首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The population dynamics of Archaea after flooding of an Italian rice field soil were studied over 17 days. Anoxically incubated rice field soil slurries exhibited a typical sequence of reduction processes characterized by reduction of nitrate, Fe3+, and sulfate prior to the initiation of methane production. Archaeal population dynamics were followed using a dual approach involving molecular sequence retrieval and fingerprinting of small-subunit (SSU) rRNA genes. We retrieved archaeal sequences from four clone libraries (30 each) constructed for different time points (days 0, 1, 8, and 17) after flooding of the soil. The clones could be assigned to known methanogens (i.e., Methanosarcinaceae, Methanosaetaceae, Methanomicrobiaceae, and Methanobacteriaceae) and to novel euryarchaeotal (rice clusters I, II, and III) and crenarchaeotal (rice clusters IV and VI) lineages previously detected in anoxic rice field soil and on rice roots (R. Grosskopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983–4989, 1998). During the initiation of methanogenesis (days 0 to 17), we detected significant changes in the frequency of individual clones, especially of those affiliated with the Methanosaetaceae and Methanobacteriaceae. However, these findings could not be confirmed by terminal restriction fragment length polymorphism (T-RFLP) analysis of SSU rDNA amplicons. Most likely, the fluctuations in sequence composition of clone libraries resulted from cloning bias. Clonal SSU rRNA gene sequences were used to define operational taxonomic units (OTUs) for T-RFLP analysis, which were distinguished by group-specific TaqI restriction sites. Sequence analysis showed a high degree of conservation of TaqI restriction sites within the different archaeal lineages present in Italian rice field soil. Direct T-RFLP analysis of archaeal populations in rice field soil slurries revealed the presence of all archaeal lineages detected by cloning with a predominance of terminal restriction fragments characteristic of rice cluster I (389 bp), Methanosaetaceae (280 bp), and Methanosarcinaceae/rice cluster VI (182 bp). In general, the relative gene frequency of most detected OTUs remained rather constant over time during the first 17 days after flooding of the soil. Most minor OTUs (e.g., Methanomicrobiaceae and rice cluster III) and Methanosaetaceae did not change in relative frequency. Rice cluster I (37 to 30%) and to a lesser extent rice cluster IV as well as Methanobacteriaceae decreased over time. Only the relative abundance of Methanosarcinaceae (182 bp) increased, roughly doubling from 15 to 29% of total archaeal gene frequency within the first 11 days, which was positively correlated to the dynamics of acetate and formate concentrations. Our results indicate that a functionally dynamic ecosystem, a rice field soil after flooding, was linked to a relatively stable archaeal community structure.  相似文献   

2.
Anoxic soils in river floodplains (or riparian soils) are a source of methane emission. However, little is known about the ecology and community structure of archaeal methanogenic microbes, which are a crucial component of methane flux in those habitats. We studied the archaeal community in the vertical profile of four different sites along the River Waal in the Netherlands. These sites differ in their annual flooding regime ranging from never or seldom to permanently flooded. The archaeal community structure has been characterized by terminal restriction fragment length polymorphism (T-RFLP) and comparative sequence analysis of the archaeal SSU rRNA gene and the mcrA gene. The latter gene codes for the alpha-subunit of methyl-coenzyme M reductase. Additionally, the potential methanogenic activity was determined by incubation of soil slurries under anoxic conditions. The community composition differed only slightly with the depth of the soil (0-20 cm). However, the diversity of archaeal SSU rRNA genes increased with the frequency of flooding. Terminal restriction fragment length polymorphism analysis of mcrA gene amplicons confirmed the results concerning methanogenic archaea. In the never and rarely flooded soils, crenarchaeotal sequences were the dominant group. In the frequently and permanently flooded soils, Methanomicrobiaceae, Methanobacteriaceae, Methanosarcinaceae and the uncultured Rice Clusters IV and VI (Crenarchaeota) were detectable independently from duration of anoxic conditions. Methanosaetaceae, on the other hand, were only found in the permanently and frequently flooded soils under conditions where concentrations of acetate were < 30 microM. The results indicate that methanogens as well as other archaea occupy characteristic niches according to the flooding conditions in the field. Methanosaetaceae, in particular, seem to be adapted (or proliferate at) to low acetate concentrations.  相似文献   

