首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y. Hiraizumi 《Genetics》1993,135(3):831-841
Previous work has shown that the direction of segregation distortion in the SD (Segregation Distorter) system in Drosophila melanogaster can sometimes be reversed, but this was found only with rather weak distorters and the effect was not large. The present study reports large negative segregation distortion in a strong distorter, SD-72 chromosome. In the presence of a specific X chromosome, supp-X(SD), the proportion, k, of SD-72 chromosomes recovered from the SD-72/cn bw males ranges from 0.99 at 20° to 0.11 at 28.5°, whereas with a standard-X chromosome, k ranges from 0.99 to 0.95 for the same temperature range. The temperature-sensitive period is during spermiogenesis. Using a mating system in which the sperm supply is nearly exhausted, it was shown that the negative distortion at high temperatures is due to an absolute reduction in the number of SD-72 chromosomes and an absolute increase in the number of cn bw chromosomes recovered. After adjusting for non-SD-related temperature effects, the amount of decrease in the number of SD-72 progeny is nearly the same as the amount of increase in the number of cn bw progeny, suggesting that the dysfunction switches from a spermatid carrying one homolog to one carrying the other. Negative distortion requires a radical revision of current hypotheses for the mechanism of segregation distortion and a possible modification of the current model is suggested, based on differential recovery of dysfunction in the two homologs during spermiogenesis.  相似文献   

2.
Daniel L. Hartl 《Genetics》1980,96(3):685-696
The genetic structure of a segregation distorter chromosome (a derivative of SD-36) has been analyzed in a system in which recombination in the second chromosome is blocked by inversions except for the critical region around the centromeric heterochromatin. The results confirm the map order and characteristics of four loci known to be involved in segregation distortion, namely Sd, E(SD), Rspins, M(SD). However, SD-36 carries a fifth major locus involved in distortion. This locus is near pr in 2L and has the effect of enhancing the degree of distortion. In addition, reciprocal recombinant products from SD-36 are recovered unequally. All recombinants carrying the pr region from SD-36 seem also to carry Sd, although Sd has previously been mapped 1.6 units to the left of pr. Both the enhancement of distortion and the unequal recovery of reciprocal products can be explained if it is assumed that the new locus near pr in SD-36 is actually a duplication of Sd.  相似文献   

3.
Y. Hiraizumi 《Genetics》1990,125(3):515-525
Current models of segregation distortion based on previous experimental results predict that, in the Sd heterozygous Rspi/Rsps male, the chromosome carrying the sensitive Rsps allele is distorted or transmitted in a frequency smaller than that of the expected Mendelian 0.5 relative to the chromosome carrying the insensitive Rspi allele. The present study presents a case where this does not occur, that is, when the genotype of the males is supp-X(SD)/Y; Sd E(SD)Rspi M(SD)+/Sd+ E(SD)+ Rsps M(SD)+ where supp-X(SD) is an X chromosome carrying a strong suppressor or suppressors of SD activity and SD+ E(SD)+ Rsps M(SD)+ is the standard cn bw chromosome. Following the "inseminated female transfer" procedure, young males of the above genotype carrying the standard-X instead of the supp-X(SD) chromosome show k values for the SD chromosome (frequencies of the SD chromosome recovered among progeny) of about 0.75, but with the supp-X(SD) chromosome, the k values are reduced to 0.36-0.41. Several possibilities other than the mechanism of segregation distortion to explain the reduced k values are ruled out. The occurrence of "negative segregation distortion" is clearly demonstrated, where the chromosome carrying the Rspi allele is distorted but the chromosome with the Rsps allele is not. This result requires a major modification of the current models or even a new model for the mechanism of segregation distortion to accommodate Rsp allele sensitivity or insensitivity. The present study also shows that males of the genotype, Sd Rspss M(SD)+/Sd+ Rspss M(SD), are almost completely sterile, but their fertility is considerably increased when SD activity is suppressed by the presence of the supp-X(SD) chromosome. This result suggests that the amount of the Sd product is not limited with respect to the interacting sites available, that is, the amount is large enough to interact with both of the Rspss alleles.  相似文献   

