protein MLA10. Structure-based mutagenesis identified residues from both the Rx CC domain and the RanGAP2 WPP domain that are crucial for their interaction and function in vitro and in vivo. Our results reveal the molecular mechanism underlying the interaction of Rx with RanGAP2 and identify the distinct surfaces of the Rx CC domain that are involved in intramolecular and intermolecular interactions.  相似文献   

6.
Rx2 confers resistance against potato virus X (PVX). To clone Rx2, we developed a system based on Agrobacterium-mediated transient expression of candidate R genes in transgenic tobacco leaves expressing the PVX coat protein elicitor of Rx2-mediated resistance. Using this system, a potato gene eliciting HR specifically in the presence of the elicitor was identified. Based on genetical and functional analysis, it is concluded that the cloned gene is Rx2. The transient expression system is potentially adaptable to cloning of any other resistance gene. The Rx2 locus is on chromosome V of potato and the encoded protein is highly similar to the products of Rx1 and Rxh1 encoded on potato chromosome XII. Rxh1 has been shown elsewhere to encode a potato cyst nematode resistance gene Gpa2. All three proteins are in the leucine zipper-nucleotide binding site-leucine rich repeat class of resistance gene products. Rx1 and Rx2 are functionally identical and are almost identical in the C terminal region consistent with a role of the leucine rich repeats in recognition of the PVX coat protein. In the N terminal, half there are some regions where the Rx1 and Rx2 proteins are more similar to each other than to the Rxh1 protein. However, in other regions these proteins are more similar to Rxh1 than to each other. Based on this mosaic pattern of sequence similarity, we conclude that sequence exchange occurs repeatedly between genetically unlinked disease resistance genes through a process of gene conversion.  相似文献   

7.
Tomato (Solanum lycopersicum) Cf resistance genes confer hypersensitive response (HR)-associated resistance to strains of the pathogenic fungus Cladosporium fulvum that express the matching avirulence (Avr) gene. Previously, we identified an Avr4-responsive tomato (ART) gene that is required for Cf-4/Avr4-induced HR in Nicotiana benthamiana as demonstrated by virus-induced gene silencing (VIGS). The gene encodes a CC-NB-LRR type resistance (R) protein analogue that we have designated NRC1 (NB-LRR protein required for HR-associated cell death 1). Here we describe that knock-down of NRC1 in tomato not only affects the Cf-4/Avr4-induced HR but also compromises Cf-4-mediated resistance to C. fulvum. In addition, VIGS using NRC1 in N. benthamiana revealed that this protein is also required for the HR induced by the R proteins Cf-9, LeEix, Pto, Rx and Mi. Transient expression of NRC1(D481V), which encodes a constitutively active NRC1 mutant protein, triggers an elicitor-independent HR. Subsequently, we transiently expressed this auto-activating protein in N. benthamiana silenced for genes known to be involved in HR signalling, thereby allowing NRC1 to be positioned in an HR signalling pathway. We found that NRC1 requires RAR1 and SGT1 to be functional, whereas it does not require NDR1 and EDS1. As the Cf-4 protein requires EDS1 for its function, we hypothesize that NRC1 functions downstream of EDS1. We also found that NRC1 acts upstream of a MAP kinase pathway. We conclude that Cf-mediated resistance signalling requires a downstream NB-LRR protein that also functions in cell death signalling pathways triggered by other R proteins.  相似文献   

8.
9.
The Rx locus in potato controls extreme resistance to most isolates of potato virus X (PVX). The resistance is expressed in whole plants and in protoplasts. Rx-mediated resistance in protoplasts causes reduced accumulation of all PVX RNA species, including the (-) strand RNA after a lag of 8 hr postinoculation. In work reported elsewhere, we have shown that the Rx-breaking property of PVXHB was associated with the coat protein gene of PVXUK3 and PVXCP4. Here, we describe how a frameshift mutation in the coat protein gene had no effect on Rx resistance breaking but compromised the Rx-mediated resistance to PVXCP4. We also describe how in coinoculation experiments, the Rx-mediated resistance could be induced to affect PVXHB or cucumber mosaic virus (CMV). In these experiments, PVXHB or CMV was coinoculated to protoplasts (Rx genotype) together with an isolate of PVX, which is affected by Rx. We interpret this data to indicate that Rx-mediated resistance is induced when the PVX coat protein is produced in the infected cells and that the induced resistance mechanism is effective against viruses unrelated to PVX.  相似文献   

