首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gametocytogenesis of the malaria parasite Plasmodium falciparum was studied in monolayers of erythrocytes attached to tissue culture dishes. Merozoites produced by single schizonts in erythrocytes overlaying the monolayer infected the attached erythrocytes and produced clusters of progeny. Parasites in these readily indentifiable clusters then underwent either asexual growth or sexual differentiation. The progeny of most schizonts yielded no gametocytes. However, the progeny of those schizonts that did yield gametocytes showed a marked tendency to produce multiple gametocytes. Gametocytogenesis, therefore, was not random. Instead, the progeny of certain schizonts were committed to produce gametes. However, even those clusters containing several gametocytes also contained asexual forms. Therefore, not all merozoites of a single schizont were committed to gametocytogenesis. In those cells infected with two or more merozoites the formation of a gametocyte was usually associated with a block in the further development of other parasites.  相似文献   

2.
The purpose of the present study was to confirm the effectiveness of saponin hemolysis for concentrating ring-infected erythrocytes in Plasmodium falciparum cultures and to determine the actual numbers of the enriched parasites, not just percentage parasitemia. This is important because various molecular biology and vaccine development against malaria require useable quantities of pure culture with minimal number of uninfected erythrocytes at all stages. Synchronized cultures of three P. falciparum strains were exposed to 0.015% isotonic saponin solution for 30 minutes on ice. They were centrifuged and the pellets were treated again with saponin solution for 3-7 minutes. Initially, most of the cultures contained approximately 10(10) erythrocytes and 1-7% parasitemia, but at the end of the enrichment up to 10(8) of erythrocytes containing 90-99.8% parasitemia were recovered (maximal enrichment). From microscopic examination of the cells it was calculated that the hemolysis rate of uninfected and infected erythrocytes was circa 27 to 1, which could account for the enrichment. Studies by other investigators have suggested that P. falciparum merozoite invasion decreases erythrocyte membrane lipids, and it has been reported that reduction of membrane cholesterol could make erythrocytes saponin-resistant. The possibility that merozoite invasion made erythrocytes partially resistant to saponin hemolysis was strengthened by the observation that the proportions of multiple infections increased significantly in the enriched cultures. However, mature asexual parasites could not be concentrated by this method, suggesting possible differences between the membranes of erythrocytes containing ring forms and those of trophozoites and schizonts. Ring-infected erythrocytes freshly from malaria patients could also not be concentrated by the method described here, suggesting that the ability to induce saponin resistance in erythrocytes was acquired by the parasites in vitro.  相似文献   

3.
Stage-dependent inhibition of chloroquine on Plasmodium falciparum in vitro   总被引:3,自引:0,他引:3  
Morphological observation of the life cycle of the malaria parasite, Plasmodium falciparum, in highly synchronous cultures after an exposure to therapeutic concentrations of chloroquine in ring, trophozoite and schizont stages, respectively, were carried out in order to determine the influence of chloroquine on the growth of the different stages of the malarial parasites. It was found that chloroquine could not affect merozoite invasion of the erythrocytes; the ring stage was more sensitive to chloroquine than the trophozoite and schizont stages; and chloroquine in therapeutic concentrations prevented only the transformation of rings to trophozoites and could not affect the transformations of trophozoites to schizonts and schizonts to new rings. The determination of the IC50 of chloroquine showed that the IC50 of trophozoites was about 6 times as high as that of rings.  相似文献   

4.
The synchronized cultures of Plasmodium falciparum were used to stimulate in vitro the chemiluminescence of human polymorphonuclear leukocytes in the presence of immune serum. The schizonts were concentrated by Percoll gradient centrifugation method (density 1.085 and osmolarity 285 mOsmol), and placed in culture, treated 6 hours later by sorbitol. Under incubation at constant temperature and pressure, the rate of synchronization reached 85% for schizonts during 5 replicative cycles. Every asexual stages of Plasmodium falciparum were used separately to stimulate polymorphonuclear leukocytes: merozoites were the most effective, followed by schizonts, trophozoites, and lastly supernatants of cultures containing degradation products of parasites.  相似文献   