4.
K. G. Golic 《Genetics》1990,125(1):51-76
Segregation distortion in Drosophila melanogaster is the result of an interaction between the genetic elements Sd, a Rsp sensitive to Sd, and an array of modifiers, that results in the death of sperm carrying Rsp. A stock (designated M-5; cn bw) has been constructed which has the property of inducing the partial loss of sensitivity from previously sensitive cn bw chromosomes, the partial loss of distorting ability from SD chromosomes, and a concomitant acquisition of modifiers on the X chromosome and possibly also on the autosomes. By several criteria the changes exhibited under the influence of M-5; cn bw are characteristic of the transposable-element systems which produce hybrid dysgenesis. In the first place, the magnitude of these effects depends on the nature of the crosses performed. The analogy is further strengthened by the observation that the changes induced by M-5; cn bw share other stigmata of Drosophila transposable-element systems, including high sterility among the progeny of outcrosses, and the production of chromosomal rearrangements. The possible relationship of this system to the P, I and hobo transposable element systems is discussed, as well as its bearing on aspects of the Segregation Distorter phenomenon which have yet to be explained.  相似文献   

5.
Temin RG  Marthas M 《Genetics》1984,107(3):375-393
The major components of the SD system have been examined in two natural populations of D. melanogaster to investigate how SD behaves and is maintained in nature and to estimate its impact and efficiency. A twofold approach was used: (1) direct measurements of segregation distortion in wild males and (2) measurement of sensitivity of wild SD (+) chromosomes to SD action. Characterization of newly isolated SD chromosomes and of a large number of SD( +) chromosomes from nature demonstrated that (1) SD can operate efficiently in the wild genome: 45% of SD/SD(+) males collected from nature had k values larger than 0.70. (2) Forty-three of 44 newly recovered SD chromosomes are of the SD-72 type, having a small pericentric inversion that maintains tight linkage among the Sd, E(SD) and Rsp loci in the SD complex. In 1956, most SD chromosomes in Madison lacked this inversion. (3) Only 12 of the 44 SD chromosomes carried a recessive lethal (compared with five of six in 1956), and many of the viable SD chromosomes were fertile as homozygotes, indicating that SD homozygotes need not have obvious reductions in fitness. (4) Among more than 500 wild chromosomes assayed for response to distortion by a strong SD, at least 40-50% were sensitive, about 33% were partially sensitive and 17% were insensitive. This frequency of sensitives is higher than in reports from some other populations. An estimated 12% of the wild chromosomes were classified as true Rsp(i) by their constellation of effects, including a special test of ability to cause self-distortion of a "suicide" chromosome, R(cn)-10. In a direct assay with R(cn)-10, an independent sample of 99 chromosomes from nature gave 30% putative Rsp(i). Thus, these populations contain in the range of 12-30% Rsp(i). (5) Chromosomes supersensitive to SD, previously described for certain laboratory stocks, were also found to coexist in nature with SD. (6) Profiles of wild chromosomes with a panel of three or four different SD testers suggest a series of allelic alternatives at the Rsp locus including supersensitive, sensitive, semisensitive and insensitive, and that loci other than Rsp may also be important in determining the effect of SD in nature.  相似文献   

