首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Coronary artery disease (CAD) is the leading cause of death worldwide. Recent genome-wide association studies (GWAS) identified >50 common variants associated with CAD or its complication myocardial infarction (MI), but collectively they account for <20% of heritability, generating a phenomena of “missing heritability”. Rare variants with large effects may account for a large portion of missing heritability. Genome-wide linkage studies of large families and follow-up fine mapping and deep sequencing are particularly effective in identifying rare variants with large effects. Here we show results from a genome-wide linkage scan for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole genome genotyping was carried out with 408 markers that span the human genome by every 10 cM and linkage analyses were performed using the affected relative pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage (NPL) analysis identified two novel CAD loci with highly significant evidence of linkage on chromosome 3p25.1 (peak NPL  = 5.49) and 3q29 (NPL  = 6.84). We also identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and 21q22.3 (NPL  = 3.18–4.07). These results identify novel loci for CAD and provide a framework for fine mapping and deep sequencing to identify new susceptibility genes and novel variants associated with risk of CAD.  相似文献   

2.
Genome wide association studies (GWAS) and their replications that have associated DNA variants with myocardial infarction (MI) and/or coronary artery disease (CAD) are predominantly based on populations of European or Eastern Asian descent. Replication of the most significantly associated polymorphisms in multiple populations with distinctive genetic backgrounds and lifestyles is crucial to the understanding of the pathophysiology of a multifactorial disease like CAD. We have used our Lebanese cohort to perform a replication study of nine previously identified CAD/MI susceptibility loci (LTA, CDKN2A-CDKN2B, CELSR2-PSRC1-SORT1, CXCL12, MTHFD1L, WDR12, PCSK9, SH2B3, and SLC22A3), and 88 genes in related phenotypes. The study was conducted on 2,002 patients with detailed demographic, clinical characteristics, and cardiac catheterization results. One marker, rs6922269, in MTHFD1L was significantly protective against MI (OR=0.68, p=0.0035), while the variant rs4977574 in CDKN2A-CDKN2B was significantly associated with MI (OR=1.33, p=0.0086). Associations were detected after adjustment for family history of CAD, gender, hypertension, hyperlipidemia, diabetes, and smoking. The parallel study of 88 previously published genes in related phenotypes encompassed 20,225 markers, three quarters of which with imputed genotypes The study was based on our genome-wide genotype data set, with imputation across the whole genome to HapMap II release 22 using HapMap CEU population as a reference. Analysis was conducted on both the genotyped and imputed variants in the 88 regions covering selected genes. This approach replicated HNRNPA3P1-CXCL12 association with CAD and identified new significant associations of CDKAL1, ST6GAL1, and PTPRD with CAD. Our study provides evidence for the importance of the multifactorial aspect of CAD/MI and describes genes predisposing to their etiology.  相似文献   

3.
By means of a combination of genome-wide and follow-up studies, recent large-scale association studies of populations of European descent have now identified over 46 loci associated with coronary artery disease (CAD). As part of the TAICHI Consortium, we have collected and genotyped 8556 subjects from Taiwan, comprising 5423 controls and 3133 cases with coronary artery disease, for 9087 CAD SNPs using the CardioMetaboChip. We applied penalized logistic regression to ascertain the top SNPs that contribute together to CAD susceptibility in Taiwan. We observed that the 9p21 locus contributes to CAD at the level of genome-wide significance (rs1537372, with the presence of C, the major allele, the effect estimate is -0.216, standard error 0.033, p value 5.8x10-10). In contrast to a previous report, we propose that the 9p21 locus is a single genetic contribution to CAD in Taiwan because: 1) the penalized logistic regression and the follow-up conditional analysis suggested that rs1537372 accounts for all of the CAD association in 9p21, and 2) the high linkage disequilibrium observed for all associated SNPs in 9p21. We also observed evidence for the following loci at a false discovery rate >5%: SH2B3, ADAMTS7, PHACTR1, GGCX, HTRA1, COL4A1, and LARP6-LRRC49. We also took advantage of the fact that penalized methods are an efficient approach to search for gene-by-gene interactions, and observed that two-way interactions between the PHACTR1 and ADAMTS7 loci and between the SH2B3 and COL4A1 loci contribute to CAD risk. Both the similarities and differences between the significance of these loci when compared with significance of loci in studies of populations of European descent underscore the fact that further genetic association of studies in additional populations will provide clues to identify the genetic architecture of CAD across all populations worldwide.  相似文献   