5.
An initial natural infection of Saurocytozoon tupinambi in a juvenile Tupinambis teguixin from Venezuela was studied for 131 days following capture of the host. Intralymphocytic parasites appeared in this sequence: small uninucleate and binucleate stages (days 1–31 and again on day 41); schizonts with 3–102 nuclei (days 8–14 and 29–35); immature gametocytes (days 29–35) and apparently mature gametocytes of Saurocytozoon tupinambi from day 41. Maximum parasitemia of trophozoites and binucleate schizonts occurred on day 4 when 11% of lymphocytes were infected. Maximum parasitemia by larger schizonts occurred on day 8 at 0.13% of lymphocytes, while maximum gametocytemia was found on day 49 with 16.4% of lymphocytes parasitized. Two types of schizonts were observed: intralymphocytic and the same type free of host cells, and fragments of varying size which may have been torn from capillary endothelium.Due to presence of concurrent infection by a small Plasmodium species, identity of intralymphocytic asexual stages with S. tupinambi cannot be established. Presence of asexual and sexual stages in the same type of host cells (lymphocytes and close derivatives), sequential appearance of trophozoites, schizonts and gametocytes over a period of 40 days, and correlated fluctuations in lymphocyte density suggest they are conspecific, and that Saurocytozoon, which has a plasmodiid type of sporogony may prove to further differ from leucocytozoids by presence of an asexual cycle in circulating blood cells.  相似文献   

6.
SYNOPSIS. Gametocytes differentiated from ring-stage parasites in microcultures of human blood infected with Plasmodium falciparum. Immature gametocytes could be distinguished morphologically from late asexual trophozoites after ~ 40 h of culture. Differentiation into crescentic forms took several days and the incorporation of [3H]-isoleucine by developing gametocytes was demonstrated. About 1% of red cells contained gametocytes at the maximum densities attained. Differentiation of gametocytes occurred either directly from rings placed in culture or from the progeny of subsequent cycles of schizogony and invasion in vitro. The latter occurrence was confirmed by the development of gametocytes in marker fetal red cells added to cultures, although fetal red cells provide a less favorable environment than those with HbA for growth of the parasites.  相似文献   

7.
Highly synchronous cultures of Plasmodium falciparum were exposed to therapeutic concentrations of sulfadoxine or pyrimethamine at different developmental stages to investigate the effect on subsequent growth. Morphological observations showed that schizont formation from uninuclear trophozoites was the only process inhibited by the drugs. Segmentation of mature schizonts, merozoite invasion and development of the ring stage remained unaffected. These results support earlier reports suggesting that DNA synthesis is most pronounced in 32-42 h old trophozoites. The possible relevance of our results to the metabolism of P. falciparum is discussed.  相似文献   

8.
ABSTRACT The schizogonic development of Leucocytozoon smithi in the liver of experimentally infected turkey poults was examined by electron microscopy. Following intraperitoneal injection, sporozoites migrated to the liver and entered hepatic cells to become intracellular trophozoites. Three to four days post inoculation (PI), trophozoites underwent asexual multiple fission known as merogony or schizogony. Two generations of schizonts were observed. The primary or first generation schizonts, abundant on day 4 PI, appeared as interconnected cytoplasmic masses (pseudocytomeres). Each pseudocytomere was enclosed by a membranous vacuole and contained varying numbers of nuclei. As nuclear division and growth of the schizonts continued, larger discrete cytoplasmic masses or cytomeres were formed with rhoptries and multiple nuclei in various stages of division. Synchronous multiple cytoplasmic cleavage of the schizont resulted in the formation of numerous uninucleate merozoites. Second generation schizonts, which developed from hepatic merozoites released from primary schizonts, were abundant in hepatocytes on day 6 PI. Although tissue samples from liver, lung, spleen, kidney, intestine, brain, blood vessels and lymph nodes were examined, schizogonous forms were observed in liver only. No megaloschizonts were detected in any host tissue examined. Schizogonic development was completed by day 7 PI as merozoites developed into gametocytes within mononuclear phagocytes.  相似文献   