3.
The diversity of methanogen-specific methyl-coenzyme M reductase alpha-subunit (mcrA/mrtA) genes in Italian rice field soil was analysed using a combination of molecular techniques and enrichment cultures. From 75 mcrA/mrtA clones retrieved from rice field soil, 52 were related to members of the Methanosarcinaceae, Methanosaetaceae and Methanobacteriaceae. However, 19 and four clones formed two novel clusters of deeply branching mcrA sequences, respectively, which could not be affiliated to known methanogens. A new methanogen-specific fingerprinting assay based on terminal restriction fragment length polymorphism (T-RFLP) analysis of fluorescently labelled polymerase chain reaction (PCR) products allowed us to distinguish all environmental mcrA/mrtA sequences via group-specific Sau96I restriction sites. Even genes for the isoenzyme methyl-coenzyme M reductase two (mrtA) of Methanobacteriaceae present in rice field soil were represented by a unique 470 bp terminal restriction fragment (T-RF). Both cloning and T-RFLP analysis indicated a significant representation of novel environmental mcrA sequences in rice field soil (238 bp T-RF). To identify these mcrA sequences, methanogenic enrichment cultures with rice field soil as inoculum were established with H2/CO2 as substrates at a temperature of 50 degrees C, and these were monitored using molecular tools. In subsequent transfers of these enrichment cultures, cloning and T-RFLP analysis detected predominantly SSU rRNA genes of rice cluster I (RC-I), an uncultivated euryarchaeotal lineage discovered previously in anoxic rice field soil. In parallel, both mcrA cloning and T-RFLP analyses of the enrichment culture identified the more frequent cluster of novel environmental mcrA sequences as belonging to members of RC-I. Thus, we could demonstrate the genotype and phenotype of RC-I Archaea by the presence of a catabolic gene in a methanogenic enrichment culture before the isolation of pure cultures.  相似文献   

4.
Methane production was studied in an Italian rice field over two consecutive years (1998, 1999) by measuring the rates of total and acetate-dependent methanogenesis in soil and root samples. Population dynamics of methanogens were followed by terminal restriction fragment length polymorphism and real-time PCR targeting archaeal SSU rRNA genes. Rates of total and acetate-dependent methanogenesis in soil increased during the season, reached a maximum at about 70-80 days after flooding and then decreased again. In contrast, the size of the archaeal community remained relatively constant. Therefore, the seasonal changes in the methanogenic processes were probably not caused by changes in the size of the methanogenic community but in its activity. During the 1998/1999 winter period, a slight decrease in archaeal cell numbers was found. In both years, the dominant groups were methanogens affiliated with Rice cluster I, Methanosaetaceae, Methanosarcinaceae and Methanobacteriaceae. Correspondence analysis showed, however, that the archaeal community structure was different in 1998 and 1999. Methanogens with potential acetoclastic activity made up a larger fraction of the total archaeal community in 1999 (32-53%) than in 1998 (20-32%). Furthermore, the frequency of Methanosaetaceae relative to Methanosarcinaceae was significantly higher in 1999 than in 1998. This difference could be explained by the much lower soil acetate concentrations in 1999, to which Methanosaetaceae are physiologically better adapted than Methanosarcinaceae. Over the season, however, the composition of the archaeal community remained relatively constant and thus did not reflect the observed seasonal change in CH(4) production activity. The analysis of rice root samples in 1999 showed that the archaeal community structure on the roots was similar to that in soil but with acetoclastic methanogens being relatively less common. This observation is in agreement with domination of CH(4) production by H(2)/CO(2)-dependent methanogenesis on roots. Our study provided a link between size, structure and function of the methanogenic community in an Italian rice field.  相似文献   