4.
Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10−33; LPA:p<10−19; 1p13.3:p<10−17) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10−7). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06–1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and clarified the literature with regard to many previously suggested genes.  相似文献   

5.
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15×10−94<P<5×10−8, odds ratio (OR) = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2×10−23 < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.  相似文献   

6.
Recent reports implicate chromosomal regions linked to inter-individual variation in plasma triglycerides. We conducted genome-wide scans to replicate these linkages and/or identify other loci influencing plasma triglycerides in the NHLBI Family Heart Study (FHS). Data were obtained for 501 three-generational families. Genotyping was done by the Utah Molecular Genetics Laboratory and NHLBI Mammalian Genotyping Service; markers from both were placed on one genetic map. Analysis was done using multipoint variance components linkage. Fasting plasma triglycerides were log-transformed and age-, sex-, and field center-adjusted; suggestive linkage evidence was found on chromosome 8 (LOD=2.80 at 89 cM, marker D8S1141). Further adjustment for waist girth, BMI, diabetes, hypertension, and lipid-lowering drugs suggested linkage regions on chromosomes 6 (LOD=2.29 at 79 cM, marker D6S295) and 15 (LOD=1.85 at 43 cM, marker D15S659). Since HDL is correlated with triglycerides and because it was linked to this region on chromosome 15 in FHS, we created a composite triglyceride–HDL phenotype. The combined phenotype LOD score was 3.0 at the same marker on chromosome 15. Chromosome 15 likely harbors a susceptibility locus with an influence on triglycerides and HDL. Regions on chromosomes 6 and 8 may also contain loci contributing to inter-individual variation in plasma triglycerides.  相似文献   

7.
Attention-deficit/hyperactivity disorder (ADHD [MIM 143465]) is a common, highly heritable neurobehavioral disorder of childhood onset, characterized by hyperactivity, impulsivity, and/or inattention. As part of an ongoing study of the genetic etiology of ADHD, we have performed a genomewide linkage scan in 204 nuclear families comprising 853 individuals and 270 affected sibling pairs (ASPs). Previously, we reported genomewide linkage analysis of a "first wave" of these families composed of 126 ASPs. A follow-up investigation of one region on 16p yielded significant linkage in an extended sample. The current study extends the original sample of 126 ASPs to 270 ASPs and provides linkage analyses of the entire sample, using polymorphic microsatellite markers that define an approximately 10-cM map across the genome. Maximum LOD score (MLS) analysis identified suggestive linkage for 17p11 (MLS=2.98) and four nominal regions with MLS values >1.0, including 5p13, 6q14, 11q25, and 20q13. These data, taken together with the fine mapping on 16p13, suggest two regions as highly likely to harbor risk genes for ADHD: 16p13 and 17p11. Interestingly, both regions, as well as 5p13, have been highlighted in genomewide scans for autism.  相似文献   

8.

Background

Recently, a large meta-analysis including over 28,000 participants identified nine different loci with association to serum uric acid (UA) levels. Since elevated serum UA levels potentially cause gout and are a possible risk factor for coronary artery disease (CAD) and myocardial infarction (MI), we performed two large case-control association analyses with participants from the German MI Family Study. In the first study, we assessed the association of the qualitative trait gout and ten single nucleotide polymorphisms (SNP) markers that showed association to UA serum levels. In the second study, the same genetic polymorphisms were analyzed for association with CAD.