9.
The schizogonic development of Leucocytozoon smithi in the liver of experimentally infected turkey poults was examined by electron microscopy. Following intraperitoneal injection, sporozoites migrated to the liver and entered hepatic cells to become intracellular trophozoites. Three to four days post inoculation (PI), trophozoites underwent asexual multiple fission known as merogony or schizogony. Two generations of schizonts were observed. The primary or first generation schizonts, abundant on day 4 PI, appeared as interconnected cytoplasmic masses (pseudocytomeres). Each pseudocytomere was enclosed by a membranous vacuole and contained varying numbers of nuclei. As nuclear division and growth of the schizonts continued, larger discrete cytoplasmic masses or cytomeres were formed with rhoptries and multiple nuclei in various stages of division. Synchronous multiple cytoplasmic cleavage of the schizont resulted in the formation of numerous uninucleate merozoites. Second generation schizonts, which developed from hepatic merozoites released from primary schizonts, were abundant in hepatocytes on day 6 PI. Although tissue samples from liver, lung, spleen, kidney, intestine, brain, blood vessels and lymph nodes were examined, schizogonous forms were observed in liver only. No megaloschizonts were detected in any host tissue examined. Schizogonic development was completed by day 7 PI as merozoites developed into gametocytes within mononuclear phagocytes.  相似文献   

10.
Human erythrocytes contain only trace amounts of polyamines and lack active polyamine biosynthetic enzymes. A remarkable increase in polyamine content, and in the activity of ornithine and S-adenosyl-L-methionine decarboxylases, is noted in synchronous cultures of the malarial parasite, Plasmodium falciparum. Polyamine biosynthesis reached peak values during the early trophozoite stage, whereas nucleic acid and protein synthesis occurred later in mature trophozoites. DL-alpha-Difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, did not interfere with merozoite invasion and with ring-form development, but prevented the transformation of trophozoites to schizonts. Concomitantly, the synthesis of proteins and nucleic acids was significantly inhibited. These inhibitory effects could be readily reversed by the diamine putrescine. Macromolecular synthesis and schizogony were normal when 5-10 mM-DL-alpha-difluoromethylornithine and 0.1 mM-putrescine were added to the cultures simultaneously.  相似文献   

11.
A technique for the separation of schizonts of Plasmodium falciparum is described. The different stages of the asexual cell cycle of the parasite were positioned according to their density in a continuous gradient of Percoll. Young trophozoites coincided with erythrocytes in a broad band corresponding to densities from 1.075 to 1.100 g/ml, whereas schizonts were concentrated at a density approximating 1.062 g/ml. The viability of the parasites was unimpaired by this procedure. Young trophozoites and schizonts continued their normal life cycle when cultured after the separation procedure. The percentage of recovery was high, reaching 80% of the initial quantity. Possible applications of the technique are discussed.  相似文献   

12.
A 33-kDa soluble antigen identified in the culture supernatant by patient serum and monoclonal antibodies was present in rings, trophozoites, schizonts, and merozoites of Plasmodium falciparum. The antigen which is released into the culture supernatant by growing parasites was also observed in the host cells of trophozoites and schizonts and could be localized on the host cell surface. Its specificity for the surface of trophozoites and schizonts was observed to decrease with increased duration without subculture. The antigen could then be detected on the surface of noninfected erythrocytes. The antigenicity of the 33-kDa antigen was destroyed by heating at 65 degrees C. Monoclonal and polyclonal specific antibodies weakly inhibited parasite growth in vitro. The antigen was present in both knob positive and knob negative parasites in all the P. falciparum isolates tested.  相似文献   