5.
Temperature is an important factor controlling CH(4) production in anoxic rice soils. Soil slurries, prepared from Italian rice field soil, were incubated anaerobically in the dark at six temperatures of between 10 to 37 degrees C or in a temperature gradient block covering the same temperature range at intervals of 1 degrees C. Methane production reached quasi-steady state after 60 to 90 days. Steady-state CH(4) production rates increased with temperature, with an apparent activation energy of 61 kJ mol(-1). Steady-state partial pressures of the methanogenic precursor H(2) also increased with increasing temperature from <0.5 to 3.5 Pa, so that the Gibbs free energy change of H(2) plus CO(2)-dependent methanogenesis was kept at -20 to -25 kJ mol of CH(4)(-1) over the whole temperature range. Steady-state concentrations of the methanogenic precursor acetate, on the other hand, increased with decreasing temperature from <5 to 50 microM. Simultaneously, the relative contribution of H(2) as methanogenic precursor decreased, as determined by the conversion of radioactive bicarbonate to (14)CH(4), so that the carbon and electron flow to CH(4) was increasingly dominated by acetate, indicating that psychrotolerant homoacetogenesis was important. The relative composition of the archaeal community was determined by terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes (16S rDNA). T-RFLP analysis differentiated the archaeal Methanobacteriaceae, Methanomicrobiaceae, Methanosaetaceae, Methanosarcinaceae, and Rice clusters I, III, IV, V, and VI, which were all present in the rice field soil incubated at different temperatures. The 16S rRNA genes of Rice cluster I and Methanosaetaceae were the most frequent methanogenic groups. The relative abundance of Rice cluster I decreased with temperature. The substrates used by this microbial cluster, and thus its function in the microbial community, are unknown. The relative abundance of acetoclastic methanogens, on the other hand, was consistent with their physiology and the acetate concentrations observed at the different temperatures, i.e., the high-acetate-requiring Methanosarcinaceae decreased and the more modest Methanosaetaceae increased with increasing temperature. Our results demonstrate that temperature not only affected the activity but also changed the structure and the function (carbon and electron flow) of a complex methanogenic system.  相似文献   

6.
Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH4 production rate, a decrease in the steady-state H2 partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grosskopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15 degrees C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.  相似文献   

7.
Temperate rice field soil from Vercelli (Italy) contains moderately thermophilic methanogens of the yet uncultivated rice cluster I (RC-I), which become prevalent upon incubation at temperatures of 45-50 degrees C. We studied whether such thermophilic methanogens were ubiquitously present in anoxic soils. Incubation of different rice field soils (from Italy, China and the Philippines) and flooded riparian soils (from the Netherlands) at 45 degrees C resulted in vigorous CH(4) production after a lag phase of about 10 days. The archaeal community structure in the soils was analysed by terminal restriction fragment length polymorphism (T-RFLP) targeting the SSU rRNA genes retrieved from the soil, and by cloning and sequencing. Clones of RC-I methanogens mostly exhibited T-RF of 393 bp, but also terminal restriction fragment (T-RF) of 158 and 258 bp length, indicating a larger diversity than previously assumed. No RC-I methanogens were initially found in flooded riparian soils. However, these archaea became abundant upon incubation of the soil at 45 degrees C. Thermophilic RC-I methanogens were also found in the rice field soils from Pavia, Pila and Gapan. However, the archaeal communities in these soils also contained other methanogenic archaea at high temperature. Rice field soil from Buggalon, on the other hand, only contained thermophilic Methanomicrobiales rather than RC-I methanogens, and rice field soil from Jurong mostly Methanomicrobiales and only a few RC-I methanogens. The archaeal community of rice field soil from Zhenjiang almost exclusively consisted of Methanosarcinaceae when incubated at high temperature. Our results show that moderately thermophilic methanogens are common in temperate soils. However, RC-I methanogens are not always dominating or ubiquitous.  相似文献   