Methods and Findings

A total of 683 patients suffering from gout and 1,563 healthy controls from the German MI Family Study were genotyped. Nine SNPs were identified from a recently performed genome-wide meta-analysis on serum UA levels (rs12129861, rs780094, rs734553, rs2231142, rs742132, rs1183201, rs12356193, rs17300741 and rs505802). Additionally, the marker rs6855911 was included which has been associated with gout in our cohort in a previous study. SNPs rs734553 and rs6855911, located in SLC2A9, and SNP rs2231142, known to be a missense polymorphism in ABCG2, were associated with gout (p = 5.6*10−7, p = 1.1*10−7, and p = 1.3*10−3, respectively). Other SNPs in the genes PDZK1, GCKR, LRRC16A, SLC17A1-SLC17A3, SLC16A9, SLC22A11 and SLC22A12 failed the significance level. None of the ten markers were associated with risk to CAD in our study sample of 1,473 CAD cases and 1,241 CAD-free controls.

Conclusion

SNP markers in SLC2A9 and ABCG2 genes were found to be strongly associated with the phenotype gout. However, not all SNP markers influencing serum UA levels were also directly associated with the clinical manifestation of gout in our study sample. In addition, none of these SNPs showed association with the risk to CAD in the German MI Family Study.  相似文献   

9.
A male-specific genetic linkage map of nine loci on bovine Chromosome (Chr) 2 (BTA2) was constructed from 306 offspring belonging to six paternal halfsib families. Loci studied were the structural genes for liver/bone/kidney alkaline phosphatase (ALPL), Gardner-Rasheed feline sarcoma (v-fgr) oncogene homolog (FGR), alpha-L-fucosidase 1 (FUCA1), and fibronectin 1 (FN1), and the microsatellite loci ARO28, DU17S2, DU17S3, DU17S4, and DU17S5. Genotyping was performed by restriction fragment length polymorphism (RFLP) for structural genes and polymerase chain reaction (PCR) for the microsatellites. Two genetically independent linkage groups were identified. The order of genes in the first linkage group, L31, is (ARO28-FN1)-FGR-FUCA1-ALPL, covering a map distance of 34.1 cM between terminal markers. The second linkage group, L32, consists of DU17S2-DU17S5-DU17S4-DU17S3 and is 41.3 cM in length. Genetic linkage between FN1 and FGR confirms previous physical assignment of these genes to the same synteny group. Currently, the genetic linkage of FN1 and FGR is unique to cattle and thus localizes a site of chromosomal evolution to a 22-cM interval between the two loci.  相似文献   

10.
Linkage of osteoporosis to chromosome 20p12 and association to BMP2   总被引:2,自引:0,他引:2       下载免费PDF全文
Osteoporotic fractures are a major cause of morbidity and mortality in ageing populations. Osteoporosis, defined as low bone mineral density (BMD) and associated fractures, have significant genetic components that are largely unknown. Linkage analysis in a large number of extended osteoporosis families in Iceland, using a phenotype that combines osteoporotic fractures and BMD measurements, showed linkage to Chromosome 20p12.3 (multipoint allele-sharing LOD, 5.10; p value, 6.3 × 10−7), results that are statistically significant after adjusting for the number of phenotypes tested and the genome-wide search. A follow-up association analysis using closely spaced polymorphic markers was performed. Three variants in the bone morphogenetic protein 2 (BMP2) gene, a missense polymorphism and two anonymous single nucleotide polymorphism haplotypes, were determined to be associated with osteoporosis in the Icelandic patients. The association is seen with many definitions of an osteoporotic phenotype, including osteoporotic fractures as well as low BMD, both before and after menopause. A replication study with a Danish cohort of postmenopausal women was conducted to confirm the contribution of the three identified variants. In conclusion, we find that a region on the short arm of Chromosome 20 contains a gene or genes that appear to be a major risk factor for osteoporosis and osteoporotic fractures, and our evidence supports the view that BMP2 is at least one of these genes.  相似文献   