10.
Many plant intracellular immune receptors mount a hypersensitive response (HR) upon pathogen perception. The concomitant localized cell death is proposed to trap pathogens, such as viruses, inside infected cells, thereby preventing their spread. Notably, extreme resistance (ER) conferred by the potato immune receptor Rx1 to potato virus X (PVX) does not involve the death of infected cells. It is unknown what defines ER and how it differs from HR-based resistance. Interestingly, Rx1 can trigger an HR, but only upon artificial (over)expression of PVX or its avirulence coat protein (CP). Rx1 has a nucleocytoplasmic distribution and both pools are required for HR upon transient expression of a PVX-GFP amplicon. It is unknown whether mislocalized Rx1 variants can induce ER upon natural PVX infection. Here, we generated transgenic Nicotiana benthamiana producing nuclear- or cytosol-restricted Rx1 variants. We found that these variants can still mount an HR. However, nuclear- or cytosol-restricted Rx1 variants can no longer trigger ER or restricts viral infection. Interestingly, unlike the mislocalized Rx1 variants, wild-type Rx1 was found to compromise CP protein accumulation. We show that the lack of CP accumulation does not result from its degradation but is likely to be linked with translational arrest of its mRNA. Together, our findings suggest that translational arrest of viral genes is a major component of ER and, unlike the HR, is required for resistance to PVX.  相似文献   

11.
All known isolates of potato virus X (PVX), with the exception of a South American isolate PVXHB, induce an extreme resistance response on potato carrying the Rx gene and elicit the production of necrotic lesions on Gomphrena globosa: PVXHB establishes systemic infection on Rx genotypes of potato and infects the inoculated leaf of G. globosa without lesion formation. Previously, we have shown that the Rx-mediated resistance is affected by a feature of the coat protein that depends on the presence of a threonine residue at position 121 in the coat protein of PVXCP4 and that the resistance is an induced response expressed in protoplasts of potato with the Rx genotype. In this study, we provide evidence, based on the analysis of PVXCP4/PVXHB hybrids, that the elicitation of lesions on G. globosa also requires the presence of a threonine residue at position 121 of the viral coat protein. The lesion-forming phenotype was not associated with the ability of the viral isolate to accumulate in the infected plant. We therefore propose that there is a homologous component of both potato carrying Rx and G. globosa that interacts with a feature of the PVX coat protein and, following the interaction, activates an induced response in the plant cell.  相似文献   

12.
Many plant disease resistance (R) genes encode proteins predicted to have an N-terminal coiled-coil (CC) domain, a central nucleotide-binding site (NBS) domain and a C-terminal leucine-rich repeat (LRR) domain. These CC-NBS-LRR proteins recognize specific pathogen-derived products and initiate a resistance response that often includes a type of cell death known as the hypersensitive response (HR). Co-expression of the potato CC-NBS-LRR protein Rx and its elicitor, the PVX coat protein (CP), results in a rapid HR. Surprisingly, co-expression of the LRR and CC-NBS as separate domains also resulted in a CP-dependent HR. Likewise, the CC domain complemented a version of Rx lacking this domain (NBS- LRR). Correspondingly, the LRR domain interacted physically in planta with the CC-NBS, as did CC with NBS-LRR. Both interactions were disrupted in the presence of CP. However, the interaction between CC and NBS-LRR was dependent on a wild-type P-loop motif, whereas the interaction between CC-NBS and LRR was not. We propose that activation of Rx entails sequential disruption of at least two intramolecular interactions.  相似文献   

13.
14.
Nucleotide binding-leucine rich repeat (NB-LRR) proteins function as intracellular receptors for the detection of pathogens in both plants and animals. Despite their central role in innate immunity, the molecular mechanisms that govern NB-LRR activation are poorly understood. The Arabidopsis NB-LRR protein RPS5 detects the presence of the Pseudomonas syringae effector protein AvrPphB by monitoring the status of the Arabidopsis protein kinase PBS1. AvrPphB is a cysteine protease that targets PBS1 for cleavage at a single site within the activation loop of PBS1. Using a transient expression system in the plant Nicotiana benthamiana and stable transgenic Arabidopsis plants we found that both PBS1 cleavage products are required to activate RPS5 and can do so in the absence of AvrPphB. We also found, however, that the requirement for cleavage of PBS1 could be bypassed simply by inserting five amino acids at the PBS1 cleavage site, which is located at the apex of the activation loop of PBS1. Activation of RPS5 did not require PBS1 kinase function, and thus RPS5 appears to sense a subtle conformational change in PBS1, rather than cleavage. This finding suggests that NB-LRR proteins may function as fine-tuned sensors of alterations in the structures of effector targets.  相似文献   

15.
The Rx1 protein, as many resistance proteins of the nucleotide binding-leucine-rich repeat (NB-LRR) class, is predicted to be cytoplasmic because it lacks discernable nuclear targeting signals. Here, we demonstrate that Rx1, which confers extreme resistance to Potato virus X, is located both in the nucleus and cytoplasm. Manipulating the nucleocytoplasmic distribution of Rx1 or its elicitor revealed that Rx1 is activated in the cytoplasm and cannot be activated in the nucleus. The coiled coil (CC) domain was found to be required for accumulation of Rx1 in the nucleus, whereas the LRR domain promoted the localization in the cytoplasm. Analyses of structural subdomains of the CC domain revealed no autonomous signals responsible for active nuclear import. Fluorescence recovery after photobleaching and nuclear fractionation indicated that the CC domain binds transiently to large complexes in the nucleus. Disruption of the Rx1 resistance function and protein conformation by mutating the ATP binding phosphate binding loop in the NB domain, or by silencing the cochaperone SGT1, impaired the accumulation of Rx1 protein in the nucleus, while Rx1 versions lacking the LRR domain were not affected in this respect. Our results support a model in which interdomain interactions and folding states determine the nucleocytoplasmic distribution of Rx1.  相似文献   