6.
Male Drosophila heterozygous for an SD-bearing second chromosome and a normal homolog preferentially transmit the SD chromosome to their offspring. The distorted transmission involves the induced dysfunction of the sperm that receive the SD+ chromosome. The loci on the SD chromosome responsible for causing distortion are the Sd locus the the E(SD) locus. Their target of action on the SD+ chromosome is the Rsps locus. Previous studies of Rsps indicated that deletion of this locus rendered a chromosome insensitive to the action of SD and mapped Rsps physically within the centric heterochromatin of 2R. In this study we have constructed a collection of marked free duplications for the centromeric region of a second chromosome that carried Rsps. The heterochromatic extent of each duplication as well as its sensitivity to distortion was determined. We found that Rsps is the most proximal known locus within the 2R heterochromatin. Furthermore, our results demonstrate that the presence of Rsps is not only necessary but sufficient to confer sensitivity to distortion irrespective of its association with an intact second chromosome or one that pairs meiotically with an SD chromosome. By use of these duplications we increased the usual dosage of Rsps relative to SD to determine whether there was any competition for limited amounts of SD [and/or E(SD)] product. When two Rsps-bearing chromosomes are present within the same spermatocyte nucleus an SD chromosome is capable of causing efficient distortion of both. However, at least in some cases the degree of distortion against a given Rsps was reduced by the presence of an extra dose of Rsps indicating that there was some competition between them. The bearing of these results on present models of segregation distortion are discussed.  相似文献   

7.
8.
S. Pimpinelli  P. Dimitri 《Genetics》1989,121(4):765-772
The segregation distortion phenomenon occurs in Drosophila melanogaster males carrying an SD second chromosome and an SD+ homolog. In such males the SD chromosome is transmitted to the progeny more frequently than the expected 50% because of an abnormal differentiation of the SD+-bearing sperms. Three major loci are involved in this phenomenon: SD and Rsp, associated with the SD and SD+ chromosome, respectively, and E(SD). In the present work we performed a cytogenetic analysis of the Rsp locus which was known to map to the centromeric heterochromatin of the second chromosome. Hoechst- and N-banding techniques were used to characterize chromosomes carrying Responder insensitive (Rspi), Responder sensitive (Rsps) and Responder supersensitive (Rspss) alleles. Our results locate the Rsp locus to the h39 region of 2R heterochromatin. This region is a Hoechst-bright, N-banding negative heterochromatic block adjacent to the centromere. Quantitative variations of the h39 region were observed. The degree of sensitivity to Sd was found to be directly correlated with the physical size of that region, demonstrating that the Rsp locus is composed of repeated DNA.  相似文献   

9.
R. Moschetti  R. Caizzi    S. Pimpinelli 《Genetics》1996,144(4):1665-1671
The heterochromatic Responder (Rsp) locus of Drosophila melanogaster is the target of the two distorter loci Sd and E(SD). Rsp is located in a specific heterochromatic region of the second chromosome and is made up of AT-rich satellite sequences whose abundance is related to its sensitivity to the distorter chromosomes. Here we report that a cluster of Rsp sequences is also located in the third chromosome. The third-chromosome cluster has the same flanking sequences as the clone originally used to identify the Rsp elements, and one of the flanking sequences is a rearranged 412 retrotrsansposon. The presence of a second, unlinked Rsp-sequence cluster makes re-interpretation necessary for some earlier experiments in which segregation of the third chromosome had not been followed and raises interesing possibilities for the origin of the Rsp locus.  相似文献   

10.
On the Components of Segregation Distortion in DROSOPHILA MELANOGASTER   总被引:14,自引:13,他引:1       下载免费PDF全文
Barry Ganetzky 《Genetics》1977,86(2):321-355
The segregation distorter (SD) complex is a naturally occurring meiotic drive system with the property that males heterozygous for an SD-bearing chromosome 2 and an SD+-bearing homolog transmit the SD-bearing chromosome almost exclusively. This distorted segregation is the consequence of an induced dysfunction of those sperm that receive the SD+ homolog. From previous studies, two loci have been implicated in this phenomenon: the Sd locus which is required to produce distortion, and the Responder (Rsp) locus that is the site at which Sd acts. There are two allelic alternatives of Rsp—sensitive (Rspsens) and insensitive (Rspins); a chromosome carrying Rspins is not distorted by SD. In the present study, the function and location of each of these elements was examined by a genetic and cytological characterization of X-ray-induced mutations at each locus. The results indicate the following: (1) the Rsp locus is located in the proximal heterochromatin of 2R; (2) a deletion for the Rsp locus renders a chromosome insensitive to distortion; (3) the Sd locus is located to the left of pr (2-54.5), in the region from 37D2-D7 to 38A6-B2 of the salivary chromosome map; (4) an SD chromosome deleted for Sd loses its ability to distort; (5) there is another important component of the SD system, E(SD), in or near the proximal heterochromatin of 2L, that behaves as a strong enhancer of distortion. The results of these studies allow a reinterpretation of results from earlier analyses of the SD system and serve to limit the possible mechanisms to account for segregation distortion.  相似文献   