11.
12.
Linkage of inflammatory bowel disease to human chromosome 6p   总被引:12,自引:0,他引:12       下载免费PDF全文
Inflammatory bowel disease (IBD) is characterized by a chronic relapsing intestinal inflammation. IBD is subdivided into Crohn disease and ulcerative colitis phenotypes. Given the immunologic dysregulation in IBD, the human-leukocyte-antigen region on chromosome 6p is of significant interest. Previous association and linkage analysis has provided conflicting evidence as to the existence of an IBD-susceptibility locus in this region. Here we report on a two-stage linkage and association analysis of both a basic population of 353 affected sibling pairs (ASPs) and an extension of this population to 428 white ASPs of northern European extraction. Twenty-eight microsatellite markers on chromosome 6 were genotyped. A peak multipoint LOD score of 4.2 was observed, at D6S461, for the IBD phenotype. A transmission/disequilibrium test (TDT) result of P=.006 was detected for D6S426 in the basic population and was confirmed in the extended cohort (P=.004; 97 vs. 56 transmissions). The subphenotypes of Crohn disease, ulcerative colitis, and mixed IBD contributed equally to this linkage, suggesting a general role for the chromosome 6 locus in IBD. Analysis of five single-nucleotide polymorphisms in the TNFA and LTA genes did not reveal evidence for association of these important candidate genes with IBD. In summary, we provide firm linkage evidence for an IBD-susceptibility locus on chromosome 6p and demonstrate that TNFA and LTA are unlikely to be susceptibility loci for IBD.  相似文献   

13.
We have previously shown that rheumatoid arthritis (RA) risk alleles overlap between different ethnic groups. Here, we utilize a multiethnic approach to show that we can effectively discover RA risk alleles. Thirteen putatively associated SNPs that had not yet exceeded genome-wide significance (p < 5 × 10(-8)) in our previous RA genome-wide association study (GWAS) were analyzed in independent sample sets consisting of 4,366 cases and 17,765 controls of European, African American, and East Asian ancestry. Additionally, we conducted an overall association test across all 65,833 samples (a GWAS meta-analysis plus the replication samples). Of the 13 SNPs investigated, four were significantly below the study-wide Bonferroni corrected p value threshold (p < 0.0038) in the replication samples. Two SNPs (rs3890745 at the 1p36 locus [p = 2.3 × 10(-12)] and rs2872507 at the 17q12 locus [p = 1.7 × 10(-9)]) surpassed genome-wide significance in all 16,659 RA cases and 49,174 controls combined. We used available GWAS data to fine map these two loci in Europeans and East Asians, and we found that the same allele conferred risk in both ethnic groups. A series of bioinformatic analyses identified TNFRSF14-MMEL1 at the 1p36 locus and IKZF3-ORMDL3-GSDMB at the 17q12 locus as the genes most likely associated with RA. These findings demonstrate empirically that a multiethnic approach is an effective strategy for discovering RA risk loci, and they suggest that combining GWASs across ethnic groups represents an efficient strategy for gaining statistical power.  相似文献   

14.
A genetic linkage map of the European sea bass (Dicentrarchus labrax) was constructed from 174 microsatellite markers, including 145 new markers reported in this study. The mapping panel was derived from farmed sea bass from the North Adriatic Sea and consisted of a single family including both parents and 50 full-sib progeny (biparental diploids). A total of 162 microsatellites were mapped in 25 linkage groups. Eleven loci represent type I (coding) markers; 2 loci are located within the peptide Y (linkage group 1) and cytochrome P450 aromatase (linkage group 6) genes. The sex-averaged map spans 814.5 cM of the sea bass genome. The female map covers 905.9 cM, whereas the male map covers only 567.4 cM. The constructed map represents the first linkage map of European sea bass, one of the most important aquaculture species in Europe.  相似文献   