8.
In anoxically incubated slurries of Italian rice field soil, CH(4) production is initiated after a lag phase during which ferric iron and sulfate are reduced. The production of CH(4) was affected by the size of soil aggregates used for the preparation of the soil slurry. Rates of CH(4) production were lowest with small aggregates (<50 and 50-100 μm), were highest with aggregates of 200-2000 μm size and were intermediate with aggregates of 2000-15000 μm size. The different amounts of CH(4) accumulated were positively correlated to the concentrations of acetate, propionate and caproate that transiently accumulated in the slurries prepared from different aggregate sizes and also to the organic carbon content. The addition of organic debris that was collected from large-size aggregates to the aggregate size fractions <200 and <50 μm resulted in an increase of CH(4) production to amounts that were comparable to those measured in unamended aggregates of 200-2000 μm size, indicating that CH(4) production in the different aggregate size fractions was limited by substrate. The distribution of archaeal small-subunit rRNA genes in the different soil aggregate fractions was analyzed by terminal restriction fragment length polymorphism which allowed seven different archaeal ribotypes to be distinguished. Ribotype-182 (consisting of members of the Methanosarcinaceae and rice cluster VI), ribotype-389 (rice cluster I and II) and ribotype-820 (undigested DNA, rice cluster IV and members of the Methanosarcinaceae) accounted for >20, >30 and >10% of the total, respectively. The other ribotypes accounted for <10% of the total. The relative quantity of the individual ribotypes changed only slightly with incubation time and was almost the same among the different soil aggregate fractions. Ribotype-389, for example, slightly decreased with time, whereas ribotype-182 slightly increased. At the end of incubation, the relative quantity of ribotype-182 seemed to be slightly higher in soil fractions with larger than with smaller aggregates, whereas it was the opposite with ribotype-80 (Methanomicrobiaceae) and ribotype-88 (Methanobacteriaceae). Ribotype-280 (Methanosaetaceae and rice cluster V), ribotype-375 (rice cluster III), ribotype-389 and ribotype-820, on the other hand, were not much different among the different soil aggregate size fractions. However, the differences were not significant relative to the errors encountered during the extraction of polymerase chain reaction (PCR)-amplifiable DNA from soil. In conclusion, soil aggregate size and incubation time showed a strong effect on the function but only a small effect on the structure of the methanogenic microbial community.  相似文献   

9.
Incorporation of plant residues strongly enhances the methane production and emission from flooded rice fields. Temperature and residue type are important factors that regulate residue decomposition and CH(4) production. However, the response of the methanogenic archaeal community to these factors in rice field soil is not well understood. In the present experiment, the structure of the archaeal community was determined during the decomposition of rice root and straw residues in anoxic rice field soil incubated at three temperatures (15 degrees C, 30 degrees C, and 45 degrees C). More CH(4) was produced in the straw treatment than root treatment. Increasing the temperature from 15 degrees C to 45 degrees C enhanced CH(4) production. Terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of 16S rRNA genes showed that Methanosarcinaceae developed early in the incubations, whereas Methanosaetaceae became more abundant in the later stages. Methanosarcinaceae and Methanosaetaceae seemed to be better adapted at 15 degrees C and 30 degrees C, respectively, while the thermophilic Methanobacteriales and rice cluster I methanogens were significantly enhanced at 45 degrees C. Straw residues promoted the growth of Methanosarcinaceae, whereas the root residues favored Methanosaetaceae. In conclusion, our study revealed a highly dynamic structure of the methanogenic archaeal community during plant residue decomposition. The in situ concentration of acetate (and possibly of H(2)) seems to be the key factor that regulates the shift of methanogenic community.  相似文献   

10.
Methanogenesis represents an important electron sink reaction in the hindgut of soil-feeding termites. This is the first comprehensive analysis of the archaeal community structure within the highly compartmentalized intestinal tract of a humivorous insect, combining clonal analysis and terminal restriction fragment (T-RF) length polymorphism (T-RFLP) fingerprinting of the archaeal communities in the different gut compartments of Cubitermes orthognathus. We found that the morphological and physicochemical heterogeneity of the gut is reflected in a large phylogenetic diversity and pronounced axial differences in the composition of the archaeal gut microbiota, notably among those clones or ribotypes that could be assigned to methanogenic taxa. Comparative analysis of the relative frequencies of different archaeal lineages among the small-subunit rRNA gene (SSU rDNA) clones and their corresponding T-RF indicated that the archaeal community in the anterior, extremely alkaline hindgut compartment (P1) consists mainly of members of the Methanosarcinaceae, whereas Methanobacteriaceae and Methanomicrobiales predominate in the subsequent, more posterior compartments (P3/4a and P4b). The relative abundance of Thermoplasmales increased towards the rectum (P5). SSU rDNA sequences representing Crenarchaeota, which have not yet been reported to occur in the intestinal tracts of arthropods, were detected in all gut sections. We discuss how the spatial distribution of methanogenic populations may be linked to axial heterogeneity in the physicochemical gut conditions and to functional adaptations to their respective ecological niches.  相似文献   