11.
Human phosphofructokinase (PFK; EC 2.7.1.11) is under the control of three structural loci which encode muscle-type (M), live-type (L), and platelet-type (P) subunits; human diploid fibroblasts and leukocytes express all three loci. In order to assign human PFKM locus to a specific chromosome we have analyzed human x Chinese hamster somatic cell hybrids for the expression of human M subunits, using an anti-human M subunit-specific mouse monoclonal antibody. In 18 of 19 hybrids studied, the expression of the PFKM locus segregated concordantly with the presence of chromosome 1 (discordance rate 0.05) as indicated by chromosome and isozyme marker analysis. The discordance rates for all the other chromosomes were 0.32 or greater, indicating that the PFKM locus is on chromosome 1. For the regional mapping of PFKM, eight hybrids were studied that contained one of five distinct regions of chromosome 1. These results further localize the human PFKM locus to region cen leads to q32 chromosome 1.  相似文献   

12.
Hyperunstable mutations were described previously at the yellow locus of Drosophila melanogaster. These mutations are related to the insertion of the complex sequence containing two deleted copies of the P element at the termini and central unique regions from different sites of the X chromosome. In this work, double hyperunstable mutations at loci yellow and scute were obtained. These events were shown to occur from the inversion induced by the P elements located at the loci yellow and scute.  相似文献   

13.
Lyttle TW 《Genetics》1984,106(3):423-434
Analysis of X-ray-induced deletions in the Segregation Distorter (SD) chromosome, SD-5, revealed that this chromosome had a gene proximal to lt in the centric heterochromatin of 2L that strongly enhanced the meiotic drive caused by the SD chromosome. This Enhancer of Segregation Distortion [E(SD)] locus had not been characterized in earlier studies of SD chromosomes because it cannot be readily separated by recombination from the Responder (Rsp) locus in the proximal heterochromatin of 2R.—To determine whether E(SD) is a general component of all SD chromosomes and to examine further its effects on distortion, we produced deletions of E(SD) in three additional SD chromosomes. Analysis of these deletions leads to the following conclusions: (1) along with Sd and Rsp, E(SD) is common to all SD chromosomes; (2) the E(SD) allele on each SD chromosome enhances distortion by the same amount, which indicates that allelic variation at the E(SD) locus is not responsible for the different drive strengths seen among SD chromosomes; (3) E(SD) causes very little or no distortion by itself in the absence of Sd; (4) E(SD), like Sd, acts in a dosage-dependent manner; (5) E(SD) exerts its effect in cis or trans to Sd; and (6) if E(SD)+ exists, its function is not related to SD.  相似文献   

14.
R. G. Temin 《Genetics》1991,128(2):339-356
Segregation distortion is a meiotic drive system, discovered in wild populations, in which males heterozygous for an SD chromosome and a sensitive SD+ homolog transmit the SD chromosome almost exclusively. SD represents a complex of three closely linked loci in the centromeric region of chromosome 2: Sd, the Segregation distorter gene; E(SD), the Enhancer of Segregation Distortion, required for full expression of drive; and Rsp, the target for the action of Sd, existing in a continuum of states classifiable into sensitive (Rsps) and insensitive (Rspi). In an SD/SD+ male which is Sd E(SD) Rspi/Sd+ E(SD)+ Rsps, the Sd and E(SD) elements act jointly to induce the dysfunction of those spermatids receiving the Rsps chromosome. By manipulating the number of copies and the position of the Enhancer region, I demonstrated that: (1) E(SD), whether in its normal position or translocated to the Y chromosome, is able to enhance the degree of Sd-caused distortion in a dosage-dependent manner; (2) even in the absence of Sd, the E(SD) allele in two doses can cause significant distortion, in Sd+ or Df(Sd)-bearing genotypes; (3) quantitative differences among Enhancers of different sources suggest allelic variation at E(SD), which could account at least in part for differences among wild SD chromosomes in strength of distortion; (4) E(SD)/E(SD)-mediated distortion, like that of Sd, is directed at the Rsp target, whether Rsp is on the second or the Y chromosome; (5) E(SD), like Sd, is suppressed by an unlinked dominant suppressor of SD action. These results show that E(SD) is independently capable of acting on Rsp and is not a simple modifier of the action of Sd. E(SD) provides an example of a trans-acting gene embedded in heterochromatin that can interact with another heterochromatic gene, Rsp, as well as parallel the effect of a euchromatic gene, Sd.  相似文献   