16.
Plant NB-LRR proteins confer robust protection against microbes and metazoan parasites by recognizing pathogen-derived avirulence (Avr) proteins that are delivered to the host cytoplasm. Microbial Avr proteins usually function as virulence factors in compatible interactions; however, little is known about the types of metazoan proteins recognized by NB-LRR proteins and their relationship with virulence. In this report, we demonstrate that the secreted protein RBP-1 from the potato cyst nematode Globodera pallida elicits defense responses, including cell death typical of a hypersensitive response (HR), through the NB-LRR protein Gpa2. Gp-Rbp-1 variants from G. pallida populations both virulent and avirulent to Gpa2 demonstrated a high degree of polymorphism, with positive selection detected at numerous sites. All Gp-RBP-1 protein variants from an avirulent population were recognized by Gpa2, whereas virulent populations possessed Gp-RBP-1 protein variants both recognized and non-recognized by Gpa2. Recognition of Gp-RBP-1 by Gpa2 correlated to a single amino acid polymorphism at position 187 in the Gp-RBP-1 SPRY domain. Gp-RBP-1 expressed from Potato virus X elicited Gpa2-mediated defenses that required Ran GTPase-activating protein 2 (RanGAP2), a protein known to interact with the Gpa2 N terminus. Tethering RanGAP2 and Gp-RBP-1 variants via fusion proteins resulted in an enhancement of Gpa2-mediated responses. However, activation of Gpa2 was still dependent on the recognition specificity conferred by amino acid 187 and the Gpa2 LRR domain. These results suggest a two-tiered process wherein RanGAP2 mediates an initial interaction with pathogen-delivered Gp-RBP-1 proteins but where the Gpa2 LRR determines which of these interactions will be productive.  相似文献   

17.
Summary Two different chromosomal locations of major genes controlling extreme resistance to potato virus X (PVX) were found by restriction fragment length polymorphism (RFLP) analysis of two populations segregating for the resistance. The resistance geneRx1 mapped to the distal end of chromosome XII, whereasRx2 was located at an intermediate position on linkage group V in a region where reduced recombination and segregation distortion have also been observed. These linkage anomalies were due to abnormal behaviour of the chromosome contributed by the resistant parent P34. The results presented were obtained using two different strategies for mapping genes of unknown location. One approach was the use of probes revealing polymorphic loci spread throughout the genome and resulted in the mapping ofRx1. The second approach was based on the assumption of possible linkage between the resistance gene and clone-specific DNA fragments introduced from a wild potato species.Rx2 was mapped by adopting this strategy.  相似文献   

18.
Nb is a single dominant gene in potato that confers hypersensitive resistance to potato virus X (PVX) isolates from strain groups 1 and 2. Genetic and molecular analyses showed that Nb is located on the upper arm of chromosome V and forms part of a cluster of resistance genes encoding specificities to many different pathogens. We describe the genetical localisation of molecular markers tightly linked to the Nb locus and the development PCR-based markers suitable for isolation of the Nb resistance gene by positional cloning. A bulked segregant approach was applied to identify polymorphic AFLP markers tightly linked to the Nb locus. These markers were mapped in a population of segregating S1 progeny (1,300 plants) from a self-pollinated potato cultivar, Pentland Ivory. From this analysis, Nb was placed in an interval of 0.76 cM, flanked by the AFLP markers GM339 and GM637. Recombinant PVX strains carrying different combinations of avirulence genes were used in biological assays to show that Nb was also present in potato cv. Cara but was masked by the extreme PVX resistance conferred by the Rx gene. PCR-based screening of a Cara genomic BAC library with markers closest to the Nb locus identified a new marker tightly linked to Nb.  相似文献   

19.
In animals and plants, innate immunity is regulated by nucleotide binding domain and leucine-rich repeat (NB-LRR) proteins that mediate pathogen recognition and that activate host-cell defense responses. Plant NB-LRR proteins, referred to as R proteins, have amino-terminal domains that contain a coiled coil (CC) or that share similarity with animal Toll and interleukin 1 receptors (TIR). To investigate R protein function, we are using the TIR-NB-LRR protein N that mediates resistance against tobacco mosaic virus (TMV) through recognition of the TMV p50 protein. Here, we describe N requirement gene 1 (NRG1), a novel N-resistance component that was identified by a virus-induced gene silencing (VIGS) screen of a cDNA library. Surprisingly, NRG1 encodes an NB-LRR type R protein that, in contrast to N, contains a CC rather than a TIR domain. Our findings support emerging evidence that many disease-resistance pathways each recruit more than a single NB-LRR protein. The results also indicate that, in addition to the previously recognized role in elicitor recognition, NB-LRR proteins may also function in downstream signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号