11.
Thermophilic methanogens in rice field soil   总被引:2,自引:0,他引:2  
The soil temperature in flooded Italian rice fields is generally lower than 30°C. However, two temperature optima at ≈ 41°C and 50°C were found when soil slurries were anoxically incubated at a temperature range of 10–80°C. The second temperature optimum indicates the presence of thermophilic methanogens in the rice field soil. Experiments with 14C-labelled bicarbonate showed that the thermophilic CH4 was exclusively produced from H2/CO2. Terminal restriction fragment length polymorphism (T-RFLP) of archaeal SSU rRNA gene fragments revealed a dramatic change in the archaeal community structure at temperatures > 37°C, with the euryarchaeotal rice cluster I becoming the dominant group (about 80%). A clone library of archaeal SSU rRNA gene fragments generated at 49°C was also dominated (10 out of 11 clones) by rice cluster I. Our results demonstrate that Italian rice field soil contains thermophilic methanogenic activity that was most probably a result of members of the as yet uncultivated euryarchaeotal rice cluster I.  相似文献   

12.
Methanogenic cultures were enriched from an air-dried rice field soil and incubated under anaerobic conditions at 30 degrees C with cellulose as substrate (ET1). The culture was then transferred and further incubated at either 15 degrees C (E15) or 30 degrees C (E30), to establish stable cultures that methanogenically degrade cellulose. After five transfers, the rates of CH(4) production became reproducible. At 30 degrees C, CH(4) production rates were (mean+/-S.D.) 15.2+/-0.7 nmol h(-1) ml(-1) culture for the next 16 transfers and at 15 degrees C, they were 0.38+/-0.07 nmol h(-1) ml(-1) for the next six transfers. When E30 was assayed at temperatures between 5-50 degrees C, CH(4) production rates increased with the temperature, reached a maximum at 40 degrees C and then decreased. The same temperature optimum was observed in E15, but with a lower maximum CH(4) production rate. The apparent activation energies of CH(4) production were similar (about 120 kJ mol(-1)4 mM at the beginning of the assay. The structure of the archaeal community was analyzed by molecular techniques. Total DNA was extracted from the microbial cultures before the transfer to different temperatures (ET1) and afterwards (E15, E30). The archaeal small subunit (SSU) ribosomal RNA-encoding genes (rDNA) of these DNA samples were amplified by PCR with archaeal-specific primers and characterized by terminal restriction fragment length polymorphism (T-RFLP). After obtaining a constant T-RFLP pattern in the cultural transfers at 15 and 30 degrees C, the PCR amplicons were used for the generation of clone libraries. Representative rDNA clones (n=10 for each type of culture) were characterized by T-RFLP and sequence analysis. In the primary culture (ET1), the archaeal community was dominated by clones representing 'rice cluster I', a novel lineage of methanogenic Euryarchaeota. However, further transfers resulted in the dominance of Methanosarcinaceae and Methanosaetaceae at 30 and 15 degrees C, respectively. This dominance was confirmed by fluorescence in situ hybridization (FISH) of archaeal cells. Obviously, different archaeal communities were established at the two different temperatures, but their activities nevertheless exhibited similar temperature optima.  相似文献   

13.
Methane production and archaeal community composition were studied in samples from an acidic peat bog incubated at different temperatures and pH values. H(2)-dependent methanogenesis increased strongly at the lowest pH, 3.8, and Methanobacteriaceae became important except for Methanomicrobiaceae and Methanosarcinaceae. An acidophilic and psychrotolerant Methanobacterium sp. was isolated using H(2)-plus-CO(2)-supplemented medium at pH 4.5.  相似文献   