15.
C B Sharp  A J Hilliker 《Génome》1989,32(5):840-846
Segregation distortion is caused by a group of genetic elements in and near the centric heterochromatin of chromosome 2 of Drosophila melanogaster. These elements promote their preferential recovery in heterozygous males by rendering sperm bearing the homologous chromosome dysfunctional. Previous work has shown that numerous Y-autosome translocations are associated with the suppression of the segregation distorter phenotype. The present study examined the effects of translocations between the major autosomes upon the expression of segregation distortion. Autosomal translocations involving either the segregation distorter chromosome or its sensitive homologue had no significant effect upon the expression of segregation distortion. These results argue that linkage arrangement per se may not have a major effect on segregation distortion. The suppression of SD by specific Y-autosomal translocations may be due to the disruption of elements on the Y chromosome that are important for the expression of SD.  相似文献   

16.
The brittle rachis character, which causes spontaneous shattering of spikelets, has an adaptive value in wild grass species. The loci Br1 and Br2 in durum wheat (Triticum durum Desf.) and Br3 in hexaploid wheat (T. aestivum L.) determine disarticulation of rachides above the junction of the rachilla with the rachis such that a fragment of rachis is attached below each spikelet. Using microsatellite markers, the loci Br1, Br2 and Br3 were mapped on the homoeologous group 3 chromosomes. The Br2 locus was located on the short arm of chromosome 3A and linked with the centromeric marker, Xgwm32, at a distance of 13.3 cM. The Br3 locus was located on the short arm of chromosome 3B and linked with the centromeric marker, Xgwm72 (at a distance of 14.2 cM). The Br1 locus was located on the short arm of chromosome 3D. The distance of Br1 from the centromeric marker Xgdm72 was 25.3 cM. Mapping the Br1, Br2 and Br3 loci of the brittle rachis suggests the homoeologous origin of these 3 loci for brittle rachides. Since the genes for brittle rachis have been retained in the gene pool of durum wheat, the more closely linked markers with the brittle rachis locus are required to select against brittle rachis genotypes and then to avoid yield loss in improved cultivars.  相似文献   

17.
E. L. Cabot  P. Doshi  M. L. Wu    C. I. Wu 《Genetics》1993,135(2):477-487
The Responder (Rsp) locus in Drosophila melanogaster is the target locus of segregation distortion and is known to be comprised of a tandem array of 120-bp repetitive sequences. In this study, we first determined the large scale molecular structure of the Rsp locus, which extends over a region of 600 kb on the standard sensitive (cn bw) chromosome. Within the region, small Rsp repeat arrays are interspersed with non-Rsp sequences and account for 10-20% of the total sequences. We isolated and sequenced 32 Rsp clones from three different chromosomes. The main results are: (1) Rsp repeats isolated from the same chromosome are not more similar than those from different chromosomes. This implies either that there are more homologous exchanges at the Rsp locus than expected or, alternatively, that the second chromosomes of D. melanogaster have diverged from one another more recently at the centromeric heterochromatin than at the nearby euchromatin. (2) The repeats usually have a dimeric structure with an average difference of 16% between the left and right halves. The differences allow us to easily identify the products of unequal exchanges. Despite the large differences between the two halves, exchanges have occurred frequently and the majority of them fall within a 29-bp interval of identity between the two halves. Our data thus support the suggestion that recombination depends on short stretches of complete identity rather than long stretches of general homology. (3) Frequent unequal crossover events obscure the phylogenetic relationships between repeats; therefore, different parts of any single repeat could often have different phylogenetic histories. The high rate of unequal crossing over may also help explain the evolutionary dynamics of the Rsp locus.  相似文献   