13.
14.
Fluorescence intensities were established by flow cytometry of different erythrocytic stages of Plasmodium berghei after staining of their DNA with Hoechst-33258 or Hoechst-33342. Parasites were obtained from highly synchronized infections or in vitro cultures. Most fluorescence measurements were performed using a low cost, clinical flow cytometer, equipped with a mercury arc lamp. Cells infected with P. berghei could be readily distinguished from uninfected cells on the basis of Hoechst-DNA fluorescence and single, double, and triple ring infected cells were separated clearly. The relative fluorescence intensities of different developmental stages (merozoites, ringforms, trophozoites, schizonts, and gametocytes) corresponded closely to the relative DNA contents of these stages as measured by microfluorometry. Flow cytometry appeared to be a sensitive and rapid method to measure DNA synthesis during asexual development; a C50 value of 5 microM of aphidicolin, a specific inhibitor of DNA synthesis, was established. Vital staining of parasites in culture was possible with both Hoechst dyes. After removal of Hoechst-33258, normal in vitro development of the stained parasites was observed. After Hoechst staining, the haploid ringforms of P. vivax showed slightly less fluorescence (15%) than ringforms of P. berghei and P. falciparum. No differences in fluorescence intensity were observed, however, by direct microfluorometry after Feulgen-pararosaniline staining, indicating that all three species have the same DNA content.  相似文献   

15.

Background

The asexual blood stages of the human malaria parasite Plasmodium falciparum produce highly immunogenic polymorphic antigens that are expressed on the surface of the host cell. In contrast, few studies have examined the surface of the gametocyte-infected erythrocyte.

Methodology/Principal Findings

We used flow cytometry to detect antibodies recognising the surface of live cultured erythrocytes infected with gametocytes of P. falciparum strain 3D7 in the plasma of 200 Gambian children. The majority of children had been identified as carrying gametocytes after treatment for malaria, and each donated blood for mosquito-feeding experiments. None of the plasma recognised the surface of erythrocytes infected with developmental stages of gametocytes (I–IV), but 66 of 194 (34.0%) plasma contained IgG that recognised the surface of erythrocytes infected with mature (stage V) gametocytes. Thirty-four (17.0%) of 200 plasma tested recognised erythrocytes infected with trophozoites and schizonts, but there was no association with recognition of the surface of gametocyte-infected erythrocytes (odds ratio 1.08, 95% C.I. 0.434–2.57; P = 0.851). Plasma antibodies with the ability to recognise gametocyte surface antigens (GSA) were associated with the presence of antibodies that recognise the gamete antigen Pfs 230, but not Pfs48/45. Antibodies recognising GSA were associated with donors having lower gametocyte densities 4 weeks after antimalarial treatment.

Conclusions/Significance

We provide evidence that GSA are distinct from antigens detected on the surface of asexual 3D7 parasites. Our findings suggest a novel strategy for the development of transmission-blocking vaccines.  相似文献   

16.
DL-alpha-Difluoromethylornithine, an inhibitor of polyamine biosynthesis, was tested for its ability to synchronize Plasmodium falciparum. Asynchronous cultures were pretreated with sorbitol and incubated for 28-30 hr. Then, when cultures consisted of mainly schizont stage parasites, DL-alpha-difluoromethylornithine was added to the growth medium for another 38-47 hr of incubation. Putrescine was added to parasites arrested at the early trophozoite stage. This resulted in a synchronous resumption of growth. After 19 hr, 83% of parasites were at the schizont stage. After 30 hr, more than 98% of the parasites were in the ring form stage. Furthermore, the transformation of early trophozoites to schizonts occurred within 3 hr, with a slight reduction in parasitemia. Synchrony was maintained for 4-5 biological cycles as confirmed also by flow fluorimetry. It appears that this new approach to synchronize P. falciparum cultures is simple, reproducible, and effective.  相似文献   