14.
Archaeal Community Structure and Pathway of Methane Formation on Rice Roots   总被引:8,自引:0,他引:8  
The community structure of methanogenic Archaea on anoxically incubated rice roots was investigated by amplification, sequencing, and phylogenetic analysis of 16S rRNA and methyl-coenzyme M reductase (mcrA) genes. Both genes demonstrated the presence of Methanomicrobiaceae, Methanobacteriaceae, Methanosarcinaceae, Methanosaetaceae, and Rice cluster I, an uncultured methanogenic lineage. The pathway of CH4 formation was determined from the 13C-isotopic signatures of the produced CH4, CO2 and acetate. Conditions and duration of incubation clearly affected the methanogenic community structure and the pathway of CH4 formation. Methane was initially produced from reduction of CO2 exclusively, resulting in accumulation of millimolar concentrations of acetate. Simultaneously, the relative abundance of the acetoclastic methanogens (Methanosarcinaceae, Methanosaetaceae), as determined by T-RFLP analysis of 16S rRNA genes, was low during the initial phase of CH4 production. Later on, however, acetate was converted to CH4 so that about 40% of the produced CH4 originated from acetate. Most striking was the observed relative increase of a population of Methanosarcina spp. (but not of Methanosaeta spp.) briefly before acetate concentrations started to decrease. Both acetoclastic methanogenesis and Methanosarcina populations were suppressed by high phosphate concentrations, as observed under application of different buffer systems. Our results demonstrate the parallel change of microbial community structure and function in a complex environment, i.e., the increase of acetoclastic Methanosarcina spp. when high acetate concentrations become available.  相似文献   

15.
Methane is formed on rice roots mainly by CO2 reduction. The present study aimed to identify the active methanogenic populations responsible for this process. Soil-free rice roots were incubated anaerobically under an atmosphere of H2/(13CO2) or N2/(13CO2) with phosphate or carbonate (marble) as buffer medium. Nucleic acids were extracted and fractionated by caesium trifluoroacetate equilibrium density gradient centrifugation after 16-day incubation. Community analyses were performed for gradient fractions using terminal restriction fragment polymorphism analysis (T-RFLP) and sequencing of the 16S rRNA genes. In addition, rRNA was extracted and analysed at different time points to trace the community change during the 16-day incubation. The Methanosarcinaceae and the yet-uncultured archaeal lineage Rice Cluster-I (RC-I) were predominant in the root incubations when carbonate buffer and N2 headspace were used. The analysis of [13C]DNA showed that the relative 16S rRNA gene abundance of RC-I increased whereas that of the Methanosarcinaceae decreased with increasing DNA buoyant density, indicating that members of RC-I were more active than the Methanosarcinaceae. However, an unexpected finding was that RC-I was suppressed in the presence of high H2 concentrations (80%, v/v), which during the early incubation period caused a lower CH4 production compared with that with N2 in the headspace. Eventually, however, CH4 production increased, probably because of the activity of Methanosarcinaceae, which became prevalent. Phosphate buffer appeared to inhibit the activity of the Methanosarcinaceae, resulting in lower CH4 production as compared with carbonate buffer. Under these conditions, Methanobacteriaceae were the prevalent methanogens. Our study suggests that the active methanogenic populations on rice roots change in correspondence to the presence of H2 (80%, v/v) and the type of buffer used in the system.  相似文献   

16.
Although northern peatlands contribute significantly to natural methane emissions, recent studies of the importance and type of methanogenesis in these systems have provided conflicting results. Mechanisms controlling methanogenesis in northern peatlands remain poorly understood, despite the importance of methane as a greenhouse gas. We used 16S rRNA gene retrieval and denaturing gradient gel electrophoresis (DGGE) to analyse archaeal communities in 15 high-latitude peatland sites in Alaska and three mid-latitude peatland sites in Massachusetts. Archaeal community composition was analysed in the context of environmental, vegetation and biogeochemical factors characterized in a parallel study. Phylogenetic analysis revealed that Alaskan sites were dominated by a cluster of uncultivated crenarchaeotes and members of the families Methanomicrobiaceae and Methanobacteriaceae, which are not acetoclastic. Members of the acetoclastic family Methanosarcinaceae were not detected, whereas those of the family Methanosaetaceae were either not detected or were minor. These results are consistent with biogeochemical evidence that acetoclastic methanogenesis is not a predominant terminal decomposition pathway in most of the sites analysed. Ordination analyses indicated a link between vegetation type and archaeal community composition, suggesting that plants (and/or the environmental conditions that control their distribution) influence both archaeal community activity and dynamics.  相似文献   