18.
Proposed mechanisms for the generation of endogenous retrovirus loci have been examined by determining the chromosomal distribution of these loci by means of in situ hybridization. Unlike the clustering on chromosome 1 of five endogenous retrovirus loci associated with the gs- chf- phenotype A. Tereba and S. M. Astrin, submitted for publication), three loci associated with endogenous retrovirus production (V+ phenotype) were located on three separate chromosomes. ev2, which codes for the prototype endogenous RAV-0 genome in line 7(2) chickens, was localized near the middle of the long arm of chromosome 2, ev7, coding for a noninfectious, inducible genome present in line 15B chickens, was located near the end of the long arm of the Z chromosome. A third V+ locus, designated ev14, was detected near the middle of chromosome 3. This arrangement of V+ loci is consistent with an integration mechanism employing randomly distributed integration sites in the chicken genome. In addition, these data provide evidence suggesting that the gs- chf- -associated loci may have been generated by a different mechanism.  相似文献   

19.
Duplicate marker loci can result in incorrect locus orders on linkage maps   总被引:1,自引:0,他引:1  
Genetic linkage maps, constructed from multi-locus recombination data, are the basis for many applications of molecular markers. For the successful employment of a linkage map, it is essential that the linear order of loci on a chromosome is correct. The objectives of this theoretical study were to (1) investigate the occurrence of incorrect locus orders caused by duplicate marker loci, (2) develop a statistical test for the detection of duplicate markers, and (3) discuss the implications for practical applications of linkage maps. We derived conditions, under which incorrect locus orders do or do not occur with duplicate marker loci for the general case of n markers on a chromosome in a BC1 mapping population. We further illustrated these conditions numerically for the special case of four markers. On the basis of the extent of segregation distortion, an exact test for the presence of duplicate marker loci was suggested and its power was investigated numerically. Incorrect locus orders caused by duplicate marker loci can (1) negatively affect the assignment of target genes to chromosome regions in a map-based cloning experiment, (2) hinder indirect selection for a favorable allele at a quantitative trait locus, and (3) decrease the efficiency of reducing the length of the chromosome segment attached to a target gene in marker-assisted backcrossing.Communicated by G. WenzelM. Frisch and M. Quint contributed equally to this article.  相似文献   

20.
Trippa G  Loverre A  Cicchetti R 《Genetics》1980,95(2):399-412
The discovery and the cytogenetic characterization of a new SD (Segregation Distorter) chromosome 2 from a natural population in Ranna (Sicily, Italy), SD(Ra), are reported. The main features of this chromosome are as follows: (a) it contains an Sd(Ra) gene with a moderate degree of segregation distortion (k = 0.72), (b) a recessive female sterile gene, fs(2)(TLM), responsible for modifications of the morphology and structure of the tests and ovaries is located at 89.7, (c) SD(Ra)/SD(Ra) males and females are viable but sterile, the females due to homozygosis of fs(2)(TLM) and the males because of homozygosis of a region containing the Sd locus, and (d) SDi/SDj combinations are fertile, thus suggesting that the different Sd factors found in natural populations constitute a multiple allelic series.-These data may indicate that each population containing SD chromosomes has evolved its own genetic architecture for the complex SD system, with specific modifiers and perhaps different Sd genes. The possibility of reconstructing the evolutionary pattern of the SD(Ra) chromosome in the natural Ranna population after the model of Charlesworth and Hartl (1978) and Crow (1979) is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号