15.
The Japanese Schizophrenia Sib-Pair Linkage Group (JSSLG) is a multisite collaborative study group that was organized to create a national resource for affected sib pair (ASP) studies of schizophrenia in Japan. We used a high-density single-nucleotide–polymorphism (SNP) genotyping assay, the Illumina BeadArray linkage mapping panel (version 4) comprising 5,861 SNPs, to perform a genomewide linkage analysis of JSSLG samples comprising 236 Japanese families with 268 nonindependent ASPs with schizophrenia. All subjects were Japanese. Among these families, 122 families comprised the same subjects analyzed with short tandem repeat markers. All the probands and their siblings, with the exception of seven siblings with schizoaffective disorder, had schizophrenia. After excluding SNPs with high linkage disequilibrium, we found significant evidence of linkage of schizophrenia to chromosome 1p21.2-1p13.2 (LOD=3.39) and suggestive evidence of linkage to 14q11.2 (LOD=2.87), 14q11.2-q13.2 (LOD=2.33), and 20p12.1-p11.2 (LOD=2.33). Although linkage to these regions has received little attention, these regions are included in or partially overlap the 10 regions reported by Lewis et al. that passed the two aggregate criteria of a meta-analysis. Results of the present study—which, to our knowledge, is the first genomewide analysis of schizophrenia in ASPs of a single Asian ethnicity that is comparable to the analyses done of ASPs of European descent—indicate the existence of schizophrenia susceptibility loci that are common to different ethnic groups but that likely have different ethnicity-specific effects.  相似文献   

16.
The progression from myocardial hypertrophy to heart failure is a complex process, involving genetic and environmental factors. Elucidating the genetic components contributing to heart failure has been difficult, largely because of the heterogeneity of human populations. We have employed a strategy to map genetic loci that modify the heart failure phenotype in a transgenic mouse model of cardiomyopathy caused by cardiac-specific overexpression of calsequestrin. Strain-specific differences in both cardiac function and survival are observed when the transgene is moved into different inbred mouse strains. We have previously reported linkage results from mapping in reciprocal backcrosses between C57/BL6 (BL6) and DBA/2J (DBA) and a backcross between DBA/AKR and AKR. Here we report the results of a genome-wide linkage scan in the reciprocal backcross between DBA/AKR and DBA. We identified one novel locus on Chromosome (Chr) 18 that affects heart function and a second on Chr 3 that shows significant linkage to both survival and heart function. Intriguingly, the Chr 3 allele of AKR shows a susceptibility effect on phenotype, whereas the overall effect of the AKR genetic background is protective. The Chr 3 locus also completely overlaps the Hrtfm2 locus, which was previously mapped in crosses between DBA and BL6. Mapping the same QTL in two different crosses allowed us to use ancestral haplotypes to narrow the candidate gene interval from 9 to 2 Mb. Identification of the genes at these QTLs in the mouse will provide novel candidate genes that can be evaluated for their role in human heart failure.  相似文献   

17.
An increased plasma triglyceride (TG) level is associated with coronary artery disease (CAD) and myocardial infarction (MI) and is a key characteristic of the metabolic syndrome. Here, we used a genome-wide linkage scan to identify a novel genetic locus that influences the plasma TG level. We genotyped 714 persons in 388 multiplex Caucasian families with premature CAD and MI with 408 polymorphic microsatellite markers that cover the entire human genome. The genome-wide scan identified positive linkage for the quantitative TG trait to a novel locus on chromosome 1p31-32 [peak single-point logarithm of odds (LOD) = 3.57, peak multipoint LOD = 3.12]. For single-point linkage analysis, two markers, D1S1728 and D1S551, showed LOD scores of 2.42 and 3.57, respectively. For multipoint linkage analysis, three markers, D1S3736, D1S1728, and D1S551, showed LOD scores of 2.43, 3.03, and 3.12, respectively. No other chromosomal regions showed a LOD score of >2.2. This study identifies a new genetic locus for TG on chromosome 1p31-32. Future studies of the candidate genes at this locus will identify a specific gene influencing the TG, which will provide insights into novel regulatory mechanisms of TG metabolism and may be important for the development of therapies to prevent CAD.  相似文献   