17.
The diversity and density of methanogenic archaea and methane production were investigated ex situ at different growth stages of rice plant cultivated in compost-treated tropical rice fields. The qPCR analysis revealed variation in methanogens population from 3.40?×?10(6) to 1.11?×?10(7) copies?g(-1) dws, in the year 2009 and 4.37?×?10(6) to 1.36?×?10(7) copies?g(-1) dws in the year 2010. Apart from methanogens, a large number of bacterial (9.60?×?10(9) -1.44?×?10(10) copies?g(-1) dws) and archaeal (7.13?×?10(7) -3.02?×?10(8) copies?g(-1) dws) communities were also associated with methanogenesis. Methanogen population size varied in the order: flowering > ripening > tillering > postharvest > preplantation stage. The RFLP-based 16S rRNA gene-targeted phylogenetic analysis showed that clones were closely related to diverse group of methanogens comprising members of Methanomicrobiaceae, Methanosarcinaceae, Methanosaetaceae and RC I. Laboratory incubation studies revealed higher amount of cumulative CH(4) at the flowering stage. The integration of methanogenic community structure and CH(4) production potential of soil resulted in a better understanding of the dynamics of CH(4) production in organically treated rice-field soil. The hypothesis that the stages of plant development influence the methanogenic community structure leading to temporal variation in the CH(4) production has been successfully tested.  相似文献   

18.
Methanogenesis in paddy fields is significantly influenced by environmental and field management factors such as rice cultivar and nitrogenous fertilizer. However, it has been unclear whether such effects are reflected in the structure of methanogenic archaeal populations. In the present study, molecular analyses including cloning and sequencing and terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of archaeal 16S rRNA genes were used to characterize the methanogenic archaeal assemblages and to identify the effect of environmental variables including rice cultivar and N fertilizer on archaeal community compositions in a Chinese paddy field soil. The correlation between methanogenic archaeal composition and environmental variables was explored by correspondence analysis. The results showed that the spatial or niche factor (rice roots versus rhizosphere, surface, and the deeper layer soils) had the greatest influence on the archaeal community composition. There was an obvious enrichment or selection of hydrogenotrophic as opposed to acetoclastic methanogens by rice roots. The archaeal community also changed, though slightly, between the rhizosphere and bulk soils and between the surface soil and the deeper layer soil. However, rice cultivar and N fertilizer appear to have an effect only on methanogens tightly associated with rice roots.  相似文献   

19.
20.
A cloning-independent method based on T-RFLP (terminal restriction fragment length polymorphism) analysis of amoA PCR products was developed to identify major subgroups of autotrophic ammonia oxidizers of the beta-subclass of the class Proteobacteria in total community DNA. Based on a database of 28 partial gene sequences encoding the active-site polypeptide of ammonia monooxygenase (amoA), defined lengths of terminal restriction fragments (= operational taxonomic units, OTUs) of amoA were predicted to correlate in TaqI-based T-RFLP analysis with phylogenetically defined subgroups of ammonia oxidizers. Members of the genus Nitrosospira showed a specific OTU of 283 bp in length, while a fragment size of 219 bp was indicative of Nitrosomonas-like sequence types including N. europaea, N. eutropha, and N. halophila. Two amoA sequence clusters designated previously as the lineages 'PluBsee' and 'Sch?hsee' [Rotthauwe, J.-H., Witzel, K.-P., Liesack, W., 1997. Appl. Environ. Microbiol. 63, 4704-4712] shared a TaqI-based OTU with a fragment size of 48 bp, but sequence types of these two lineages could be differentiated by AluI-based T-RFLP analysis. A survey of various environmental samples and enrichment cultures by T-RFLP analysis and by comparative analysis of cloned amoA sequences confirmed the predicted correlations between distinct OTUs and phylogenetic information. Our data suggest that amoA-based T-RFLP analysis is a reliable tool to rapidly assess the complexity of ammonia-oxidizing communities in environmental samples with respect to the presence of major subgroups, i.e. nitrosospiras versus nitrosomonads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号