17.
The effect of cyclic AMP on asexual maturation and gametocyte formation of Plasmodium falciparum grown in vitro was examined over a wide range of concentrations. Cyclic AMP inhibited both processes in a stage-specific manner. Asexual maturation was inhibited from shortly after parasite entry into the red cell through the ring stage. However, trophozoites and schizonts matured normally in the presence of cyclic AMP and produced infectious merozoites. Gametocyte formation was inhibited by 95% when 1.0 mM cyclic AMP was added to synchronously growing parasites in the ring stage of development but was only inhibited by 15% when added in the trophozoite or schizont stages. Cyclic AMP was not found to increase gametocyte formation over a wide range of concentrations.  相似文献   

18.
Venous blood samples were taken from patients naturally infected with the human malaria parasite Plasmodium falciparum. Two types of malaria pigment (MP) particles have been demonstrated in intraerythrocytic asexual forms (trophozoites and schizonts), while a single type was detected in gametocytes. Type I MP particles, found in both asexual and sexual forms, are electron-dense. It is suggested that these are proteinaceous and may be intermediate, utilizable metabolic products that serve as a food reserve during development of the parasite in the human host and also during the growth cycle of the sexual form in the mosquito. In asexual forms, type I particles occur within food vacuoles (FV) containing semidigested hemoglobin (Hg), while they are unenveloped in the cytoplasm of the sexual forms. Type II MP particles, found in electron-lucent residual bodies, are crystalloid and of low electron density. It is suggested that these are the final, waste product of Hg digestion in the asexual forms. © 1993 Wiley-Liss, Inc.  相似文献   

19.
A new procedure for isolating spontaneously released merozoites from in vitro cultures of Plasmodium falciparum (FVO and FCB strains) is described. The mature forms of relatively synchronous cultures containing predominantly trophozoites and few schizonts were concentrated with Plasmagel and then incubated at 37 C, without adding fresh red blood cells, until trophozoites matured into schizonts. Merozoites which were subsequently released were harvested and freed from host red blood cell material by low-speed centrifugations and nylon membrane sieves (3- and 1.2-μm pore size). From a culture containing about 5.2 × 109 mature-form parasites, a total of about 10.7 × 109 merozoites were released during three consecutive harvests and about 69% of these merozoites were recovered after the isolation and purification procedures. As demonstrated by both light and electron microscopy, most merozoites were morphologically intact and the merozoite preparations were free of host cell constituents. SDS-acrylamide gel electrophoresis confirmed the absence of host cell material and also showed that merozoites had a complex protein pattern of apparent molecular weights between 225 and 15 kdaltons. Such purified merozoite preparations will be invaluable for malaria immunization studies, for identification of protective antigens of P. falciparum, and for other immunological and biochemical studies.  相似文献   

20.
Invasion of erythrocytes by malaria parasites is known to be blocked by proteolytic digestion of merozoite receptors allegedly present in red cell membranes. This information was used in the present work to develop a simple and convenient assay for parasite invasion into red blood cells and for evaluating the role played by red cell membrane components in this process. Synchronized in vitro cultures of Plasmodium falciparum containing only ring stages were subjected to either trypsin or pronase digestion, a treatment that neither affected ring development into schizonts nor mature merozoite release. Cells from this culture were not invaded by the released merozoites. However, upon addition of untreated human red blood cells, marked invasion was observed, either microscopically or as [3H]isoleucine incorporation. The new assay circumvents the need for separating schizonts from uninfected cells and provides a convenient means for assessing how chemical and biochemical manipulation of red blood cells affects their invasiveness by parasites. Using this assay, we verified that sheep and rabbit erythrocytes were resistant to invasion, as were human erythrocytes which had been treated with trypsin, pronase or neuraminidase. Chymotrypsin digestion of human erythrocytes was without effect on invasion. Human erythrocytes which were chemically modified with the impermeant amino reactive reagent H2DIDS, or with the crosslinker of spectrin, TCEA, were found to resist invasion. The results underscore the involvement of surface membrane components as well as of elements of the cytoskeleton in the process of parasite invasion into erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号