18.
A high-density map of the region of canine Chromosome 5 (CFA5) surrounding the evolutionary breakpoint between human Chromosomes 1p32 and 17p11 was constructed by integrating a radiation hybrid map including 41 microsatellites, 10 BACs, and 59 genes and a linkage map including 18 markers. A collection of canine genomic survey sequences providing 1.5× coverage was used to identify dog orthologs of human genes, proving instrumental in the development of this map. Of particular interest is the canine BHD gene, within which we have previously described a single nucleotide polymorphism associated with Hereditary Multifocal Renal Cystadenocarcinoma and Nodular Dermatofibrosis (RCND) in German Shepherd dogs. The corresponding region of the human genome is particularly gene rich, containing genes involved in development, metabolism, and cancer that are likely to be of interest in future mapping studies. This current mapping effort on CFA5 expands the degree to which initial findings of linkage in canine families can be followed by successful positional cloning efforts and increases the value of the human genome sequence for defining candidate genes. Moreover, this study demonstrates the utility of genomic survey sequences when combined with accurate genome maps for rapid mapping of disease susceptibility loci.  相似文献   

19.
A canine integrated linkage-radiation map has been recently constructed by using microsatellite markers. This map, with a good coverage of the canine genome, allows for a genome-wide search for the extent and distribution of linkage disequilibrium derived from linkage and evolutionary forces. In this study, we genotyped an outbred pedigree between Labrador retriever and Greyhound breeds with a set of microsatellite markers (240) from the canine linkage map. Linkage disequilibrium was measured between all syntenic and nonsyntenic marker pairs. Analysis of syntenic pairs revealed a significant correlation (–0.229, P < 0.001) between linkage disequilibrium and genetic distance (log transformed). Significant linkage disequilibria were observed more frequently between syntenic pairs spaced <40 cM than those paced >40 cM. There is a clear trend for linkage disequilibrium to decline with marker distance. From our results, a genome-wide screen with markers at low to moderate density (1–2 per 10 cM) should take full advantage of linkage disequilibrium for quantitative trait locus mapping in dogs. This study supports the appropriateness of linkage disequilibrium analysis to detect and map quantitative trait loci underlying complex traits in dogs.  相似文献   

20.
A. L. Archibald  C. S. Haley  J. F. Brown  S. Couperwhite  H. A. McQueen  D. Nicholson  W. Coppieters  A. Van de Weghe  A. Stratil  A. K. Winterø  M. Fredholm  N. J. Larsen  V. H. Nielsen  D. Milan  N. Woloszyn  A. Robic  M. Dalens  J. Riquet  J. Gellin  J. -C. Caritez  G. Burgaud  L. Ollivier  J. -P. Bidanel  M. Vaiman  C. Renard  H. Geldermann  R. Davoli  D. Ruyter  E. J. M. Verstege  M. A. M. Groenen  W. Davies  B. Høyheim  A. Keiserud  L. Andersson  H. Ellegren  M. Johansson  L. Marklund  J. R. Miller  D. V. Anderson Dear  E. Signer  A. J. Jeffreys  C. Moran  P. Le Tissier  Muladno  M. F. Rothschild  C. K. Tuggle  D. Vaske  J. Helm  H. -C. Liu  A. Rahman  T. -P. Yu  R. G. Larson  C. B. Schmitz 《Mammalian genome》1995,6(3):157-175
A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (16.5 Morgans) than the genetic map of the homogametic sex (female) (21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be 18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号